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ZONAL POLYNOMIALS VIA STANLEY’S COORDINATES
AND FREE CUMULANTS

VALENTIN FÉRAY AND PIOTR ŚNIADY

ABSTRACT. We study zonal characters which are defined as suitably
normalized coefficients in the expansion of zonal polynomials in terms
of power-sum symmetric functions. We show that the zonal characters,
just like the characters of the symmetric groups, admit a nice combi-
natorial description in terms of Stanley’s multirectangular coordinates
of Young diagrams. We also study the analogue of Kerov polynomials,
namely we express the zonal characters as polynomials in free cumulants
and we give an explicit combinatorial interpretation of their coefficients.
In this way, we prove two recent conjectures of Lassalle for Jack poly-
nomials in the special case of zonal polynomials.

1. INTRODUCTION

1.1. Zonal polynomials.

1.1.1. Background.Zonal polynomials were introduced by Hua [Hua63,
Chapter VI] and later studied by James [Jam60, Jam61] in order to solve
some problems from statistics and multivariate analysis. They quickly be-
came a fundamental tool in this theory as well as in the randommatrix
theory (an overview can be found in the book of Muirhead [Mui82] or also
in the introduction to the monograph of Takemura [Tak84]). They also ap-
pear in the representation theory of the Gelfand pairs(S2n, Hn) (whereS2n

andHn are, respectively, the symmetric and hyperoctahedral groups) and
(GLd(R), Od). More precisely, when we expand zonal polynomials in the
power-sum basis of the symmetric function ring, the coefficients describe a
canonical basis (i.e. the zonal spherical functions) of the algebra of left and
rightHn-invariant (resp.Od-invariant) functions onS2n (resp.GLd(R)).

This last property shows that zonal polynomials can be viewed as an
analogue of Schur symmetric functions: the latter appear when we look at
left and rightSn (resp.Ud) invariant functions onSn×Sn (resp.GLd(C)).
the Gelfand pairs(Sn×Sn,Sn) and(GLd(C), Ud). This is the underlying
principle why many of the properties of Schur functions can be extended to
zonal polynomials and this article goes in this direction.
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In this article we use a characterization of zonal polynomials due to James
[Jam61] as their definition. The elements needed in our development (in-
cluding the precise definition of zonal polynomials) are given in Section
2.1. For a more complete introduction to the topic we refer tothe Chapter
VII of Macdonald’s book [Mac95].

The main results of this article are new combinatorial formulas for zonal
polynomials. Note that, as they are a particular case of Jacksymmetric func-
tions, there exists already a combinatorial interpretation for them in terms
of ribbon tableaux (due to Stanley [Sta89]). But our formulais of different
type: it gives a combinatorial interpretation to the coefficients of the zonal
polynomialZλ expanded in the power-sum basis as a function ofλ. In more
concrete words, the combinatorial objects describing the coefficient ofpµ
in Zλ depend onµ, whereas the statistics on them depend onλ (in Stanley’s
result it is roughly the opposite). This kind ofdual approach makes appear
shifted symmetric functions [OO97] and is an analogue of recent develop-
ments concerning characters of the symmetric group: more details will be
given in Section 1.3.

1.1.2. Jack polynomials.Jack [Jac71] introduced a family of symmetric
functionsJ (α)

λ depending on an additional parameterα. These functions are
now calledJack polynomials. For some special values ofα they coincide
with some established families of symmetric functions. Namely, up to mul-
tiplicative constants, forα = 1 Jack polynomials coincide with Schur poly-
nomials, forα = 2 they coincide with zonal polynomials, forα = 1

2
they

coincide with symplectic zonal polynomials, forα = 0 we recover the ele-
mentary symmetric functions and finally their highest degree component in
α are the monomial symmetric functions. Moreover, some otherspecializa-
tions appear in different contexts: the caseα = 1/k, wherek is an integer,
has been considered by Kadell in relation with generalizations of Selberg’s
integral [Kad97]. In addition, Jack polynomials forα = −(k + 1)/(r + 1)
verify some interesting annihilation conditions [FJMM02].

Jack polynomials for a generic value of the parameterα do not seem to
have a direct interpretation, for example in the context of the representation
theory or in the theory of zonal spherical functions of some Gelfand pairs.
Nevertheless, over the time it has been shown that several results concerning
Schur and zonal polynomials can be generalized in a rather natural way to
Jack polynomials (see, for example, the work of Stanley [Sta89]), therefore
Jack polynomials can be viewed as a natural interpolation between several
interesting families of symmetric functions at the same time.

An extensive numerical exploration and conjectures done byLassalle
[Las08, Las09] suggest that the kind of combinatorial formulas we establish
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in this paper has generalizations for any value of the parameterα. Unfortu-
nately, we are not yet able to achieve this goal.

1.2. The main result 1: a new formula for zonal polynomials.

1.2.1. Pair-partitions. The central combinatorial objects in this paper are
pair-partitions:

Definition1.1. A pair-partitionP of [2n] = {1, . . . , 2n} is a set of pairwise
disjoint two-element sets, such that their (disjoint) union is equal to[2n]. A
pair-partition can be seen as an involution of[2n] without fixpoints, which
associates to each element its partner from the pair.

The simplest example is thefirst pair-partition, which will play a particu-
lar role in our article:

(1) S =
{
{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

}
.

1.2.2. Couple of pair-partitions.Let us consider two pair-partitionsS1, S2

of the same set[2n]. We consider the following bipartite edge-labeled graph
L(S1, S2):

• it hasn black vertices indexed by the two-element sets ofS1 andn
white vertices indexed by the two-element setsS2;

• its edges are labeled with integers from[2n]. The extremities of the
edge labeledi are the two-element sets ofS1 andS2 containingi.

Note that each vertex has degree2 and each edge has one white and one
black extremity. Besides, if we erase the indices of the vertices, it is easy to
recover them from the labels of the edges (the index of a vertex is the set of
the two labels of the edges leaving this vertex). Thus, we forget the indices
of the vertices and viewL(S1, S2) as an edge-labeled graph.

As every vertex has degree2, the graphL(S1, S2) is a collection of loops.
Moreover, because of the proper bicoloration of the vertices, all loops have
even length. Let2ℓ1 ≥ 2ℓ2 ≥ · · · be the ordered lengths of these loops.
The partition(ℓ1, ℓ2, . . . ) is called the type ofL(S1, S2) or the type of the
couple(S1, S2). Its length,i.e. the number of connected components of the
graphL(S1, S2), will be denoted by|L(S1, S2)| (we like to seeL(S1, S2) as
a set of loops). We define the sign of a couple of pair-partitions as follows:

(−1)L(S1,S2) = (−1)(ℓ1−1)+(ℓ2−1)+··· = (−1)n−|L(S1,S2)|

and the power-sum symmetric function

(2) pL(S1,S2)(z1, z2, . . . ) = pℓ1,ℓ2,...(z1, z2, . . . ) =
∏

i

∑

j

zℓij .
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Example.We consider

S1 =
{
{1, 2}, {3, 4}, {5, 6}

}
;

S2 =
{
{1, 3}, {2, 4}, {5, 6}

}
. ThenL(S1, S2) =

.

. .

1

2

3

4 5 6 .

So, in this case,L(S1, S2) has type(2, 1).
Another, more complicated, example is given in the beginning of Section

5.1.

1.2.3. Zonal polynomials and pair-partitions.For zonal and Jack polyno-
mials we use in this article the notation from Macdonald’s book [Mac95].
In particular, the zonal polynomialZλ associated to the partitionλ is the
symmetric function defined by Eq. (2.13) of [Mac95, VII.2]. For the reader
not accustomed with zonal polynomials, their property given in Section 2.1
entirely determines them and is the only one used in this paper.

Let λ = (λ1, λ2, . . . ) be a partition ofn; we consider the Young tableau
T of shape2λ = (2λ1, 2λ2, . . . ) in which the boxes are numbered consecu-
tively along the rows. Permutations of[2n] can be viewed as permutations
of the boxes ofT . Then a pair(S1, S2) is calledT -admissibleif S1, S2 are
pair-partitions of[2n] such thatS ◦ S1 preserves each column ofT andS2

preserves each row.

Theorem 1.2.With the definitions above, the zonal polynomial is given by

Zλ =
∑

(S1,S2) T -admissible

(−1)L(S,S1) pL(S1,S2).

This result will be proved in Section 2.7.

Example.Let λ = (2, 1) and T =
1 2 3 4
5 6 . Then (S1, S2) is T -

admissible if and only if:

S1 ∈

{{
{1, 2}, {3, 4}, {5, 6}

}
,
{
{1, 6}, {3, 4}, {2, 5}

}}
and

S2 ∈

{{
{1, 2}, {3, 4}, {5, 6}

}
,
{
{1, 3}, {2, 4}, {5, 6}

}
,

{
{1, 4}, {2, 3}, {5, 6}

}}
.

The first possible value ofS1 gives (−1)L(S,S1) = 1 and the correspon-
ding types ofL(S1, S2) for the three possible values ofS2 are, respec-
tively, (1, 1, 1), (2, 1) and (2, 1). For the second value ofS1, the sign is
given by(−1)L(S,S1) = −1 and the types of the corresponding set-partitions
L(S1, S2) are, respectively,(2, 1), (3) and(3).

Finally, one obtainsZ(2,1) = p(1,1,1) + p(2,1) − 2p(3).
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Remark1.3. This theorem is an analogue of a known result on Schur sym-
metric functions:

n! · sλ
dim(λ)

=
∑

(−1)σ1 ptype(σ1◦σ2),

where the sum runs over pairs of permutations(σ1, σ2) of the boxes of the
diagramλ such thatσ1 (resp.σ2) preserves the columns (resp. the rows)
of λ andtype(σ1 ◦ σ2) denotes the partition describing the lengths of the
cycles ofσ1 ◦σ2. This formula is a consequence of the explicit construction
of the representation associated toλ via the Young symmetrizer. For a
detailed proof, see [F́S07]. In [Han88], the author tries unsuccessfully to
generalize it to Jack polynomials by introducing some statistics on couples
of permutations. Our result shows that, at least forα = 2, a natural way to
generalize is to use other combinatorial objects than permutations.

1.3. Zonal characters. The above formula expresses zonal polynomials in
terms of power-sum symmetric functions. In Section 3, we will extract the
coefficient of a given power-sum. In this way we study an analogue of the
coordinates of Schur polynomials in the power-sum basis of the symmetric
function ring. These coordinates are known to be the irreducible characters
of the symmetric group and have a plenty of interesting properties. Some
of them are (conjecturally) generalizable to the context where Schur func-
tions are replaced by Jack polynomials and our results in thecase of zonal
polynomials go in this direction.

1.3.1. Characters of symmetric groups.For a Young diagramλ we denote
by ρλ the corresponding irreducible representation of the symmetric group
Sn with n = |λ|. Any partitionµ such that|µ| = n can be viewed as a
conjugacy class inSn. Let πµ ∈ Sn be any permutation from this con-
jugacy class; we will denote byTr ρλ(µ) := Tr ρλ(πµ) the corresponding
irreducible character value. Ifm ≤ n, any permutationπ ∈ Sm can be also
viewed as an element ofSn, we just have to addn−m additional fixpoints
to π; for this reason

Tr ρλ(µ) := Tr ρλ
(
µ 1|λ|−|µ|

)

makes sense also when|µ| ≤ |λ|.
Normalized characters of the symmetric group were defined byIvanov

and Kerov [IK99] as follows:

(3) Σ(1)
µ (λ) = n(n− 1) · · · (n− |µ|+ 1)︸ ︷︷ ︸

|µ| factors

Tr ρλ(µ)

dimension ofρλ

(the meaning of the superscript in the notationΣ
(1)
µ (λ) will become clear

later on). The novelty of the idea was to view the character asa function
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λ 7→ Σ
(1)
µ (λ) on the set of Young diagrams (of any size) and to keep the con-

jugacy class fixed. The normalization constants in (3) were chosen in such
a way that the normalized charactersλ 7→ Σ

(1)
µ (λ) form a linear basis (when

µ runs over the set of all partitions) of the algebraΛ⋆ of shifted symmetric
functions introduced by Okounkov and Olshanski [OO97], which is very
rich in structure (this property is, for example, the key point in a recent ap-
proach to study asymptotics of random Young diagrams under Plancherel
measure [IO02]). In addition, recently a combinatorial description of the
quantity (3) has been given [Sta06, Fér10], which is particularly suitable
for study of asymptotics of character values [FŚ07].

