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ZONAL POLYNOMIALS VIA STANLEY’S COORDINATES
AND FREE CUMULANTS

VALENTIN FERAY AND PIOTR SNIADY

ABSTRACT. We study zonal characters which are defined as suitably
normalized coefficients in the expansion of zonal polyndsriiaterms

of power-sum symmetric functions. We show that the zonatasttars,
just like the characters of the symmetric groups, admit & eimmbi-
natorial description in terms of Stanley’s multirectarayutoordinates

of Young diagrams. We also study the analogue of Kerov patyiats,
namely we express the zonal characters as polynomialscimaulants
and we give an explicit combinatorial interpretation ofitle®efficients.

In this way, we prove two recent conjectures of Lassalle &mkJoly-
nomials in the special case of zonal polynomials.

1. INTRODUCTION

1.1. Zonal polynomials.

1.1.1. Background.Zonal polynomials were introduced by Hua [Hua63,
Chapter VI] and later studied by James [Jam60, Jam61] inr dodsolve
some problems from statistics and multivariate analyskgeyTquickly be-
came a fundamental tool in this theory as well as in the randuatrix
theory (an overview can be found in the book of Muirhead [N2]i@r also

in the introduction to the monograph of Takemura [Tek84Pey also ap-
pear in the representation theory of the Gelfand p&s,, H,,) (WhereS,,
and H,, are, respectively, the symmetric and hyperoctahedralpgoand
(GL4(R), O4). More precisely, when we expand zonal polynomials in the
power-sum basis of the symmetric function ring, the coeffits describe a
canonical basid.e. the zonal spherical functions) of the algebra of left and
right H,,-invariant (respOg-invariant) functions or6,,, (resp.GL4(R)).

This last property shows that zonal polynomials can be vieag an
analogue of Schur symmetric functions: the latter appeanwie look at
left and rightS,, (resp.U,) invariant functions ot®,, x &,, (resp.GL4(C)).
the Gelfand pair$S,, x 6,,, S,,) and(GL,4(C), Uy). This is the underlying
principle why many of the properties of Schur functions carektended to

zonal polynomials and this article goes in this direction.
1
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In this article we use a characterization of zonal polyndsrdae to James
[Jam61] as their definition. The elements needed in our dpveént (in-
cluding the precise definition of zonal polynomials) areegivin Section
[2.1. For a more complete introduction to the topic we refehtoChapter
VII of Macdonald’s book|[[Mac95].

The main results of this article are new combinatorial folasdor zonal
polynomials. Note that, as they are a particular case ofsyoknetric func-
tions, there exists already a combinatorial interpretetay them in terms
of ribbon tableaux (due to Stanley [Sta89]). But our formislaf different
type: it gives a combinatorial interpretation to the coeffits of the zonal
polynomialZ, expanded in the power-sum basis as a functioh ¢ more
concrete words, the combinatorial objects describing dedficient ofp,
in Z, depend onu, whereas the statistics on them depend dim Stanley’s
result it is roughly the opposite). This kind déial approach makes appear
shifted symmetric functions [O0O97] and is an analogue oémécevelop-
ments concerning characters of the symmetric group: mdeelsiavill be
given in Section 1]3.

1.1.2. Jack polynomialsJack [Jac71] introduced a family of symmetric
functionsJﬁ“) depending on an additional parameiefThese functions are
now calledJack polynomials For some special values afthey coincide
with some established families of symmetric functions. Egmup to mul-
tiplicative constants, fotv = 1 Jack polynomials coincide with Schur poly-
nomials, fora = 2 they coincide with zonal polynomials, for = % they
coincide with symplectic zonal polynomials, far= 0 we recover the ele-
mentary symmetric functions and finally their highest degremponent in
« are the monomial symmetric functions. Moreover, some atpecializa-
tions appear in different contexts: the case- 1/k, wherek is an integer,
has been considered by Kadell in relation with generabnatiof Selberg’s
integral [Kad97]. In addition, Jack polynomials fer= —(k + 1)/(r + 1)
verify some interesting annihilation conditions [FIMMO02]

Jack polynomials for a generic value of the parameteio not seem to
have a direct interpretation, for example in the contexhefrepresentation
theory or in the theory of zonal spherical functions of sone¢f&hd pairs.
Nevertheless, over the time it has been shown that sevetdtseoncerning
Schur and zonal polynomials can be generalized in a ratharatavay to
Jack polynomials (see, for example, the work of StarileydSfa therefore
Jack polynomials can be viewed as a natural interpolatitwdsn several
interesting families of symmetric functions at the sameetim

An extensive numerical exploration and conjectures dond.dssalle
[Las08/ Las09] suggest that the kind of combinatorial fdaswve establish
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in this paper has generalizations for any value of the paterme Unfortu-
nately, we are not yet able to achieve this goal.

