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Abstract. It is shown that the space fluctuations of concentration of conducting inclusions 
might be responsible for the well-known disagreement between theory and experiment at 
determining microwave losses in metal-dielectric mixture: the theories (percolation 
theory, effective medium theory etc.) predict much lower losses than those measured in 
experiment. It is demonstrated that if the effective skin depth in the regions occupied by 
the fluctuation is comparable to the mean diameter of these regions we can expect 
additional losses. 

PACS. 72.80.Tm Composite materials - 73.43.Cd Theory and modelling 

1. Introduction 

Low loss high-dielectric constant materials are of great interest for radio-physical 
applications. These materials may be used in designing millimeter-wave filters, for cellular phone 
antennas, dielectric spacers and so on. In this field, metal-dielectric mixtures manufactured of 
low loss plastic are of special significance due to the simplicity of their manufacturing and 
processing. 

According to the percolation theory a metal-dielectric mixture can exhibit high values for 
the real part of the permittivity [1]. This phenomenon appears at low frequencies near the 
percolation threshold pc [2]. In addition, just below the percolation threshold, the static 
conductivity is still equal to zero and it is reasonable to expect small losses at least at low 
frequencies. Below the percolation threshold the losses appear due to Maxwell displacement 
currents that connect those conducting clusters, which tend to form an infinite percolation cluster. 
It is the current flowing through the chain of big clusters and narrow dielectric gaps that 
determines the dissipation in the whole system [1, 2]. The increase of frequency causes the 
growth of Maxwell displacement currents. As a consequence more and more clusters join in the 
current transport which results in additional losses. At certain frequencies the modulus of the 
complex conductivity 0diε ε ω  of the dielectric matrix becomes comparable to the effective 
conductivity of conducting clusters. It means that all the clusters are involved in electrical transport 
and we cannot expect an additional increase of losses. The percolation theory predicts a 
remarkable frequency dispersion of the real part of permittivity and the maximum of losses to be 
at frequency ω  where 0 ~d mε ε ω σ , (in CGS system ω  is about the conductivity mσ  of the metal 
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component). For example, for copper inclusions embedded in dielectric matrix with ~ 3dε  we 
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-2 -1 4 2 2 -3 -2F=m ·kg ·s ·A , m ·kg·s ·AΩ = ). The losses rapidly fall down as the frequency decreases [1, 
3] and in the micro wave range (106 -1010 Hz) the percolation theory predicts a low level of 
dissipation, acceptable for applications. 

Unfortunately, the dissipation observed in practice significantly exceeds the prediction of 
the percolation theory: on one hand, the maximum of losses lies at much lower frequencies than 
those predicted by the theory, on the other hand, this maximum is broader than the expected one. 
This effect is usually related to the contact resistance between inclusions without any discussion of 
the origin of this resistance. In this paper we suggest a mechanism of energy dissipation that does 
not mean an introduction of any hypothetic contact resistance. This mechanism takes place at 
frequencies significantly lower than that defined by the metal conductivity. The mechanism is 
connected with the skin effect. 

2. Penetration depth and density effect on permittivity 

It is well known that, at high frequencies, the current penetrates a metal inclusion to the 
thickness πσωδ 2c=  (skin depth). As a consequence, the effective conductivity of an 
inclusion of radius incla  decreases by a factor of δ/ incla . Indeed, if we consider the wave length in 
matrix to be much greater than all other scales (inclusion size, correlation length etc.) then in the 
matrix the disturbance of the applied field 0E

r
 can be searched in the dipole form: 
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where Eα  is the polarization of the sphere of volume V. The fields inside the inclusion are 
governed by the Maxwell equations  

2 0i iE k EΔ + =
r r

, 

div 0i iEε =
r

. 

(1a) 
 
(1b) 

Eq. (1b) means that we can introduce a vector A
r

 ( curliE A=
rr

). Due to spherical symmetry of the 

inclusion A
r

 has the form of ( )( )0curlE f r Eβ
r

, where ( ) sin /f r kr r= 1 is a solution to the wave 

equation (see [4]). Thus, we arrive at the following expression for the internal field: 

( ) ( ) ( )2 2
0 0/ 3 /i E EE f r k f E f r k f n E n′ ′= β + −β + ⋅

r r rr r
.  