Thanks to Frobenius’ formula for characters of the symmetric groups
[Fro00], definition (3) can be rephrased using Schur functions. We expand
the Schur polynomialsλ in the base of the power-sum symmetric functions
(pρ) as follows:

(4)
n! sλ
dim(λ)

=
∑

ρ:
|ρ|=|λ|

θ(1)ρ (λ) pρ

for some numbersθ(1)ρ (λ). Then

(5) Σ(1)
µ (λ) =

(
|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(1)

µ,1|λ|−|µ|(λ),

where

zµ = µ1µ2 · · · m1(µ)!m2(µ)! · · ·

andmi(µ) denotes the multiplicity ofi in the partitionµ.

1.3.2. Zonal and Jack characters.In this paragraph we will define ana-
logues of the quantityΣ(1)

µ (λ) via Jack polynomials. First of all, as there
are several of them, we have to fix a normalization for Jack polynomials.
In our context, the best is to use the functions denoted byJ in the book of
Macdonald [Mac95, VI, (10.22)]. With this normalization, one has

J
(1)
λ =

n! sλ
dim(λ)

,

J
(2)
λ = Zλ.

If in (4), we replace the left-hand side by Jack polynomials:

(6) J
(α)
λ =

∑

ρ:
|ρ|=|λ|

θ(α)ρ (λ) pρ
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then in analogy to (5), we define

Σ(α)
µ (λ) =

(
|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(α)

µ,1|λ|−|µ|(λ).

These quantities are calledJack characters. Notice that forα = 1 we
recover the usual normalized character values of the symmetric groups. The
caseα = 2 is of central interest in this article, since then the left-hand side
of (6) is equal to the zonal polynomial; for this reasonΣ

(2)
µ (λ) will be called

zonal character.
Study of Jack characters has been initiated by Lassalle [Las08, Las09].

Just like the usual normalized charactersΣ
(1)
µ , they are (α-)shifted sym-

metric functions [Las08, Proposition 2] as well, which is a good hint that
they might be an interesting generalization of the characters. The names
zonal charactersandJack charactersare new; we decided to introduce them
because quantitiesΣ(α)

µ (λ) are so interesting that they deserve a separate
name. One could argue that this name is not perfect since Jackcharacters
are notsensu strictocharacters in the sense of the representation theory
(as opposed to, say, zonal characters which are closely related to the zonal
spherical functions and therefore are a natural extension of the characters in
the context of Gelfand pairs). On the other hand, as we shall see, Jack char-
acters conjecturally share many interesting properties with the usual and
zonal characters of symmetric groups, therefore the formercan be viewed
as interpolation of the latter which justifies to some extenttheir new name.

1.4. The main result 2: combinatorial formulas for zonal characters.

1.4.1. Zonal characters in terms of numbers of colorings functions. Let
S0, S1, S2 be three pair-partitions of the set[2k]. We consider the following
function on the set of Young diagrams:

Definition1.4. Let λ be a partition of any size. We defineN (1)
S0,S1,S2

(λ) as
the number of functionsf from [2k] to the boxes of the Young diagramλ
such that for everyl ∈ [2k]:

(Q0) f(l) = f(S0(l)), in other wordsf can be viewed as a function on
the set of pairs constitutingS0;

(Q1) f(l) andf(S1(l)) are in the same column;
(Q2) f(l) andf(S2(l)) are in the same row.

Note thatλ 7→ N
(1)
S0,S1,S2

(λ) is, in general, not a shifted symmetric func-
tion, so it cannot be expressed in terms of zonal characters.On the other
hand, the zonal characters have a very nice expression in terms of theN
functions:
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Theorem 1.5. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of the set[2k] of typeµ. Then one has the following
equality between functions on the set of Young diagrams:

(7) Σ(2)
µ =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1) 2|L(S0,S1)| N
(1)
S0,S1,S2

,

where the sum runs over pair-partitions of[2k] andℓ(µ) denotes the num-
ber of parts of partitionµ.

We postpone the proof to Sections 3.1–3.4. This formula is aninterme-
diate step towards Theorem 1.6, but we wanted to state it as anindependent
result because its analogue for the usual characters [FŚ07, Theorem 2] has
been quite useful in some contexts (see [FŚ07, Fér09]).

Example.Let us consider the caseµ = (2). We fix S1 =
{
{1, 2}, {3, 4}

}

andS2 =
{
{1, 4}, {2, 3}

}
. ThenS0 can take three possible values:S1, S2

andS3 :=
{
{1, 3}, {2, 4}

}
.

If S0 = S1, condition (Q0) implies condition (Q1). Moreover, conditions
(Q0) and (Q2) imply that the images of all elements are in the same row.
ThereforeN (1)

S1,S1,S2
(λ) is equal to the number of ways to choose two boxes

in the same row ofλ: one is the image of1 and2 and the other the image
of 3 and4. It follows that

N
(1)
S1,S1,S2

(λ) =
∑

i

λ2i .

In a similar way,N (1)
S2,S1,S2

(λ) is the number of ways to choose two boxes
in the same column ofλ: one is the image of1 and4 and the other the image
of 2 and3. It follows that

N
(1)
S2,S1,S2

(λ) =
∑

i

(λ′i)
2,

whereλ′ is the conjugate partition ofλ.
Consider the last caseS0 = S3. Conditions (Q0) and (Q2) imply that

the images of all elements are in the same row. Besides, conditions (Q0)
and (Q1) imply that the images of all elements are in the same column. So
all elements must be matched to the same box and the number of functions
fulfilling the three properties is simply the number of boxesof λ.

Finally,

(8) Σ
(2)
(2)(λ) = 2

(
∑

i

λ2i

)
−

(
∑

i

(λ′i)
2

)
− |λ|.
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If we denoten(λ) =
∑

i

(
λ′i
2

)
[Mac95, equation (I.1.6)], this can be rewrit-

ten as:

Σ
(2)
(2)(λ) = 2(2n(λ′) + |λ|)− (2n(λ) + |λ|)− |λ|

= 4n(λ′)− 2n(λ).

The last equation corresponds to the caseα = 2 of Example 1b. of para-
graph VI.10 of Macdonald’s book [Mac95].

1.4.2. Zonal characters in terms of Stanley’s coordinates.The notion of
Stanley’s coordinates was introduced by Stanley [Sta04] who found a nice
formula for normalized irreducible character values of thesymmetric group
corresponding to rectangular Young diagrams. In order to generalize this
result, he defined, given two sequencesp andq of positive integers of same
size (q being non-increasing), the partition:

p× q = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , ql, . . . , ql︸ ︷︷ ︸
pl times

).

Then he suggested to consider the quantityΣ
(1)
µ (p × q) as a polynomial in

p andq. An explicit combinatorial interpretation of the coefficients was
conjectured in [Sta06] and proved in [Fér10].

It is easy to deduce from the expansion ofΣ
(2)
µ in terms of theN functions

a combinatorial description of the polynomialΣ
(2)
µ (p× q).

Theorem 1.6. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of[2k] of typeµ. Then:

(9) Σ(2)
µ (p× q) =

(−1)k

2ℓ(µ)

∑

S0


 ∑

φ:L(S0,S2)→N⋆

∏

l∈L(S0,S2)

(pϕ(l)) ·
∏

l′∈L(S0,S1)

(−2qψ(l′))


 ,

whereψ(l′) := max
l
ϕ(w) with l running over the loops ofL(S0, S1) having

at least one element in common withl′.

We postpone the proof until Section 3.5.

Example.We continue the previous example in the caseµ = (2).
WhenS0 = S1, the graphL(S0, S2) has only one loop, thus we sum

over indexi ∈ N
⋆. The graphL(S0, S1) has two loops in this case, whose

images byψ are bothi. So the expression in the square brackets forS0 = S1

is equal to:

4
∑

i

piq
2
i .
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WhenS0 = S2, the graphL(S0, S2) has two loops, thus we sum over
couples(i, j) in (N⋆)2. The graphL(S0, S1) has only one loop, which has
elements in common with both loops ofL(S0, S2) and thus its image byψ
ismax(i, j). Therefore, the expression in the brackets can be written inthis
case as:

−2
∑

i,j

pipjqmax(i,j).

WhenS0 = S3, both graphsL(S0, S2) andL(S0, S1) have only one loop.
Thus we sum over one indexi ∈ N⋆ which is the image byϕ andψ of these
loops. In this case the expression in the brackets is simply equal to:

−2
∑

i,j

piqi.

Finally, in this case, Eq. (9) becomes:

Σ
(2)
(2)(p× q) = 2

∑

i

piq
2
i −

∑

i,j

pipjqmax(i,j) −
∑

i

piqi.

It matches the numerical data given by M. Lassalle in [Las08,top of page
3] (one has to change the signs and substituteβ = 1 in his formula).

1.5. Kerov polynomials.

1.5.1. Free cumulants.For a Young diagramλ = (λ1, λ2, . . . ) and an inte-
gers ≥ 1 we consider the dilated Young diagram

Dsλ = (sλ1, . . . , sλ1︸ ︷︷ ︸
s times

, sλ2, . . . , sλ2︸ ︷︷ ︸
s times

, . . . ).

If we interpret the Young diagrams geometrically as collections of boxes
then the dilated diagramDsλ is just the image ofλ under scaling by factor
s.

This should not be confused with

αλ = (αλ1, αλ2, . . . )

which is the Young diagram stretched anisotropically only along theOX
axis.

Note that, as Jack characters are polynomial functions on Young dia-
grams, they can be defined on non-integer dilatation or anisotropical stretch-
ing of Young diagrams (in fact, they can be defined on any generalized
Young diagrams, see [DFŚ10] for details). In the case of zonal characters,
this corresponds to writing Theorem 1.6 for sequencesp andq with non-
integer terms.
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Following Biane [Bia98] (who used a different, but equivalent definition),
for a Young diagramλwe define itsfree cumulantsR2(λ), R3(λ), . . . by the
formula

Rk(λ) = lim
s→∞

1

sk
Σ

(1)
k−1(Dsλ).

In other words, each free cumulantRk(λ) is asymptotically the dominant
term of the character on a cycle of lengthk− 1 in the limit when the Young
diagram tends to infinity. It is natural to generalize this definition using Jack
characters:

R
(α)
k (λ) = lim

s→∞

α

(αs)k
Σ

(α)
k−1(Dsλ).

In fact, the generalα case can be expressed simply in terms of the usual
free cumulant thanks to [Las09, Theorem 7]:

R
(α)
k (λ) =

1

αk
Rk(αλ).

The quantitiesR(α)
k (λ) are calledα-anisotropic free cumulants of the Young

diagramλ.
With this definition free cumulants might seem to be rather abstract quan-

tities, but in fact they could be equivalently defined in a very explicit way
using the shape of the diagram and linked to free probability, whence their
name, see [Bia98]. The equivalence of these two descriptions makes them
very useful parameters for describing Young diagrams. Moreover, Propo-
sition 2 and the Theorem of section 3 in [Las08] imply that they form a
homogeneous algebraic basis of the ring of shifted symmetric functions.
Therefore many interesting functions can be written in terms of free cumu-
lants. These features make free cumulants a perfect tool in the study of as-
ymptotic problems in representation theory, see for example [Bia98,Śni06].

1.5.2. Kerov polynomials for Jack characters.The following observation
is due to Lassalle [Las09]. Letk ≥ 1 be a fixed integer and letα be fixed.
SinceΣ(α)

k is anα-shifted symmetric function and the anisotropic free cu-
mulants(R(α)

l )l≥2 form an algebraic basis of the ring ofα-shifted symmetric
functions, there exists a polynomialK(α)

k such that, for any Young diagram
λ,

Σ
(α)
k (λ) = K

(α)
k

(
R

(α)
2 (λ), R

(α)
3 (λ), . . .

)
.

This polynomial is calledKerov polynomial for Jack character.
Thus Kerov polynomials for Jack characters express Jack characters on

cycles in terms of free cumulants. For more complicated conjugacy classes
it turns out to be more convenient to express not directly thecharacters
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Σ
(α)
(k1,...,kℓ)

but rathercumulant

(−1)ℓ−1κid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

).