1.2. The main result 1: a new formula for zonal polynomials.

1.2.1. Pair-partitions. The central combinatorial objects in this paper are
pair-partitions:

Definition1.1 A pair-partitionP of [2n] = {1,...,2n} is a set of pairwise
disjoint two-element sets, such that their (disjoint) umi®equal tg2n|. A
pair-partition can be seen as an involution®t] without fixpoints, which
associates to each element its partner from the pair.

The simplest example is tHigst pair-partition, which will play a particu-
lar role in our article:

1) S={{1,2},{3,4},...,{2n — 1,2n}}.

1.2.2. Couple of pair-partitions.Let us consider two pair-partitiorts, S,
of the same sén|. We consider the following bipartite edge-labeled graph
L(S1,Ss):
e it hasn black vertices indexed by the two-element set$soandn
white vertices indexed by the two-element sgis
e its edges are labeled with integers fr@2n|. The extremities of the
edge labeled are the two-element sets 8f andS; containing;.

Note that each vertex has degreand each edge has one white and one
black extremity. Besides, if we erase the indices of theisest it is easy to
recover them from the labels of the edges (the index of axestine set of
the two labels of the edges leaving this vertex). Thus, wedthe indices

of the vertices and viewZ(S;, S;) as an edge-labeled graph.

As every vertex has degréethe graphC(S;, S») is a collection of loops.
Moreover, because of the proper bicoloration of the vestied loops have
even length. LeR/; > 2/, > --- be the ordered lengths of these loops.
The partition(¢y, (5, . . .) is called the type of(.51, S>) or the type of the
couple(Sy, Ss). Its length,i.e. the number of connected components of the
graph£(Si, Ss), will be denoted by L(Sy, S2)| (we like to seeC (S, S2) as
a set of loops). We define the sign of a couple of pair-partgtias follows:

(_1)[:(51,32) — (_1)(@1—1)+(Z2—1)+... _ (_1)n—‘£(3175’2)|
and the power-sum symmetric function

(2) pﬁ(51752)(zl7 22y .- ) = pﬁ,fz,...('zlu 22y .- ) = H Z Zfz
i
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Example We consider

S = {{1,2},{3,4},{5,6} }: . 2 )
52:}{173}7{2,4},{5,6}% ThenL(Sy, ) = l T @

So, in this casef (5, S») has type(2, 1).
Another, more complicated, example is given in the begigwinSection

5.1.

1.2.3. Zonal polynomials and pair-partitions-or zonal and Jack polyno-
mials we use in this article the notation from Macdonald’sk{Mac95].
In particular, the zonal polynomi&, associated to the partitiokh is the
symmetric function defined by Eq. (2.13) of [Mac95, VII.2pRhe reader
not accustomed with zonal polynomials, their property giveSection Z.11
entirely determines them and is the only one used in thismpape

Let A = (A, \g,...) be a partition ofz; we consider the Young tableau
T of shape\ = (2\1,2)s, . ..) in which the boxes are numbered consecu-
tively along the rows. Permutations @f:| can be viewed as permutations
of the boxes off’. Then a pair(.Si, Ss) is calledT-admissiblef Sy, S, are
pair-partitions ofi2n| such thatS o S; preserves each column éfand S,
preserves each row.

3

Theorem 1.2. With the definitions above, the zonal polynomial is given by
Z\ = Z (=155 pris, sn)-
(51,S2) T-admissible
This result will be proved in Sectidn 2.7.

112/3]4]
5]6

Example.Let A = (2,1) andT = . Then (S, 5,) is T-

admissible if and only if:
Sy € {{{1,2},{3,4}, {5,6}}, {{1,6},{3,4}, {2,5}}} and
S, € {{{1,2},{3,4},{5,6}}, {{1,3},{2,4},{5,6} },
{{1,4},{2,3},{5,6}}}.

The first possible value af; gives (—1)%(>1) = 1 and the correspon-
ding types of£(Si,Sy) for the three possible values ¢f, are, respec-
tively, (1,1,1), (2,1) and(2,1). For the second value &, the sign is
given by(—1)%(551) = —1 and the types of the corresponding set-partitions
L(S1, 57) are, respectively2, 1), (3) and(3).