Taking into account that at the surface of the inclusion the tangential components of the electrical 
and magnetic fields as well as normal components of the electrical and magnetic induction are 
continuous we obtain equations to determine Eα , Eβ : 

                                                           
1 In this approximation the electrical and magnetic problems are solved separately. We can write the identical 
equation to find ( Hα , Hβ ). Certainly the found fields iE

r
 and iH

r
 induce secondary fields ( )1 / curl iH i c Eω μ=

r r
 and 

( )1 / curl iE i c Hω ε= −
r r

 respectively. It has been shown [3, 5] that these fields should be neglected in the 

homogenization problem. Thus, we can confine to the fields E
r

 and H
r

. 
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Solving these equations we arrive at the renormalized expression for dipole moment:  
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This fact may be taken into account by the Garnett approximation [6] while calculating the 
dipole moments of metallic inclusions or by the effective medium theory (EMT) [3, 7] ] while 
calculating the dipole moments of the metallic and dielectric inclusions (see also [8]). Below we 
employ EMT approach. The index “m” stands for a metallic inclusion with permittivity εm = 
i4πσ/ω, σ  is the conductivity and ω  is the radian frequency. The index “d” stands for a 
dielectric inclusion with permittivity εd, km=(1+i)/δm, 2m mcδ πσ ω= . 

The usual EMT assumes that the mean dipole moment of inclusions embedded in a 
uniform medium with permittivity effε  is equal to zero: 
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, 
(3) 

where p is the volume fraction of metallic inclusions. This equality serves to find the value of 
effε . The skin effect results in a modification of the dipole moment expression according to Eq. 

(2). Substituting the modified expressions of the dipole moments into Eq.(3) yields to the equation 
of the modified effective medium theory (MEMT) (see [3, 7] for details): 
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Comparing (4) to the usual EMT formula (3) one can see that the skin effect leads to the 
renormalization of the inclusion’s permittivity: instead of εm one obtains ( )( )mod

m m m mF k aε ε= . A 
proper branch of the solution to the Eq. (4) is produced by the following expression [9]: 
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where the single-valued branch of z  is defined as ( )exp arg( ) / 2z i z  with a cut along negative 

real axis. We have taken into account that in our case 1d d d dk a a cε ω= <<  and F( ) 1d dk a ≈ . 
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Fig. 1 The imaginary part of the effective permittivity versus the ratio of dielectric and metal 

conductivities at 17
0 3 10m Hzε σ = ⋅ , 3dε = . The dash-dotted curve presents a real part of 

permittivity calculated by EMT, the dotted curve presents an imaginary part of permittivity in the 
same case, the solid line presents the real part of permittivity calculated by MEMT, dashed curve 

presents an imaginary part of permittivity in the same case. The volume concentration of the 
inclusion is 0.3. 

 
It is obvious from Fig. l that it is indeed the inclusion’s conductivity decrease caused by the 

skin effect that leads to the experimentally observed shift of the peak of losses towards the micro 
wave range [7, 10]. However, taking into account the skin-effect cannot explain the observed 
broadening of the maximum of losses. 

 

Fig. 2: The frequency dependence of the imaginary part of permittivity of the system without 
fluctuations calculated by EMT (dotted curve), MEMT (dashed curve) and of the imaginary part of 
permittivity of the system with fluctuations of concentration calculated by two step MEMT (solid 

curve). 

To understand the nature of this broadening we should consider the role of concentration 
fluctuations in the composite medium. It is obvious that these fluctuations can significantly change 
the effective parameters of the system under consideration. It is commonly known that in order to 
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obtain a material with a high permittivity value one has to consider composites in which the metal 
concentration is slightly below the percolation threshold. On the other hand, the closer the system 
to the percolation threshold the more significant is the role played by the fluctuations [1]. In 
particular, it may happen that in a certain region of the volume the inclusions’ concentration ploc 
slightly exceeds the percolation threshold. As a consequence, the eddy currents induced in that 
region will cause additional losses. Note that, due to technology imperfections, these fluctuations 
in inclusions’ concentration are inevitable and may significantly exceed the fluctuations 
corresponding to uncorrelated random distribution. The origin of such fluctuations may be an 
insufficient mixing of the ingredients, attraction or repulsion between inclusions due to surface 
tension, etc. 