This gives rise togeneralized Kerov polynomials for Jack characters, de-
notedK(α)

(k1,...,kℓ)
. In the classical contextα = 1 these quantities have been

introduced by one of us and Rattan [RŚ08]; in the Jack case they have been
studied by Lassalle [Las09]. We skip the definitions and refer to the above
papers for details since generalized Kerov polynomials arenot of central
interest for this paper.

1.5.3. Classical Kerov polynomials.Forα = 1 these polynomials are called
simply Kerov polynomials. This case has a much longer history and it was
initiated by Kerov [Ker00] and Biane [Bia03] who proved thatin this case
the coefficients are in fact integers and conjectured their non-negativity.
This conjecture has been proved by the first-named author [Fér09], also
for generalized Kerov polynomials. Then, an explicit combinatorial inter-
pretation has been given by the authors, together with Dołęga, in [DFŚ10],
using a different method.

These polynomials have a deep structure, from a combinatorial and ana-
lytic point of view, and there are still open problems concerning them. For
a quite comprehensive bibliography on this subject we referto [DFŚ10].

Most of properties of Kerov polynomials seem to be generalizable in the
case of a general value of the parameterα, although not much has been
proved for the moment (see [Las09]).

1.6. The main result 3: Kerov’s polynomials for zonal characters. As
in the classical setting, the coefficients of zonal Kerov polynomials have
a nice combinatorial interpretation, analogous to the one from [DFŚ10].
Namely, if we denote

[
xv11 · · ·xvtt

]
P the coefficient ofxv11 · · ·xvtt in P , we

show the following result.

Theorem 1.7. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of[2k] of typeµ. Let s2, s3, . . . be a sequence of
non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

(−1)|µ|+ℓ(µ)+2s2+3s3+··· 2ℓ(µ)−(2s2+3s3+··· )
[(
R

(2)
2

)s2 (
R

(2)
3

)s3
· · ·
]
K(2)
µ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs
(S0, q) with the following properties:

(a) S0 is a pair-partition of [2k] such that the three involutions corres-
ponding toS0, S1 andS2 generate a transitive subgroup ofS2k;

(b) the number of loops inL(S0, S1) is equal tos2 + s3 + · · · ;
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(c) the number of loops inL(S0, S2) is equal tos2 + 2s3 + 3s4 + · · · ;
(d) q is a function from the setL(S0, S1) to the set{2, 3, . . . }; we re-

quire that each numberi ∈ {2, 3, . . . } is used exactlysi times;
(e) for every subsetA ⊂ L(S0, S1) which is nontrivial (i.e.,A 6= ∅

andA 6= L(S0, S1)), there are more than
∑

v∈A

(
q(v) − 1

)
loops

in L(S0, S2) which have a non-empty intersection with at least one
loop fromA.

Condition (e) can be reformulated in a number of equivalent ways [DF́S10].
This result will be proved in Section 4.

Example.We continue the previous example:µ = (2),S1 =
{
{1, 2}, {3, 4}

}

andS2 =
{
{1, 4}, {2, 3}

}
. Recall thatS0 can take three values (S1, S2 and

another valueS3 =
{
{1, 3}, {2, 4}

}
). In each case, condition (a) is fulfilled.

The number of loops inL(S0, S1) andL(S0, S2) in each case was already
calculated in the example on page 9; from the discussion there it follows
as well that anyℓ ∈ L(S0, S1) and anyℓ′ ∈ L(S0, S2) have a non-empty
intersection.

• If S0 = S2 (resp.S0 = S3), conditions (b), (c), (d) and (e) are ful-
filled for (s2, s3, . . . ) = (0, 1, 0, 0, . . . ) (respectively,(s2, s3, . . . ) =
(1, 0, 0, . . . )) and q associating3 (resp.2) to the unique loop of
L(S0, S1).

• If S0 = S1, conditions (b) and (c) cannot be fulfilled at the same
time for any sequence(si) because this would imply

2 = |L(S0, S1)| ≤ |L(S0, S2)| = 1.

Finally, all coefficients ofK(2)
(2) are equal to0, except for:

−1

2
[R

(2)
2 ]K

(2)
(2) = 1;

1

4
[R

(2)
3 ]K

(2)
(2) = 1.

In other terms,
K

(2)
(2) = 4R

(2)
3 − 2R

(2)
2 .

This fits with Lassalle’s data [Las09, top of page 2230].

1.7. Symplectic zonal polynomials.As mentioned above, the caseα = 1
2

is also special for Jack polynomials, as we recover the so-called symplectic
zonal polynomials. These polynomials appear in a quaternionic analogue
of James’ theory, see [Mac95, VII.6].

The symplectic zonal and zonal cases are linked by the duality formula
for Jack characters (see [Mac95, Chapter VI, equation (10.30)]):

(10) θ(α)ρ (λ) = (−α)|ρ|−ℓ(ρ) θ(α
−1)

ρ (λ′),
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whereλ′ is conjugate of the partitionλ.
Using the definition of Jack characters, this equality becomes:

(11) Σ(α)
µ (λ) = (−α)|µ|−ℓ(µ) Σ(α−1)

µ (λ′).

Therefore the combinatorial interpretation of Stanley’s and Kerov’s polyno-
mials for zonal characters have analogues in the symplecticzonal case. As
it will be useful in the next section, let us state the one for Kerov’s polyno-
mials.

Theorem 1.8. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of[2k] of typeµ. Let s2, s3, . . . be a sequence of
non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

2|µ|
[(
R

(1/2)
2

)s2 (
R

(1/2)
3

)s3
· · ·
]
K(1/2)
µ

of the (generalized) symplectic zonal Kerov polynomial is equal to the num-
ber of pairs(S0, q) with properties (a), (b), (c), (d) and (e) of Theorem 1.7.

Proof. This comes from Eq. (11), Theorem 1.7 and the fact that:

R
(1/2)
k (λ) = 2kRk(1/2λ) = 2kRk

[
D(1/2)

(
(2λ′)′

)]

= Rk

[
(2λ′)′

]
= (−1)kRk(2λ

′) = (−2)kR
(2)
k (λ′). �

1.8. Lassalle’s conjectures.In a series of two papers [Las08, Las09] Las-
salle proposed some conjectures on the expansion of Jack characters in
terms of Stanley’s coordinates and free cumulants. These conjectures sug-
gest the existence of a combinatorial description of Jack characters. Our
results give such a combinatorial description in the case ofzonal charac-
ters. Moreover, we can prove a few statements which are corollaries of
Lassalle’s conjectures.

Let us begin by recalling the latter ([Las08, Conjecture 1] and [Las09,
Conjecture 2]).

Conjecture 1.9. Letµ be a partition ofk.

• (−1)kΣ
(α)
µ (p,−q) is a polynomial in variablesp, q andα− 1 with

non-negative integer coefficients.
• there is a “natural” way to write the quantity

κid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

)

as a polynomial in the variablesR(α)
i ,α and1−αwith non-negative

integer coefficients.
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In fact, Lassalle conjectured this in the case whereµ has no part equal to
1, but it is quite easy to see that if it is true for some partition µ, it is also
true forµ ∪ 1.

Having formulas only in the casesα = 1/2 andα = 2, we can not
prove this conjecture. In the following we will present a fewcorollaries of
Conjecture 1.9 in the special casesα = 2 andα = 1/2 and we shall prove
them. This gives an indirect evidence supporting Conjecture 1.9.

Proposition 1.10. Let µ be a partition ofk. Then(−1)kΣ
(2)
µ (p,−q) is a

polynomial in variablesp, q with non-negative integer coefficients.

If we look at the expansion of symplectic zonal polynomials in Stanley’s
coordinates, Lassalle’s conjecture does not imply neitherintegrity nor posi-
tivity of the coefficients as we specialize the variableα− 1 to a non-integer
negative value.

Proposition 1.11. Let µ be a partition ofk. ThenK(2)
µ has integer coeffi-

cients.

In this case there is no positivity result, because one of thevariables of
the polynomial, namely1− α, is specialized to a negative value.

Proposition 1.12. Letµ be a partition ofk. ThenK(1/2)
µ has non-negative

rational coefficients.

Proof. It is a direct consequence of Theorem 1.8. �

In this case there is no integrality result, because the variablesα and1−α
are specialized to non-integer values.

Propositions 1.10 and 1.11 are proved in Sections 3.6 and 4.4.

1.9. Pair-partitions and zonal characters: the dual picture. It should
be stressed that there was another result linking triplets of pair-partitions
and zonal characters; it can be found in the work of Goulden and Jackson
[GJ96]. But their result goes in the reverse direction than ours: they count
triplets of pair partitions with some properties using zonal characters, while
we express zonal characters using triplets of pair-partitions. An analogous
picture exists for pairs of permutations and the usual characters of symmet-
ric groups. It would be nice to understand the link between these two dual
approaches.

1.10. Maps on possibly non-orientable surfaces.Most of our theorems
involve triplets of pair-partitions. This combinatorial structure is in fact
much more natural than it might seem at first glance, as they are in cor-
respondence with graphs drawn on (possibly non orientable and non con-
nected) surfaces. In section 5, we explain this relation andgive combinato-
rial reformulations of our main results.
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1.11. Overview of the paper. Sections 2, 3 and 4 are respectively devoted
to the proofs of the main results 1, 2 and 3. Section 5 is devoted to the link
with maps.

2. FORMULAS FOR ZONAL POLYNOMIALS

The main result of this section is Theorem 1.2, which gives a combinato-
rial formula for zonal polynomials.

2.1. Preliminaries. In this paragraph we give the characterization of zonal
polynomials, which is the starting point of our proof of Theorem 1.2. This
characterization is due to James [Jam61]. However, we will rather base our
presentation on the section VII.3 of Macdonald’s book [Mac95], because
the link with more usual definitions of zonal polynomials (asparticular case
of Jack symmetric functions, Eq. (VII, 2.23) orvia zonal spherical functions
(VII, 2.13) is explicit there.

Consider the spaceP (G) of polynomial functions on the setG = GLd(R),
i.e. functions which are polynomial in the entries of the matrices. The group
G acts canonically on this space as follows: forL,X ∈ G andf ∈ P (G),
we define

(Lf)(X) = f(LTX).

As a representation ofG, the spaceP (G) decomposes asP (G) =
⊕

µ Pµ,
where the sum runs over partitions of length at mostd and wherePµ is a
sum of representations of typeµ [Mac95, Eq. (VII, 3.2)].

Let us denoteK = O(d). We will look particularly at the subspace
P (G,K) of functionsf ∈ P (G) which are left- and right-invariant under
the action of the orthogonal group, that is such that, for anyk, k′ ∈ K and
g ∈ G,

f(kgk′) = f(g).

The intersectionPµ∩P (G,K) has dimension1 if µ = 2λ for some partition
λ and0 otherwise [Mac95, Eq. (VII, 3.15)]. Thus there is a unique function
Ω

(d)
λ such that:

(a) Ω(d)
λ (1G) = 1,

(b) Ω
(d)
λ is invariant under the left action of the orthogonal groupOd(R),

(c) Ω
(d)
λ belongs toP2λ.

This functionΩ(d)
λ is linked to zonal polynomials by the following equation

[Mac95, Eq. (3.24)]:

Ω
(d)
λ (X) =

Zλ(Sp(XX
T ))

Zλ(1d)
,
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whereSp(XXT ) is the multiset of eigenvalues ofXXT . Therefore if we
find functionsΩ(d)

λ with the properties above, we will be able to compute
zonal polynomials up to a multiplicative constant.

We will look for such functions in a specific form. ForZ = v1 ⊗ · · · ⊗
v2n ∈ (Rd)⊗2n we define a homogeneous polynomial function of degree2n
onG

φZ(X) = 〈XTv1, X
Tv2〉 · · · 〈X

Tv2n−1, X
Tv2n〉 for X ∈ Md(R)

and for general tensorsZ ∈ (Rd)⊗2n by linearity. Clearly,

φZ(XO) = φZ(X) for anyO ∈ Od(R);

in other wordsφZ is invariant under the right action of the orthogonal group
Od(R).

Besides,GLd(R) acts on(Rd)⊗2n: this action is defined on elementary
tensors by

(12) L(v1 ⊗ · · · ⊗ v2n) = Lv1 ⊗ · · · ⊗ Lv2n.