Fina”y, one Obtaing(Zl) = P@a,1,1) +p(271) — 2p(3)
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Remarkl.3. This theorem is an analogue of a known result on Schur sym-
metric functions:
n!- Sx

m = Z(_l)al Ptype(o1002))

where the sum runs over pairs of permutatioms o,) of the boxes of the
diagram\ such thato; (resp.o,) preserves the columns (resp. the rows)
of A andtype(o; o 02) denotes the partition describing the lengths of the
cycles ofo; o 5. This formula is a consequence of the explicit construction
of the representation associatedXwia the Young symmetrizer. For a
detailed proof, see [B07]. In [Han88], the author tries unsuccessfully to
generalize it to Jack polynomials by introducing some stiag on couples

of permutations. Our result shows that, at leastifer 2, a natural way to
generalize is to use other combinatorial objects than p&tions.

1.3. Zonal characters. The above formula expresses zonal polynomials in
terms of power-sum symmetric functions. In Secfibn 3, wé &xtract the
coefficient of a given power-sum. In this way we study an agadoof the
coordinates of Schur polynomials in the power-sum basib@tymmetric
function ring. These coordinates are known to be the irrddieicharacters

of the symmetric group and have a plenty of interesting pittge Some

of them are (conjecturally) generalizable to the contexémetSchur func-
tions are replaced by Jack polynomials and our results icédise of zonal
polynomials go in this direction.

1.3.1. Characters of symmetric group&or a Young diagram we denote
by p* the corresponding irreducible representation of the sytricngroup
S, with n = |A|. Any partition . such thafu| = n can be viewed as a
conjugacy class i®,,. Letrw, € &, be any permutation from this con-
jugacy class; we will denote by p*(n) := Tr p*(7,,) the corresponding
irreducible character value. #h < n, any permutatiom € &,,, can be also
viewed as an element &,,, we just have to add — m additional fixpoints
to 7; for this reason

Tr p* () := Tr p* (1P 71H)
makes sense also whar < |\|.

Normalized characters of the symmetric group were definetvdayov
and Kerov[IK99] as follows:

Tr p* ()

3 YD) = — 1) (n— 1

@) w N =nln=1) ‘(,n il + ldimension ofp?
|| factors

(the meaning of the superscript in the notatmﬂ)()\) will become clear
later on). The novelty of the idea was to view the charactea aAsiction
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A= Ef}) (\) on the set of Young diagrams (of any size) and to keep the con-
jugacy class fixed. The normalization constant$ in (3) waiesen in such

a way that the normalized charactars- ZE}) (A) form a linear basis (when

1 runs over the set of all partitions) of the algelraof shifted symmetric
functions introduced by Okounkov and Olshanski [O097], alhis very

rich in structure (this property is, for example, the keyrppan a recent ap-
proach to study asymptotics of random Young diagrams unldercRerel
measure [I002]). In addition, recently a combinatorialatggion of the
quantity (3) has been given [Sta06, Fér10], which is padity suitable

for study of asymptotics of character valueS{H].

Thanks to Frobenius’ formula for characters of the symmegroups
[Fro00], definition [[(B) can be rephrased using Schur fumstidVe expand
the Schur polynomiat, in the base of the power-sum symmetric functions
(p,) as follows:

n! Sx o 1
) dm(y ~ 2=

p:
lpl=[Al

for some numberé,()l)()\). Then
(Al = [l +ma(p)
(5) 2O\ = ( () 2% efjiw,w(A),
where
2y = papz - ma ()t ma(p)! -
andm;(x) denotes the multiplicity of in the partitiong.

1.3.2. Zonal and Jack characterdn this paragraph we will define ana-
logues of the quantitﬁﬁ)()\) via Jack polynomials. First of all, as there
are several of them, we have to fix a normalization for Jacknmohials.
In our context, the best is to use the functions denoted bythe book of
Macdonald[[Mac95, VI, (10.22)]. With this normalizatiomehas

I's
g _ 1S
A dim(N)
I = 7,

If in (4), we replace the left-hand side by Jack polynomials:

(6) I =3 090 p,

p:
lp|=[Al
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then in analogy td (5), we define

RO () = <|)\| — |ul +m1(u)) L g ).

ml(,u) H7 1A =1k

These quantities are callgdck characters Notice that fora = 1 we
recover the usual normalized character values of the synugebups. The
casex = 2 is of central interest in this article, since then the ledtit side
of (8) is equal to the zonal polynomial; for this reaééﬁ)()\) will be called
zonal character