To illustrate the speculations above we consider a simple model problem. For instance, let 
us compare the losses in two different mixtures of conducting particles embedded in a lossless 
dielectric matrix. The mean volume concentration 0p  of the conducting inclusions is the same in 
both systems. We assume p0 to be less than the percolation threshold pc: 0 cp p< . In the first system, 
the conducting inclusions are randomly distributed. In the second system we assume a correlated 
distribution of the conducting inclusions. Namely, we have randomly chosen regions (regions with 
high concentration of inclusions) of radius ahc where the concentration 1p  of the conducting 
inclusions exceeds the percolation threshold pc and, as a consequence, it also exceeds the mean 
value 0p : i.e. 1 0cp p p> > . We can consider the secondary percolation problem, which is the 
problem of percolation through the regions with high concentration of inclusions. The volume 
concentration c1 of these regions is considered to be smaller than the corresponding percolation 
threshold cc. The volume concentration p2 outside these regions is thus slightly less than p0 and pc: 

2 0 1 1 1 0( ) /(1 ) cp p c p c p p= − − < < . 

To evaluate the values of the permittivity of the first system we employ the MEMT (Eq. 
(3)). For this purpose we have to define the radius ad of the “dielectric inclusions” imbedded in 
the matrix of the effective material. By employing the MEMT we assume that steady state 
approximation is still valid, namely, the wavelength in the matrix surrounding the inclusions is 
much greater than both the radius of the inclusions and the mean distance among them. As a 
consequence, the fields outside inclusions and inside dielectric inclusions are governed by the 
Laplace equation (this is not the case of metallic inclusions, inside which we have to solve the 
Maxwell equations). As a consequence, the radius of the regions filled with dielectric material 
drops out from the solution (F(kdad) <<1). For the sake of simplicity we put ad=am. 

For the second system we first evaluate the permittivity inside and outside the regions with 
increased concentrations employing MEMT and obtaining 1( )eff pε  and 2( )eff pε . For the second 
step of the calculation, we consider the volumes with high concentration 1p  as “conducting” 
inclusions, whose permittivity is equal to 1( )eff pε  and volume concentration is equal to c1. The 
volume with low concentration is represented by equivalent “dielectric” inclusions, whose 
permittivity is equal to 2( )eff pε  and the volume concentration is equal to 2 11c c= − . The inequality 
p1 > pc> 0p  > p2 yields 1 0 2Im ( ) Im ( ) Im ( )eff eff effp p pε >> ε > ε . It means that the wavelength and 
skin depth in the low concentration (lc) medium are greater then those in the high concentration 
(hc) medium and we can steel use the Laplace equation to solve the problem for lc-regions and 
alc drops out from the solution. Thus, we can put alc = ahc without loss of generality. Ultimately, 
we evaluate the effective permittivity of the mixture of such new inclusions employing MEMT. 

The results of this evaluation are shown in Fig. 2. We have chosen the following 
parameters of fluctuations: p0=0.3<pc=1/3), 1 cp = 0.335 > p , 1c = 0.2 , 510 3 10hc da a m−= = ⋅ . We 
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can see that at some frequencies additional fluctuations may result in the increase of losses more 
than ten times. Thus, in order to achieve high values of permittivity with low losses one should 
get as uniform distribution of inclusions as possible in order to avoid the local concentration 
exceeding the percolation threshold. 

It is worth noting that, in reality, this distribution can hardly be controlled. One may 
propose to study the surface of a sample. However, such a surface is a two-dimensional system and 
the percolation threshold of 2D systems is much greater than the percolation threshold of 3D 
systems. In other words, percolation channels will be observed neither within the high 
concentration medium, nor in the low concentration medium. Thus, both regions will look like 
being below the percolation threshold. 

3. Conclusion 

It is shown that if the effective skin depth in the regions occupied by the fluctuation is 
comparable to the mean diameter of these regions we can expect additional losses. Thus, the 
fluctuations in conducting inclusion concentration may be responsible for the well-known 
disagreement between the theory and experiment in microwave range: the theories (percolation 
theory, effective medium theory etc.) predict much lower losses than those measured in 
experiment [10]. To evaluate the losses we propose a two-step procedure that takes into account 
the skin depth effect both on separate inclusion and on density. 
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