Lemma 2.1. The linear mapφ : (Rd)⊗2n → P (G) is an intertwiner of
G-representation, i.e. for allg ∈ G andZ ∈ (Rd)⊗2n one has:

gφZ = φgZ .

Proof. Straightforward from the definition of the actions. �

Thanks to this lemma,φ
z
(d)
λ

will be left-invariant by multiplication by the

orthogonal group if and only ifz(d)λ is invariant by the action of the orthog-
onal group. Besides,φ

z
(d)
λ

is inPµ if z(d)λ itself in the isotypic component of

typeµ in the representation(Rd)⊗2n.
Finally, we are looking for an elementz(d)λ ∈ (Rd)⊗2n such that:

(a) φ
z
(d)
λ

is non-zero,

(b) z(d)λ is invariant under the left action ofOd(R) ⊂ GLd(R),
(c) z(d)λ belongs to the isotypic component of type2λ in the representa-

tion (Rd)⊗2n (in particularn has to be the size ofλ).

In the following paragraphs we exhibit an elementz
(d)
λ ∈ (Rd)⊗2n with

these properties and use it to compute the zonal polynomialZλ.

2.2. A few lemmas on pair-partitions.

Lemma 2.2. Let (S1, S2) be a couple of pair-partitions of[2n] of typeµ.
Then if we seeS1 andS2 as involutions of[2n], their compositionS1 ◦ S2

has cycle-typeµ ∪ µ.
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Proof. Let (i1, i2, . . . , i2ℓ) be a loop of length2ℓ in the graphL(S1, S2).
This means that, up to a relabeling,S1 (resp.S2) contains the pairs{i2j , i2j+1}
(resp.{i2j−1, i2j) for 1 ≤ j ≤ ℓ (with the conventioni2ℓ+1 = i1). Then the
restriction ofS1 ◦ S2 to {i1, · · · , i2ℓ}

(S1 ◦ S2)
∣∣
{i1,··· ,i2ℓ}

= (i1 i3 · · · i2ℓ − 1)(i2 i4 · · · i2ℓ)

is a disjoint product of two cycles of lengthℓ. The same is true for the
restriction to the support of each loop, thereforeS1 ◦ S2 has cycle-type
µ1, µ1, µ2, µ2, . . . �

The symmetric groupS2n acts on the set of pair-partitions of[2n]: if σ is
a permutation inS2n andT a pair-partition of[2n], we denote byσ · T the
pair partition such that{σ(i), σ(j)} is a part ofσ · T if and only if {i, j} is
a part ofT .

Lemma 2.3. Let σ be a permutation of the boxes of2λ which preserves
each column. Then

(−1)σ = (−1)L(σ·S,S).

Proof. Young diagram2λ can be viewed as a concatenation of rectangular
Young diagrams of sizei×2 (i parts, all of them equal to2); for this reason
it is enough to proof the lemma for the case when2λ = i× 2. Permutation
σ can be viewed as a pair(σ(1), σ(2)) whereσ(j) ∈ Si is the permutation of
j-th column. Then

(−1)σ = (−1)σ
(1)

(−1)σ
(2)

= (−1)σ
(1)(σ(2))

−1

= (−1)(ℓ1−1)+(ℓ2−1)+···,

whereℓ1, ℓ2, . . . are the lengths of the cycles of the permutationσ(1)
(
σ(2)
)−1

.
Let (�[c, r]) denote the box of the Young diagram in the columnc and

the rowr. Then

σSσ−1S(�[1, i]) = σSσ−1(�[2, i]) = σS
(
�[2, (σ(2))−1(i)]

)

= σ
(
�[1, (σ(2))−1(i)]

)
= �[1, σ(1)

(
σ(2)
)−1

(i)].

SoσSσ−1S = (σ · S)S permutes the first column and its restriction to the
first column has cycles of lengthℓ1, ℓ2, . . . . The same is true for the second
column. It follows that(σ · S)S has cycles of lengthℓ1, ℓ1, ℓ2, ℓ2, . . . or,
equivalently, the lengths of the loops ofL(σ ·S, S) are equal to2ℓ1, 2ℓ2, . . .
which finishes the proof. �

The last lemma of this paragraph concerns the structure of the set of
couples of pair-partitions of[2n] endowed with the diagonal action of the
symmetric group. From the definition of the graphL(S1, S2) it is clear that
L(σS1, σS2) andL(S1, S2) are isomorphic as bipartite graphs, thus they
have the same type. Conversely:
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Lemma 2.4. The set of couples(S1, S2) of typeµ forms exactly one orbit
under the diagonal action of the symmetric groupS2n. Moreover, there are
exactly (2n)!

zν2ℓ(ν)
of them.

Proof. Let us consider two couples(S1, S2) and(S ′
1, S

′
2) of typeµ such that

both graphsG := L(S1, S2) andG′ := L(S ′
1, S

′
2) are collections of loops of

lengths2µ1, 2µ2 . . . . These two graphs are isomorphic as vertex-bicolored
graphs. Letϕ be any isomorphism of them. As it sends the edges ofG to
the edges ofG′, it can be seen as a permutation inS2n. As it sends the black
(resp. white) vertices ofG to the black (resp. white) vertices ofG′, one has:
ϕ(S1) = S ′

1 (resp.ϕ(S2) = S ′
2). Thus all couples of pair-partitions of type

µ are in the same orbit.
Fix a couple(S1, S2) of typeµ and denote byL1, . . . , Lℓ(µ) the loops of

the graphL(S1, S2). Moreover we fix arbitrarily one edgeei in each loop
Li. Letσ belong to the stabilizer of the action ofS2n on a(S1, S2); in other
wordsσ commutes withS1 andS2. Such aσ induces a permutationτ of the
loops (Li) respecting their sizes; there are

∏
imi(µ)! such permutations.

Besides, onceτ is fixed, there are2µi possible images forei (it can be
any element of the loopτ(Li), which has the same size asLi which is
equal to2µi). As σ(Sj(i)) = Sj(σ(i)) for j = 1, 2, the permutationσ is
entirely determined by the values ofσ(ei). Conversely, if we fixτ and some
compatible values forσ(ei), there is one permutationσ in the centralizer of
S1 andS2 corresponding to these values. Finally, the cardinality ofthis
centralizer is equal tozµ 2ℓ(µ) =

∏
imi(µ)! (2i)

mi(µ). �

2.3. Pair-partitions and tensors. If P is a pair-partition of the ground set
[2n], we will associate to it the tensor

ΨP =
∑

1≤i1,...,i2n≤d

δP (i1, . . . , i2n) ei1 ⊗ · · · ⊗ ei2n ∈ (Rd)⊗2n,

whereδP (i1, . . . , i2n) is equal to1 if ik = il for all {k, l} ∈ P and is equal to
zero otherwise. The symmetric groupS2n acts on the set of pair-partitions
and on the set of tensors(Rd)⊗2n and it is straightforward thatP 7→ ΨP is
an intertwiner with respect to these two actions.

Lemma 2.5. LetZ ∈ (Rd)⊗2n. Then

φZ(X) = 〈Z,X⊗2nΨS〉

with respect to the standard scalar product in(Rd)⊗2n, whereS, given by
(1), is the first pair-partition.
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Proof. We can assume by linearity thatZ = v1 ⊗ . . .⊗ v2n. The right-hand
side becomes:

〈Z,X⊗2nΨS〉 =∑

i1,...,in

〈
v1 ⊗ · · · ⊗ v2n, Xei1 ⊗Xei1 ⊗ · · · ⊗Xein ⊗Xein

〉

=
∑

1≤i1,...,in≤d

n∏

j=1

〈v2j−1, Xeij〉 · 〈v2j, Xeij〉

=
n∏

j=1

[
∑

1≤i≤d

〈XTv2j−1, ei〉 · 〈X
Tv2j , ei〉

]
=

n∏

j=1

〈XTv2j−1, X
Tv2j〉. �

Lemma 2.6. Let P be a pair-partition of[2n] andS, as before, the pair-
partition of the same set given by(1). Then

φΨP
(X) = 〈ΨP , X

⊗2nΨS〉 = Tr
[
(XXT )ℓ1

]
Tr
[
(XXT )ℓ2

]
· · ·

= pL(P,S)(Sp(XX
T )),

where2ℓ1, 2ℓ2, . . . are the lengths of the loops ofL(P, S).

Proof. Let us consider the case whereL(P, S) has only one loop of length
2ℓ. DefineP ′ =

{
{2, 3}, {4, 5}, . . . , {2ℓ − 2, 2ℓ − 1}, {2ℓ, 1}

}
Then the

couples(P, S) and (P ′, S) have the same type and thus, by Lemma 2.4,
there exists a permutationσ such thatσ · P ′ = P andσ · S = S. Then

〈ΨP , X
⊗2nΨS〉 = 〈σΨP ′, X⊗2nσΨS〉 = 〈σΨP ′, σX⊗2nΨS〉

= 〈ΨP ′, X⊗2nΨS〉.

We used the facts thatP 7→ ΨP is an intertwiner for the symmetric group
action, that this action commutes withX⊗2n and that it is a unitary action.
Therefore, it is enough to consider the caseP = P ′. In this case,

ΨP =
∑

1≤j1,...,jℓ≤d

ejℓ ⊗ ej1 ⊗ ej1 ⊗ · · · ⊗ ejℓ−1
⊗ ejℓ−1

⊗ ejℓ .

Therefore one has:

φΨP
(X) =

∑

1≤j1,...,jℓ≤d

〈XT ejℓ , X
Tej1〉 · 〈X

Tej1 , X
Tej2〉 · · · 〈X

Tejℓ−1
, XTejℓ〉

=
∑

1≤j1,...,jℓ≤d

〈XXT ejℓ , ej1〉 · 〈XX
Tej1, ej2〉 · · · 〈XX

Tejℓ−1
, ejℓ〉

=
∑

1≤j1,...,jℓ≤d

(XXT )j1,jℓ · (XX
T )j2,j1 · · · (XX

T )jℓ,jℓ−1

= Tr(XXT )ℓ.
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The general case is simply obtained by multiplication of theabove one-loop
case. �

It follows thatX 7→ φΨP
(X) is invariant under the left action of the

orthogonal groupOd(R). The above discussion shows that ifP is a pair-
partition (or, more generally, a formal linear combinationof pair-partitions)
then condition (b) is fulfilled forzλ = ΨP . For this reason we will look
for candidates forzλ corresponding to zonal polynomials in this particular
form.

2.4. Young symmetriser. Let a partitionλ be fixed; we denoten = |λ|.
We consider the Young tableauT of shape2λ in which boxes are numbered
consecutively along the rows. This tableau was chosen in such a way that if
we interpret the pair-partitionS as a pairing of the appropriate boxes ofT
then a box in the column2i − 1 is paired with the box in the column2i in
the same row, wherei is a positive integer (these two boxes will be called
neighbors in the Young diagram2λ).

TableauT allows us to identify boxes of the Young diagram2λ with
the elements of the set[2n]. In particular, permutations fromS2n can be
interpreted as permutations of the boxes of2λ. We denote

P2λ ={σ ∈ S2n : σ preserves each row of2λ},

Q2λ ={σ ∈ S2n : σ preserves each column of2λ}

and define

a2λ =
∑

σ∈P2λ

σ ∈ C[S2n],

b2λ =
∑

σ∈Q2λ

(−1)|σ|σ ∈ C[S2n],

c2λ =b2λa2λ.

The elementc2λ is calledYoung symmetriser. There exists some non-zero
scalarα2λ such thatα2λc2λ is a projection. Its imageC[S2n]α2λc2λ under
multiplication from the right on the left-regular representation gives an ir-
reducible representationρ2λ of the symmetric group (where the symmetric
group acts by left multiplication) associated to the Young diagram2λ (see
[FH91, Theorem 4.3, p. 46]).

Recall (see [CSST10, Corollary 1.3.14]) that there is also acentral pro-
jection inC[S2n], denotedp2λ, whose imageC[S2n]p2λ under multiplica-
tion from the right (or, equivalently, from the left) on the left-regular repre-
sentation is the sum of all irreducible representations of typeρ2λ contribut-
ing to C[S2n]. It follows thatC[S2n]c2λ is a subspace ofC[S2n]p2λ. It
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follows that there is an inequality

(13) α2λc2λ ≤ p2λ

between projections inC[S2n], i.e.

α2λc2λp2λ = p2λα2λc2λ = α2λc2λ.

2.5. Schur-Weyl duality. The symmetric groupS2n acts on the vector
space(Rd)⊗2n by permuting the factors and the linear groupGLd(R) acts
on the same space by the diagonal action (12). These two actions com-
mute and Schur-Weyl duality (see [Mac95, paragraph A.8]) asserts that, as
a representation ofS2n ×GLd(R), one has:

(Rd)⊗2n ≃
⊕

µ⊢2n

Vµ × Uµ,

whereVµ (resp.Uµ) is the irreducible representation ofS2n (resp.GLd(R))
indexed byµ (as we assumed in Section 2.1 thatd ≥ 2n, the representa-
tion Uµ does always exist). Butp2λ(Vµ) = δµ,2λVµ, therefore the image
p2λ
(
(Rd)⊗2n

)
of the projectionp2λ is, as representation ofGLd(R), a sum

of some number of copies of the irreducible representation of GLd(R) as-
sociated to the highest weight2λ. Using inequality (13), we know that
α2λc2λ

(
(Rd)⊗2n

)
is a subspace ofp2λ

(
(Rd)⊗2n

)
. In this way, we proved

thatα2λc2λ
(
(Rd)⊗2n

)
is a representation ofGLd(R) which is a sum of some

number of copies of the irreducible representation ofGLd(R) associated
with the highest weight2λ.

Thus the elementc2λ ·ΨS of (Rd)⊗2n fulfills condition (c).

2.6. A tensor satisfying James’ conditions.Using the results of Section
2.3 and 2.5, we know that

z
(d)
λ := Ψc2λ·S = c2λΨS ∈ (Rd)⊗2n

fulfills conditions (b) and (c).
Therefore, as explained in Section 2.1, ifφ

z
(d)
λ

is non-zero, there exists a

constantCλ such that:

φ
z
(d)
λ

(X) = CλZλ(Sp(XX
T )).

Of course this is true also if the left hand-side is equal to zero. Besides,
using Lemma 2.6, one gets:

φc2λΨS
(X) =

∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1〈Ψσ1σ2·S, X
⊗2nΨS〉

=
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)(Sp(XX
T )),
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where the power-sum symmetric functionsp should be understood as in (2).
Finally, we have shown that

Yλ :=
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)

andCλZλ have the same evaluation onSp(XXT ). As this is true for all
X ∈ GLd and alld ≥ 2|λ|, the two symmetric functionYλ andCλZλ are
equal. We will use this fact in the following.

2.7. End of proof of Theorem 1.2.

Proof. We know that

(14) CλZλ =
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)

=
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ2·S,σ−1
1 ·S).

The set of pair-partitions which can be written asσ2 · S with σ2 ∈ P2λ is
the set of pair-partitions of the boxes of the Young diagram such that each
pair of connected boxes lies in the same row of the Young diagram (we
fixed the Young tableauT , so pair-partitions of the set[2n] can be viewed
as pair-partitions of the boxes of the Young diagram). AsP2λ is a group,
each pair-partition in the orbit ofS can be written asσ2 · S with σ2 ∈ P2λ

in the same number of ways (sayC2). Therefore, for anyσ1 ∈ Q2λ,∑

σ2∈P2λ

(−1)σ1 pL(σ2·S,σ−1·S) = C2

∑

S2

(−1)σ1 pL(S2,σ−1·S),

where the sum runs over pair-partitions connecting boxes inthe same row
of T .

Analogously, the set of pair-partitions which can be written asσ−1
1 ·S for

someσ1 ∈ Q2λ is the set of pair-partitionsS1 which match the elements
of the2j − 1 column ofT with the elements of the2j-th column ofT for
1 ≤ j ≤ λ1 (it is equivalent to ask that the boxes belonging to each cycle
of S1 ◦ S are in one column). As before, such pair-partitions can all be
written asσ−1

1 · S in the same number of ways (sayC1). Besides, Lemma
2.3 shows that the sign(−1)σ1 depends only onS1 = σ−1

1 · S and is equal
to (−1)L(S,S1).

Therefore, for any pair-partitionS2∑

σ1∈Q2λ

(−1)σ1 pL(S2,σ−1·S) = C1

∑

S1

(−1)L(S,S1) pL(S2,S1),

where the sum runs over pair-partitionsS1 such thatS ◦ S1 preserves each
column ofT .
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Finally, Eq. (14) becomes

(15) CλZλ = C1C2

∑

S1

∑

S2

(−1)L(S,S1)pL(S1,S2),

where the sum runs overT -admissible(S1, S2). Recall thatT -admissible
means thatS2 preserves each row ofT andS ◦ S1 preserves each column.

To get rid of the numerical factors, we use the coefficient ofpn1 in the
power-sum expansion of zonal polynomials (given by Eq. VI, (10.29) in
[Mac95], see also Eqs. VI, (10.27) and VII, (2.23)):

[pn1 ]Zλ = 1.

But the only pair ofT -admissible pair-partitions(S1, S2) such thatL(S1, S2)
is a union ofn loops (the latter implies automatically thatS1 = S2) is (S, S).
Therefore the coefficient ofpn1 in the double sum of the right-hand side of
(15) is equal to1 and finally:

Zλ =
∑

S1

∑

S2

(−1)L(S,S1)pL(S1,S2). �

3. FORMULAS FOR ZONAL CHARACTERS

This section is devoted to formulas for zonal characters; inparticular, the
first goal is to prove Theorem 1.5.

3.1. Reformulation of Theorem 1.5. LetS0,S1,S2 be three pair-partitions
of the set[2k]. We consider the following function on the set of Young dia-
grams:

Definition3.1. Let λ be a partition of any size. We defineN (2)
S0,S1,S2

(λ) as
the number of functionsf from [2k] to the boxes of the Young diagram2λ
such that for anyl ∈ [2k]:

(P0) f(l) andf(S0(l)) are neighbors in the Young diagram2λ, i.e., if
f(l) is in the2i+1-th column (resp.2i+2-th column), thenf(S0(l))
is the box in the same row but in the2i+2-th column (resp.2i+1-th
column);

(P1) f(l) andf(S0 ◦ S1(l)) are in the same column;
(P2) f(l) andf(S2(l)) are in the same row.

We also definêN (2)
S0,S1,S2

(λ) as the number of injective functions fulfilling
the above conditions.

Lemma 3.2. LetS0, S1, S2 be pair-partitions. Then

N
(2)
S0,S1,S2

= 2|L(S0,S1)|N
(1)
S0,S1,S2

.
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Proof. Let λ be a Young diagram and letf be a functionf : [2k] → 2λ
verifying properties (P0), (P1) and (P2). We consider the projectionp :
2λ→ λ, which consists of forgetting the separations between the neighbors
in 2λ. More precisely, the boxes(2i−1, j) and(2i, j) of 2λ are both sent to
the box(i, j) of λ. It is easy to check that the compositionf = p ◦ f fulfills
(Q0), (Q1), (Q2).

Consider a functiong : [2k] → λ verifying (Q0), (Q1) and (Q2). We want
to determine functionsf verifying (P0), (P1) and (P2) such thatf = g. If
g(k) (which is equal tog(S0(k)) by condition (Q0)) is equal to a box(i, j)
of λ, thenf(k) andf(S0(k)) belong to{(2i − 1, j), (2i, j)}. Therefore,f
is determined by the parity of the column off(k) for eachk. Besides, if
f(k) is in an even-numbered (resp. odd-numbered) column, thenf(S0(k))
andf(S1(k)) are in an odd-numbered (resp. even numbered) column (by
conditions (P0) and (P1)). Therefore, if we fix the parity of the column of
f(k) for somek, it is also fixed forf(k′), for all k′ in the same loop of
L(S0, S1). Conversely, choose for one numberi in each loop ofL(S0, S1),
which of the two possible values should be assigned tof(i). Then there is
exactly one function respecting these values and verifyingcondition (P0),
(P1) and (P2) (condition (P2) is fulfilled for each functionf such thatf
verifies (Q2)). Thus, to each functiong with properties (Q0), (Q1) and
(Q2) correspond exactly2|L(S0,S1)| functionsf with properties (P0), (P1)
and (P2). �

The above lemma shows that in order to show Theorem 1.5 it is enough
to prove the following equivalent statement:

Theorem 3.3. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of the set[2k] of typeµ. Then one has the following
equality between functions on the set of Young diagrams:

Σ(2)
µ =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1)N
(2)
S0,S1,S2

,

where the sum runs over pair-partitions of[2k].

We will prove it in Sections 3.2–3.4.

3.2. Extraction of the coefficients. Let µ andλ be two partitions. In this
paragraph we consider the case where|µ| = |λ|. If we look at the coef-
ficients of a given power-sum functionpµ in Zλ, using Theorem 1.2, one
has:

[pµ]Zλ =
∑

(S1,S2) T -admissible
typeL(S1,S2)=µ

(−1)L(S,S1).
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This equation has been proved in the case whereT andS are, respectively,
the canonical Young tableaux and the first pair-partition, but the same proof
works for any fillingT of 2λ by the elements of[2|λ|] and any pair-partition
S as long asS matches the labels of the pairs of neighbors of2λ in T . As
there are(2|λ|)! fillings T and one corresponding pair-partitionS = S(T )
per filling, one has:

[pµ]Zλ =
1

(2|λ|)!

∑

T

∑

(S1,S2) T -admissible
typeL(S1,S2)=µ

(−1)L(S(T ),S1),

where the first sum runs over all bijective fillings of the diagram 2λ. We
can change the order of summation and obtain:
(16)

[pµ]Zλ =
1

(2|λ|)!

∑

S1,S2

type(S1,S2)=µ

(
∑

T

(−1)L(S(T ),S1) [(S1, S2) is T -admissible]

)
,

where we use the convention that[condition] is equal to1 if the condition is
true and is equal to zero otherwise. Note thatS2n acts on bijective fillings
of 2λ by acting on each box. It is straightforward to check that this action
fulfills:

• S(σ · T ) = σ · S(T );
• (σ · S1, σ · S2) is σ · T admissible if and only if(S1, S2) is T -

admissible.

Lemma 3.4. The expression in the parenthesis in the right-hand side of
Eq. (16)does not depend on(S1, S2).

Proof. Consider two couples(S1, S2) and (S ′
1, S

′
2), both of typeµ. By

Lemma 2.4, there exists a permutationσ in S2n such thatS ′
1 = σ · S1

andS ′
2 = σ · S2. Then

(
∑

T

(−1)L(S(T ),S
′
1) [(S ′

1, S
′
2) is T -admissible]

)

=

(
∑

T

(−1)L(S(T ),σ·S1) [(σ · S1, σ · S2) is T -admissible]

)

=

(
∑

T

(−1)L(S(σ
−1·T ),S1) [(S1, S2) is σ−1 · T -admissible]

)

=

(
∑

T ′

(−1)L(S(T
′),S1) [(S1, S2) is T ′-admissible]

)
,
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where all sums run over bijective fillings of2λ. We used the fact thatT 7→
σ · T is a bijection of this set. �

Fix a couple of pair-partitions(S1, S2) of type µ. As there are(2|µ|)!

zµ2ℓ(µ)

couples of pair-partitions of typeµ (see Lemma 2.4), Eq. (16) becomes:

[pµ]Zλ =
1

zµ2ℓ(µ)

(
∑

T ′

(−1)L(S(T
′),S1) [(S1, S2) is T ′-admissible]

)
.

As |µ| = |λ|, one has:

Σ(2)
µ (λ) = zµ [pµ]Zλ =

1

2ℓ(µ)

∑

T

(−1)L(S(T ),S1) [(S1, S2) is T -admissible]

=
1

2ℓ(µ)

∑

S0

(−1)L(S0,S1)



∑

T such that
S(T )=S0

[(S1, S2) is T -admissible]


 .

Bijective fillings T of 2λ are exactly injective functionsf : [2n] → 2λ
(as the cardinality of two sets are the same, such a function is automatically
bijective). Moreover, the conditionsS(T ) = S0 and (S1, S2) beingT -
admissible correspond to conditions (P0), (P1) and (P2). Using Definition
3.1, the last equality can be rewritten as follows: when|µ| = |λ|,

Σ(2)
µ (λ) =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1)N̂
(2)
S0,S1,S2

(λ).

3.3. Extending the formula to any size. Let us now look at the case where
|µ| = k ≤ n = |λ|. We denotẽµ = µ1n−k. Then, using the formula above
for zµ̃ [pµ̃]Zλ, one has:

(17) Σ(2)
µ (λ) = zµ

(
n− k +m1(µ)

m1(µ)

)
[pµ̃]Zλ =

1

(n− k)!
zµ̃[pµ̃]Zλ

=
1

2ℓ(µ)+n−k (n− k)!

∑

S̃0

(−1)L(S̃0,S̃1)N̂
(2)

S̃0,S̃1,S̃2
(λ),

where(S̃1, S̃2) is any fixed couple of pair-partitions of typẽµ. We can
choose it in the following way. Let(S1, S2) be a couple of pair-partitions of
the set{1, . . . , 2k} of typeµ and defineS̃1 andS̃2 by, for i = 1, 2:

S̃i = Si ∪
{
{2k + 1, 2k + 2}, . . . , {2n− 1, 2n}

}
.
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Lemma 3.5. With this choice of(S̃1, S̃2), the quantityN̂ (2)

S̃0,S̃1,S̃2
(λ) is equal

to 0 unless

(18) S̃0

∣∣
{2k+1,...,2n}

=
{
{2k + 1, 2k + 2}, . . . , {2n− 1, 2n}

}
.

Proof. Let S̃0 be a pair-partition andf [2n] → 2λ be a bijection verifying
conditions (P0), (P1) and (P2) with respect to the tripletS̃0, S̃1, S̃2.

For anyl ≥ k, condition (P1) shows thatf(2l + 1) andf(S̃0(2l + 2))
are in the same column. In addition, condition (P0) shows that f(2l + 2)

andf(S̃0(2l + 2)) are neighbors and hence are in the same row. Besides,
condition (P2) shows thatf(2l + 1) andf(2l + 2) are in the same row. In
this way we proved thatf(2l + 1) andf(S̃0(2l + 2)) are in the same row
and column, hencef(2l + 1) = f(S̃0(2l + 2)). As f is one-to-one, one has
2l+1 = S̃0(2l+2). In this way we proved that the existence of an injective
functionf satisfying (P0), (P1) and (P2) implies that2l + 1 = S̃0(2l + 2)
for all l ≥ k. �

We need now to evaluatêN (2)

S̃0,S̃1,S̃2
(λ) when (18) is fulfilled.

Lemma 3.6. Let us suppose that̃S0 fulfills Eq. (18). Then denoteS0 =

S̃0

∣∣
{1,...,2k}

. One has:

N̂
(2)

S̃0,S̃1,S̃2
(λ) = 2n−k(n− k)! N̂

(2)
S0,S1,S2

(λ).

Proof. Let f̃ : [2n] → 2λ be a function counted in̂N (2)

S̃0,S̃1,S̃2
(λ). Then it is

straightforward to see that its restrictioñf
∣∣
[2k]

is counted inN̂ (2)
S0,S1,S2

(λ).
Conversely, in how many ways can we extent an injective function f :

[2k] →֒ 2λ counted inN̂ (2)
S0,S1,S2

(λ) into a functionf̃ : [2n] → 2λ counted

in N̂ (2)

S̃0,S̃1,S̃2
(λ)? One has to place the integers from{2k+ 1, . . . , 2n} in the

2(n− k) boxes of the set2λ \ f([2k]) such that numbers2i− 1 and2i (for
k < i ≤ n) are in neighboring boxes. There are2n−k(n− k)! ways to place
these number with this condition. If we obey this condition,thenf̃ verifies
(P0), (P1) and (P2) with respect to(S̃0, S̃1, S̃2). Therefore, any functionf
counted inN̂ (2)

S0,S1,S2
(λ) is obtained as the restriction as exactly2n−k(n−k)!

functionsf̃ counted inN̂ (2)

S̃0,S̃1,S̃2
(λ). �

With Eq. (17), Lemma 3.5 and Lemma 3.6 it follows that the following
equation holds true for any partitionsλ andµ with |λ| ≥ |µ| (notice also
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that it is also obviously true for|λ| < |µ|):

(19) Σ(2)
µ =

1

2ℓ(µ)

∑

S0 pair-partition
of {1,...,2|µ|}

(−1)L(S0,S1)N̂
(2)
S0,S1,S2

,

where(S1, S2) is any couple of pair-partitions of typeµ.

3.4. Forgetting injectivity. In this section we will prove Theorem 3.3 (and
thus finish the proof of Theorem 1.5). In other terms, we provethat Eq. (19)
is still true if we replace in each term of the sum̂N (2)

S0,S1,S2
by N (2)

S0,S1,S2
.

In order to do this we have to check that, for anynon-injectivefunction
f : [2|µ|] → 2λ, the total contribution

(20)
∑

S0 pair-partition
of [2|µ|]

(−1)L(S0,S1) [f fulfills (P0), (P1) and (P2)]

of f to the right-hand side of Eq. (19) is equal to zero.
Let us fix a couple(S1, S2) of pair-partitions of typeµ. We begin by a

small lemma:

Lemma 3.7. Let f : [2k] → 2λ be a function withf(i) = f(j) for somei
andj. Let us suppose thatf fulfills condition (P0) and (P1) with respect to
some pair-partitionsS0 andS1. Then, ifi andj are the labels of edges in
the same loop ofL(S0, S1) then there is an even distance between these two
edges.

Proof. If two edges labeledk andl are adjacent, this means that eitherj =
S0(k) or j = S1(k). In both cases, asf fulfills condition (P0) and (P1),
the indices of the columns containing boxesf(j) andf(k) have different
parities. Hence, the same is true if edges labeledj andk are in an odd
distance from each other. Asf(i) = f(j), in particular they are in the same
column and thus, the edges labeledi andj cannot be in the same loop with
an odd distance between them. �

Lemma 3.8. Letf : [2|µ|] → 2λ with f(i) = f(j). Then

a) conditions (P0), (P1) and (P2) are fulfilled forS0 if and only if they
are fulfilled forS ′

0 = (i j) · S0;
b) if these conditions are fulfilled, then

(−1)L(S0,S1) + (−1)L(S
′
0,S1) = 0.

Proof. Recall thatS ′
0 is exactly the same pairing asS0 except thati andj

have been interchanged. Thus the part a) is obvious from the definitions.
Besides, the graphL(S ′

0, S1) is obtained fromL(S0, S1) by taking the
edges with labelsi and j and interchanging their black extremities. We
consider two different cases.
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j

i

→

FIGURE 1. L(S0, S1) andL(S ′
0, S1) in the first case of proof

of Lemma 3.8.

• If i andj are in different loopsLi andLj of the graphL(S0, S1),
then, when we erase the edgesi andj we still have the same con-
nected components. To obtainL(S ′

0, S1), one has to draw an edge
between the white extremity ofj and the black extremity ofi. These
two vertices were in different connected componentsLi andLj of
L(S0, S1), therefore these two components are now connected and
we have one less connected component. We also have to add an-
other edge between the black extremity ofj and the white extremity
of j but they are now in the same connected component so this last
operation does not change the number of connected components.

Finally, the graphL(S ′
0, S1) has one less connected component

thanL(S0, S1) and the part b) of the lemma is true in this case.
This case is illustrated on Figure 1.

• Otherwisei andj are in the same loopL of the graphL(S0, S1).
When we erase the edgesi andj in this graph, the loopL is split into
two componentsL1 andL2. Let us say thatL1 contains the black
extremity of i. By Lemma 3.7, there is an even distance between
i and j. This implies that the white extremity ofj is also inL1,
while its black extremity and the white extremity ofi are both in
L2. Therefore, when we add edges to obtainL(S ′

0, S1), we do not
change the number of connected components.

Finally, the graphL(S ′
0, S1) has one more connected component

thanL(S0, S1) and the part b) of the lemma is also true in this case.
This case is illustrated on Figure 2. �
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i

j

→

FIGURE 2. L(S0, S1) andL(S ′
0, S1) in the first case of proof

of Lemma 3.8.

From the discussion above it is clear that the lemma allows usto group
the terms in (20) into canceling pairs. Thus (20) is equal to0 for any non-
injective functionf , which implies that

1

2ℓ(µ)

∑

S0 pair-partition
of {1,...,2|µ|}

(−1)L(S0,S1)N̂
(2)
S0,S1,S2

=
1

2ℓ(µ)

∑

S0 pair-partition
of {1,...,2|µ|}

(−1)L(S0,S1)N
(2)
S0,S1,S2

.

Using Eq. (19), this proves Theorem 3.3, which is equivalentto Theorem
1.5.

3.5. Number of functions and Stanley’s coordinates.In this paragraph
we express theN functions in terms of Stanley’s coordinatesp andq. This
is quite easy and shows the equivalence between Theorems 1.5and 1.6.

Lemma 3.9.Let(S0, S1, S2) be a triplet of pair-partitions. We will view the
graphsL(S0, S1) andL(S0, S2) as the sets of their connected components.
One has:

N
(1)
S0,S1,S2

(p× q) =
∑

ϕ:L(S0,S2)→N⋆

∏

ℓ∈L(S0,S2)

pϕ(ℓ)
∏

m∈L(S0,S1)

qψ(m),

whereψ(m) = maxℓ ϕ(ℓ), with ℓ running over loops inL(S0, S2), which
have an edge with the same label as some edge ofm.

Proof. Fix a triplet (S0, S1, S2) of pair-partitions and sequencesp andq.
We setλ = p × q as in Section 1.4.2. Letg : [2k] → λ be a function
verifying conditions (Q0), (Q1) and (Q2). Asg fulfills (Q0) and (Q2), all
elementsi in a given loopℓ ∈ L(S0, S2) have their image byg in the same
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row rℓ. We defineϕ(ℓ) as the integeri such that

(21) p1 + · · ·+ pi−1 < rℓ ≤ p1 + · · ·+ pi.

This associates tog a functionϕ : L(S0, S2) → N⋆.
Let us fix a functionϕ : L(S0, S2) → N⋆. We want to find its pre-images

g : [2k] → λ. We have the following choices to make:

• we have to choose, for each loopℓ ∈ L(S0, S2), the value ofrℓ. Due
to inequality (21), one haspϕ(ℓ) choices for each loopℓ;

• then we have to choose, for each loopm ∈ L(S0, S1), the value of
cm, the index of the common column of the images byg of elements
inm (as we wantg to fulfill conditions (Q0) and (Q1), all images of
elements inmmust be in the same column). By definition ofψ(m),
there is an integeri ∈ m, which belongs to a loopℓ ∈ L(S0, S2)
with ϕ(ℓ) = ψm. The image ofi by g is the box(rℓ, cm). As the
rℓ-th row of the diagramλ hasqϕ(ℓ) boxes, one has

(22) cm ≤ qϕ(ℓ).

Finally, for each loopm ∈ L(S0, S1), one hasqψ(m) possible values
of cm.

• A function g : [2k] → λ verifying (Q0), (Q1) and (Q2) is uniquely
determined by the two collections of numbers(cm)m∈L(S0,S1) and
(rℓ)ℓ∈L(S0,S2). Indeed, ifi ∈ [2k], its image byg is the box(rℓ, cm),
wherem andℓ are the loops ofL(S0, S1) andL(S0, S2) containing
i.

Conversely, if we choose two sequences of numbers(cm)m∈L(S0,S1) and
(rℓ)ℓ∈L(S0,S2) fulfilling inequalities (21) and (22), this defines a unique func-
tion g fulfilling (Q0), (Q1) and (Q2) associated toϕ. It follows that each
functionϕ : L(S0, S2) → N⋆ has exactly

∏

ℓ∈L(S0,S2)

pϕ(ℓ)
∏

m∈L(S0,S1)

qψ(m),

pre-images and the lemma holds. �

The above lemma shows that Theorem 1.5 implies Theorem 1.6.

Proof of Theorem 1.6.It is a direct application of Theorem 1.5 and of the
expression ofN (1)

S0,S1,S2
in terms of Stanley’s coordinates that we establish

in Lemma 3.9. �

3.6. Action of the axial symmetry group. The purpose of this paragraph
is to prove Proposition 1.10.

Theorem 1.6 implies that the coefficients of(−1)kΣ
(2)
µ (p,−q) are non-

negative. But it is not obvious from this formula that the coefficients are
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integers. We will prove it in this paragraph by grouping someidentical
terms in Theorem 1.5 before applying Lemma 3.9.

The following lemma will be useful to find some identical terms.

Lemma 3.10. Let (S0, S1, S2) be a triplet of pair-partitions of[2k] andσ
be a permutation inS2k. Then

N
(1)
(σ·S0,σ·S1,σ·S2)

= N
(1)
(S0,S1,S2)

.

Proof. Map f : [2k] → 2λ satisfies conditions (Q0), (Q1) and (Q2) with
respect to(σ ·S0, σ ·S1, σ ·S2) if and only if f ◦σ satisfies conditions (Q0),
(Q1) and (Q2) with respect to(S0, S1, S2). �

From now on, we fix a partitionµ of k and a couple(S1, S2) of pair-
partitions of[2k] of typeµ.

Choose arbitrarily an edgeji,1 in each loopLi (which is of length2µi).
Denoteji,2 = S2(ji,1), ji,3 = S1(ji,2) and so on untilji,2µi = S2(ji,2µi−1),
which fulfills S1(ji,2µi) = ji,1. We consider the permutationri in S2k which
sendsji,m to ji,2µi+1−m for anym ∈ [2µi] and fixes all other integers. Ge-
ometrically, the sequence(ji,m)m∈[2µi] is obtained by reading the labels of
the edges along the loopLi andri is an axial symmetry of the loopLi.

• ri permutes the black vertices of the graphL(S1, S2) (it is an ax-
ial symmetry ofLi and fixes the elements of the other connected
components). It means thatri · S1 = S1.

In the same way, it permutes the white vertices thereforeri ·S2 =
S2.

• Permutationsri are of order2 and they clearly commute with each
other (their supports are pairwise disjoint); therefore, they generate
a subgroupG of order2ℓ(µ) of S2|µ|. Moreover, for a fixed integer
j, the orbit{g(j) : g ∈ G} contains exactly two elements:j and
ri(j), wherei is the index of the loop ofL(S1, S2) containingi.

Using Lemma 3.10, for any pair-partitionS0, one has

N
(1)
g·S0,S1,S2

= N
(1)
g·S0,g·S1,g·S2

= N
(1)
S0,S1,S2

,

whereg is equal to any one of theri. It immediately extends to anyg in G.
In the same way, we have

(−1)L(g·S0,S1) = (−1)L(g·S0,g·S1) = (−1)L(S0,S1).

Therefore Theorem 1.5 can be restated as:

(23) Σ(2)
µ =

∑

Ω orbits
underG

(−1)L(S0(Ω),S1)
2|L(S0(Ω),S1)|

2ℓ(µ)
|Ω| N (1)

S0(Ω),S1,S2
,
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where the sum runs over the orbitsΩ of the set of all pair-partitions of[2k]
under the action ofG and whereS0(Ω) is any element of the orbitΩ.

Lemma 3.11. For each orbitΩ of the set of pair-partitions of[2k] under
the action ofG, the quantity

2|L(S0(Ω),S1)|

2ℓ(µ)
|Ω|

is an integer.

This lemma and Eq. (23) imply Proposition 1.10 (because theN func-
tions are polynomials with integer coefficients in variables p andq, see
Lemma 3.9).

Proof. Let us fix an elementS0 = S0(Ω) in the orbitΩ. The quotient
2ℓ(µ)

|Ω|
is the cardinality of the stabilizerStab(S0) ⊂ G of S0. Therefore

it divides the cardinality ofG, which is2ℓ(µ), and, hence is a power of2.
Besides, any permutationπ ∈ Stab(S0) ⊂ G leavesS0 andS1 invariant
henceπ is entirely determined by the its values on{eL : L ∈ L(S0, S1)},
whereeL is an arbitrary element in the loopL (the argument is the same
as in the proof of Lemma 2.4). As each integer, and in particular eacheL,
has only two possible images by the elements ofG, this implies that the
cardinality ofStab(S0) is smaller or equal to2|L(S0,S1)|. But it is power of
2 so | Stab(S0)| =

2ℓ(µ)

|Ω|
divides2|L(S0,S1)|. �

We will give now an alternative way to end the proof, which is less natural
but more meaningful from the combinatorial point of view. Asbefore, the
partitionµ ⊢ k is fixed, as well as a couple(S1, S2) of pair-partitions of[2k]
of typeµ. We call an orientationφ of the elements in[2k], the choice, for
each number in[2k], of a color (red or green).

If S0 is a pair-partition, we say that an orientationφ is compatible with
the loopsL(S0, S1) if each pair ofS0 and each pair ofS1 contains one red
and one green element. We denote byPo the set of couples(S0, φ) such
thatφ is compatible withL(S0, S1).

In such an orientation, the color of an elementeL in a loopL ∈ L(S0, S1)
determines the colors of all elements in this loop. Nevertheless, the colors of
the{eL, L ∈ L(S1, S2)}, whereeL is an arbitrary element ofL, can be cho-
sen idependently. Therefore, for a given pair-partitionS0, there are exactly
2|L(S0,S1)| orientations compatible withL(S0, S1). Hence, Theorem 1.5 can
be rewritten as:

(24) Σ(2)
µ =

1

2ℓ(µ)

∑

(S0,φ)

(−1)L(S0,S1) N
(1)
S0,S1,S2

,

where the sum runs overPo.
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Of course, the groupS2k, and hence its subgroupG, acts on the set of
orientations of[2k]. By definition, ifφ is an orientation andσ a permutation,
the color given toσ(i) in the orientationσ · φ is the color given toi in φ.

We will consider the diagonal action ofG on couples(S0, φ). It is imme-
diate that this action preservesPo.

Lemma 3.12.The diagonal action ofG onPo is faithful.

Proof. Let us suppose thatg · (S0, φ) = (S0, φ). We use the definition of
the integersji,m given at the beginning of the paragraph to define the group
G. Recall thatS1 contains, for eachi, the pair{ji,1, ji,2µi}. Hence, asφ is
compatible withL(S0, S1), the integersji,1 andji,2µi have different colors
in φ. But φ is fixed byg, sog(ji,1) cannot be equal toji,2µi . This means
thatg does not act like the mirror symmetryri on the loopLi; henceg acts
on the loopLi like the identity. As this is true for all loops inL(S1, S2), the
permutationg is equal to the identity. �

Finally, asN (1)
g·S0,S1,S2

= N
(1)
S0,S1,S2

, we can group together in Eq. (24)
the terms corresponding to the2ℓ(µ) couples(S0, φ) in the same orbit. We
obtain the following result.

Theorem 3.13.Letµ be a partition of the integerk and(S1, S2) be a fixed
couple of pair-partitions of[2k] of typeµ. Then,

(25) Σ(2)
µ =

∑

Ω

(−1)L(S0(Ω),S1) N
(1)
S0(Ω),S1,S2

,

where the sum runs over orbitsΩ of Po under the action ofG (for such an
orbit, S0(Ω) is the first element of an arbitrary couple inΩ).

Using Lemma 3.9, this formula gives an alternative proof of Proposi-
tion 1.10. From a combinatorial point of view, it is more satisfying than the
one above because we are unable to interpret the number2|L(S0(Ω),S1)|

2ℓ(µ)
|Ω| in

Eq (23). More details are given in Section 5.4.

Remark3.14. Let us consider orientationsφ compatible withL(S0, S1) and
L(S0, S2). Each such an orientation can be viewed as a partition of[2k] into
two sets of sizek, such that each pair inS0, S1 orS2 contains an element of
each set. If such a partition is given, the pair-partitionsS0, S1 andS2 can be
interpreted as permutations and the Schur case can be formulated in these
terms (see Remark 1.3).

4. KEROV POLYNOMIALS

4.1. Graph associated to a triplet of pair-partitions. Let (S0, S1, S2) be
a triplet of pair partitions of[2k]. We define the bipartite graphG(S0, S1, S2)
in the following way.
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• Its set of black vertices isL(S0, S1).
• Its set of white vertices isL(S0, S2).
• There is an edge between a black vertexℓ ∈ L(S0, S1) and a white

vertexℓ′ ∈ L(S0, S2) if (and only if) the corresponding subsets of
[2k] have a non-empty intersection.

Note that the connectivity ofG(S0, S1, S2) corresponds exactly to condi-
tion (a) of Theorem 1.7.

This definition is relevant because the functionN (1)
S0,S1,S2

depends only on
the graphG(S0, S1, S2). Indeed, let us define, for any bipartite graphG, a
functionN (1)

G on Young diagram as follows:

Definition 4.1. Let G be a bipartite graph andλ a Young diagram. We
denoteN (1)

G (λ) the number of functionsf

• sending black vertices ofG to the set of column indices ofλ;
• sending white vertices ofG to the set of row indices ofλ;
• such that, for each edge ofG between a black vertexb and a white

vertexw, the box(f(w), f(b)) belongs to the Young diagramλ (i.e.
1 ≤ f(b) ≤ λf(w)).

Then, using the arguments of the proof of Lemma 3.9, one has:

N
(1)
S0,S1,S2

= N
(1)
G(S0,S1,S2)

.

As characters and cumulants,N
(1)
G can be defined on non-integer stretching

of Young diagrams using Lemma 3.9.

4.2. General formula for Kerov polynomials. Our analysis of zonal Kerov
polynomials will be based on the following general result.

Lemma 4.2. LetG be a finite collection of connected bipartite graphs and
let G ∋ G 7→ mG be a scalar-valued function on it. We assume that

F (λ) =
∑

G∈G

mGN
(1)
G (λ)

is a polynomial function on the set of Young diagrams; in other wordsF
can be expressed as a polynomial in free cumulants.

Let s2, s3, . . . be a sequence of non-negative integers with only finitely
many non-zero elements; then

[Rs2
2 R

s3
3 · · · ]F = (−1)s2+2s3+3s4+···+1

∑

G∈G

∑

q

mG,

where the sums runs overG ∈ G andq such that:

(b) the number of the black vertices ofG is equal tos2 + s3 + · · · ;
(c) the total number of vertices ofG is equal to2s2 + 3s3 + 4s4 + · · · ;
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(d) q is a function from the set of the black vertices to the set{2, 3, . . .};
we require that each numberi ∈ {2, 3, . . . } is used exactlysi times;

(e) for every subsetA ⊂ V◦(G) of black vertices ofG which is nontriv-
ial (i.e.,A 6= ∅ andA 6= V◦(G)) there are more than

∑
v∈A

(
q(v)−

1
)

white vertices which are connected to at least one vertex fromA.

This result was proved in our previous paper with Dołęga [DFŚ10] in
the special case whenF = Σ

(1)
n andG is the (signed) collection of bipartite

maps corresponding to all factorizations of a cycle, however it is not difficult
to verify that the proof presented there works without any modifications also
in this more general setup.

4.3. Proof of Theorem 1.7.

Proof of Theorem 1.7.We consider for simplicity the case whenµ = (k)
has only one part. By definition, it is obvious that, for anyG andλ,

N
(1)
G (αλ) = α|V•(G)|N

(1)
G (λ),

where|V•(G)| is the number of black vertices ofG. Hence, Theorem 1.5
can be rewritten in the form

F (λ) := Σ
(2)
k

(
1

2
λ

)
=

1

2

∑

S0

(−1)k+|L(S0,S1)| N
(1)
S0,S1,S2

(λ).

FunctionF is a polynomial function on the set of Young diagrams [Las08,
Proposition 2]. As the involutions corresponding toS1 andS2 span a transi-
tive subgroup ofS2k (because the couple(S1, S2) has type(k)), the graph
corresponding toS0, S1, S2 is connected and Lemma 4.2 can be applied.

[Rs2
2 R

s3
3 · · · ]F =

1

2
(−1)1+k+|L(S0,S1)|+s2+2s3+3s4+···

∑

S0

∑

q

1,

where the sum runs overS0 andq such that the graphG(S0, S1, S2) andq
fulfill the assumptions of Lemma 4.2. Notice that, for such aS0, the number
|L(S0, S1)| of black vertices ofG(S0, S1, S2) is s2+s3+s4. Under a change
of variables̃λ = 1

2
λ we haveΣ(2)

k (λ̃) = F (λ) andRi = Ri(λ) = 2iR
(2)
i (λ̃)

and thus[(
R

(2)
2

)s2(
R

(2)
3

)s3 · · ·
]
Σ

(2)
k = 22s2+3s3+... [Rs2

2 R
s3
3 · · · ]F

= (−1)1+k+2s2+3s3+···2−1+2s2+3s3+...N ,

whereN is the number of couples(S0, q) as above. This ends the proof in
the caseµ = (k).

Consider now the general caseµ = (k1, . . . , kℓ). In an analogous way as
in [DFŚ10, Theorem 4.7] one can show thatκid(Σ

(α)
k1
, . . . ,Σ

(α)
kℓ

) is equal to
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the right-hand side of (7), whereS1, S2 are chosen so thattype(S1, S2) = µ
and the summation runs overS0 with the property that the corresponding
graphG(S0, S1, S2) is connected. Therefore

F (λ) := (−1)ℓ−1κid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

)

(
1

2
λ

)
=

1

2ℓ(µ)
(−1)ℓ−1

∑

S0

(−1)|µ|+|L(S0,S1)| N
(1)
S0,S1,S2

(λ).

The remaining part of the proof follows in an analogous way. �

4.4. Particular case of Lassalle conjecture for Kerov polynomials. The
purpose of this paragraph is to prove Proposition 1.11, which states that the
coefficients [(

R
(2)
2

)s2(
R

(2)
3

)s3 · · ·
]
K(2)
µ

are integers.
This does not follow directly from Theorem 1.7 because of thefactor

2ℓ(µ). As in Section 3.6 we will use Theorem 3.13. With the same argument
as in the previous paragraph, one obtains the following result:

Theorem 4.3. Let µ be a partition of the integerk and (S1, S2) be a fixed
couple of pair-partitions of[2k] of typeµ. Let s2, s3, . . . be a sequence of
non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

(−1)|µ|+ℓ(µ)+2s2+3s3+··· 2−(s2+2s3+3s4+··· )
[(
R

(2)
2

)s2(
R

(2)
3

)s3 · · ·
]
K(2)
µ

is equal to the number of orbitsΩ of couples(S0, φ) in Po under the action
of G, such that any elementS0(Ω) of this orbit fulfills conditions (a), (b),
(c), (d) and (e) of Theorem 1.7.

This implies immediately Proposition 1.11. In fact, one shows a stronger
result, which fits with Lassalle’s data: the coefficient of

(
R

(2)
2

)s2(R(2)
3

)s3 · · ·
in K(2)

µ is a multiple of2s2+2s3+3s4+···.

5. MAPS ON POSSIBLY NON ORIENTABLE SURFACES

The purpose of this section is to emphasize the fact that triplets of pair-
partitions are in fact a much more natural combinatorial object than it may
seem at the first glance: each such a triple can be seen as a graph drawn on
a (non-oriented) surface.
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FIGURE 3. Polygons associated to the couple(S1, S2).

5.1. Gluings of bipartite polygons. It has been explained in Section 1.2.2
how a couple of pair-partitions(S1, S2) of the same set[2k] can be rep-
resented by the collectionL(S1, S2) of edge-labeled polygons: the white
(resp. black) vertices correspond to the pairs ofS1 (resp.S2). For instance,
let us consider the couple

S1 =
{
{1, 15}, {2, 3}, {4, 14}, {13, 16}, {5, 7}, {6, 10}, {8, 11}, {9, 12}

}
;

S2 =
{
{1, 10}, {2, 7}, {8, 13}, {9, 14}, {3, 5}, {4, 12}, {6, 15}, {11, 16}

}
.

The corresponding polygons are drawn on Figure 3.
With this in mind, one can see the third pair-partitionS0 as a set of in-

structions to glue the edges of our collection of polygons. If i andj are
partners inS0, we glue the edges labeledi and j together in such a way
that their black (respectively, white) extremities are glued together. When
doing this, the union the polygons becomes a (non-oriented,possibly non-
connected) surface, which is well-defined up to continuous deformation of
the surface. The border of the polygons becomes a bipartite graph drawn
on this surface (when it is connected, this object is usuallycalledmap). We
denoteM(S0, S1, S2) the union of maps obtained in this way. An edge of
M(S0, S1, S2) is formed by two edge-sides, each one of them corresponding
to an edge of a polygon.

For instance, we continue the previous example by choosing

S0 =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13, 14}, {15, 16}

}
.

We obtain a graph drawn on a Klein bottle, represented on the left-hand
side of Figure 4 (the Klein bottle can be viewed as the square with some
identification of its edges). A planar representation of this map, involving
artificial crossings and twists of edges, is given on the right-hand side of the
same figure.

5.2. The underlying graph of a gluing of polygons. By definition, the
black vertices ofL(S1, S2) correspond to the pairs inS1. If {i, j} is a pair
in S0, when we glue the edgesi andj together, we also glue the black vertex
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FIGURE 4. Example of a labeled map on Klein bottle.

containingi with the black vertex containingj. Hence, when all pairs of
edges have been glued, we have one black vertex per loop inL(S0, S1).

In the same way, the white vertices of the union of mapsM(S0, S1, S2)
correspond to the loops inL(S0, S2).

The edges of the union of maps correspond to pairs inS0, therefore a
black vertexℓ ∈ L(S0, S1) is linked to a white vertexℓ′ ∈ L(S0, S2) if
there is a pair ofS0 which is included in bothℓ and ℓ′. As ℓ and ℓ′ are
unions of pairs ofS0, this is equivalent to the fact that they have a non-
empty intersection.

Hence the underlying graph ofM(S0, S1, S2) (i.e. the graph obtained by
forgetting the surface, the edge labels and the multiple edges) is exactly the
graphG(S0, S1, S2) defined in Section 4.1.

It is also interesting to notice (even if it will not be usefulin this paper)
that the faces of the union of mapsM(S0, S1, S2) (which are, by definition,
the connected components of the surface after removing the graph) corre-
spond by construction to the loops inL(S1, S2).

Remark5.1. The related combinatorics of maps which are not bipartite has
been studied by Goulden and Jackson [GJ96].

5.3. Reformulation of Theorems 1.5 and 1.7.In some of our theorems,
we fix a partitionµ ⊢ k and a couple of pair-partitions(S1, S2) of typeµ.
Using the graphical representation of Section 1.2.2, it is the same as fixing
µ and a collection of edge-labelled polygons of lengths2µ1, 2µ2, . . . .

In this context, the set of pair-partitions is the set of mapsobtained by
gluing by pair the edges of these polygons (see Section 5.1).
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Then the different quantities involved in our theorems havea combina-
torial translation:G(S0, S1, S2) is the underlying graph of the map (Sec-
tion 5.2),L(S0, S1) the set of its black vertices andL(S0, S2) the set of its
white vertices.

One can now give combinatorial formulations for two of our theorems.

Theorem 5.2.Letµ be a partition of the integerk. Consider a collection of
edge-labelled polygons of lengths2µ1, 2µ2, . . . . Then one has the following
equality between functions on the set of Young diagrams:

(26) Σ(2)
µ =

(−1)k

2ℓ(µ)

∑

M

(−2)|V•(M)| N
(1)
G(M),

where the sum runs over unions of maps obtained by gluing by pair the
edges of our collection of polygons in all possible ways;|V•(M)| is the
number of black vertices ofM andG(M) the underlying graph.

Proof. Reformulation of Theorem 1.5. �

Theorem 5.3. Let µ be a partition of the integerk. Consider a collection
of edge-labelled polygons of lengths2µ1, 2µ2, . . . .

Let s2, s3, . . . be a sequence of non-negative integers with only finitely
many non-zero elements.

The rescaled coefficient

(−1)|µ|+ℓ(µ)+2s2+3s3+···(2)ℓ(µ)−(2s2+3s3+··· )
[(
R

(2)
2

)s2 (
R

(2)
3

)s3
· · ·
]
K(2)
µ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs
(M, q) such that

• M is a connected map obtained by gluing edges of our polygons by
pair;

• the pair (G(M), q), whereG(M) is the underlying graph ofM ,
fulfill conditions (b), (c), (d) and (e) of Lemma 4.2.

Proof. Reformulation of Theorem 1.7. �

Remark5.4. As G(M) is an unlabelled graph, the edge-labelling of the
polygons is not important. But we still have to consider a family of poly-
gons without automorphism. So, instead of edge-labelled polygons, we
could consider a family of distinguishable edge-rooted polygons (which
means that each polygon has a marked edge and that we can distinguish
the polygons, even the ones with the same size).

Remark5.5. These results are analogues to results for characters of the
symmetric groups. The latter are the same (up to normalizingfactors), ex-
cept that one has to consider a family of oriented polygons and consider
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FIGURE 5. A black vertex after a black-compatible orienta-
tion and gluing.

only gluings which respect this orientation (hence the resulting surface has
also a natural orientation). These results can be found in papers [F́S07] and
[DFŚ10], but, unfortunately, not under this formulation.

5.4. Orientations around black vertices. The purpose of this section is
to give a combinatorial interpretation of Theorem 3.13 and Theorem 4.3.

As before,S0 is interpreted as a map obtained by gluing by pair the edges
of a collection of distinguishable edge-rooted polygons.

An orientationφ consists in orienting each edge of this collection of poly-
gons (i.e. each edge-side of the map). It is compatible withL(S0, S1) if,
around each black vertex, outgoing and incoming edge-sidesalternate (see
Figure 5).

To make short, we will say in this case, that the orientation and the gluing
are black-compatible. SoPo is the set of black-compatible orientations and
gluings of our family of polygons.

In our formulas we consider orbits ofPo under the action ofG. Recall
thatG is the group generated by therL, for L ∈ L(S1, S2) whererL is
an axial symmetry of the loopL (and its axis of symmetry goes through a
black vertex).

Notice that, in general, combinatorial objects with unlabeled components
are, strictly speaking, equivalence classes of the combinatorial objects of the
same type with labeled components; the equivalence classesare the orbits
of the action of some group which describes the symmetry of the unlabeled
version.

In our case, a (bipartite) polygon with a marked edge has no symmetry.
But, if we consider a polygon with a marked black vertex, its automorphism
group is exactly the two-element group generated by the axial symmetry
going though this vertex.

Therefore, the orbits ofPo under the action ofG can be interpreted as the
black-compatible orientations and gluing of a collection of distinguishable
vertex-rooted polygons.

We can now reformulate Theorems 3.13 and 4.3.

Theorem 5.6.Letµ be a partition of the integerk. Consider a collection of
unlabeled polygons of lengths2µ1, 2µ2, . . . with one marked black vertex
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per polygon. Then one has the following equality between functions on the
set of Young diagrams:

Σ(2)
µ = (−1)k

∑

~M

(−1)|V•(M)| N
(1)
G(M),

where the sum runs over all unions of maps with oriented edge-sides ob-
tained by a black-compatible orientation and gluing of the edges of our
collection of polygons;M is the map obtained by forgetting the orienta-
tions of the edge-sides,|V•(M)| is the number of black vertices ofM and
G(M) the underlying bipartite graph.

Theorem 5.7.Letµ be a partition of the integerk. Consider a collection of
unlabeled polygons of lengths2µ1, 2µ2, . . . with one marked black vertex
per polygon. Lets2, s3, . . . be a sequence of non-negative integers with only
finitely many non-zero elements.

Then the rescaled coefficient

(−1)|µ|+ℓ(µ)+2s2+3s3+··· 2−(s2+2s3+3s4+··· )
[(
R

(2)
2

)s2 (
R

(2)
3

)s3
· · ·
]
K(2)
µ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs
( ~M, q) such that

• ~M is a connected map with oriented edge-sides obtained by a black-
compatible orientation and gluing of the edges of our collection of
polygons; denoteM the map obtained by forgetting the orientations
of the edge-sides.

• the pair (G(M), q), whereG(M) is the underlying graph ofM ,
fulfills conditions (b), (c), (d) and (e) of Lemma 4.2.

Remark5.8. It is easy to see that a black- and white-compatible orientation
and gluing of a collection of polygons leads to a map on a oriented surface.
Therefore the analogue results in the Schur case can be interpreted in these
terms.

This remark is the combinatorial version of Remark 3.14.
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