Study of Jack characters has been initiated by LassalleDf,4sas09].
Just like the usual normalized characté]fé), they are {-)shifted sym-
metric functions|[Las08, Proposition 2] as well, which is@d hint that
they might be an interesting generalization of the charact&he names
zonal characterandJack characterare new; we decided to introduce them
because quantitieEE?)()\) are so interesting that they deserve a separate
name. One could argue that this name is not perfect sincechackcters
are notsensu strictccharacters in the sense of the representation theory
(as opposed to, say, zonal characters which are closelgddia the zonal
spherical functions and therefore are a natural extengitireacharacters in
the context of Gelfand pairs). On the other hand, as we sbaJllack char-
acters conjecturally share many interesting properti¢l thie usual and
zonal characters of symmetric groups, therefore the foraerbe viewed
as interpolation of the latter which justifies to some exthetr new name.

1.4. The main result 2: combinatorial formulas for zonal characters.

1.4.1. Zonal characters in terms of numbers of colorings functioest
So, S1, So be three pair-partitions of the sek|. We consider the following
function on the set of Young diagrams:

Definition1.4. Let A be a partition of any size. We defid\éégshsz()\) as
the number of functiong from [2k] to the boxes of the Young diagram
such that for every € [2k]:

(QO) f(I) = f(Su(1)), in other wordsf can be viewed as a function on
the set of pairs constituting;

(Q1) f(1) and f(S,(l)) are in the same column;

(Q2) f(1) and f(S2(l)) are in the same row.

Note that\ — Né(lj),SLSQ()\) is, in general, not a shifted symmetric func-
tion, so it cannot be expressed in terms of zonal charac@nsthe other
hand, the zonal characters have a very nice expressionnts tef the NV
functions:
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Theorem 1.5. Let i be a partition of the integek and (S;, S2) be a fixed
couple of pair-partitions of the s€2k| of typew.. Then one has the following
equality between functions on the set of Young diagrams:

1 L(So,S L(So,S 1
M P g e g w0,
So

where the sum runs over pair-partitions @] and ¢(x) denotes the num-
ber of parts of partitiory..

We postpone the proof to Sectidns]3.1+3.4. This formula isiemme-
diate step towards Theorém 1.6, but we wanted to state it eslapendent
result because its analogue for the usual charact&87FTheorem 2] has
been quite useful in some contexts (se80F, Fér09]).

Example.Let us consider the cage= (2). We fix S; = {{1,2},{3,4}}
andsS, = {{1,4},{2,3}}. ThenS, can take three possible values, S,
andsS; := {{1,3},{2,4}}.

If Sy = 51, conditior{ (Q0) implies condition (QfL). Moreover, condits
and (Q2) imply that the images of all elements are in traesrow.
ThereforeN!s ¢ ()\) is equal to the number of ways to choose two boxes
in the same row of\: one is the image of and2 and the other the image
of 3 and4. It follows that

1
Néﬁ),SLSQ ()\> = Z )\22

In a similar way, N5 ¢ ()) is the number of ways to choose two boxes
in the same column of: one is the image of and4 and the other the image
of 2 and3. It follows that

g 5,5, (N) = D ()%,
where)\’ is the conjugate partition of.

Consider the last cas&, = S5;. Conditiond (QQ) and (QR) imply that
the images of all elements are in the same row. Besides, tt@mg[{Q0)
and (QI) imply that the images of all elements are in the sasherm. So
all elements must be matched to the same box and the numbenctidns
fulfilling the three properties is simply the number of borés.

Finally,

(8) S () =2 (Z A?) - (zw) — Al

(2
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If we denoten()) = 3, (%) [Mac95, equation (1.1.6)], this can be rewrit-
ten as:

£3(3) = 2(20(V) + \) — (20(3) + ]A) —
= 4n(N') — 2n(N).

The last equation corresponds to the case 2 of Example 1b. of para-
graph VI.10 of Macdonald’s book [Mac95].

1.4.2. Zonal characters in terms of Stanley’s coordinatd$ie notion of
Stanley’s coordinates was introduced by Stanley [Sta04 felind a nice
formula for normalized irreducible character values ofgiienmetric group
corresponding to rectangular Young diagrams. In order teegsize this
result, he defined, given two sequenpeandq of positive integers of same
size (@ being non-increasing), the partition:

PXA=(q1, - qiyes Qs Q1)
—— ——
p1 times p; times

Then he suggested to consider the quaritffy)/(p X q) as a polynomial in
p andq. An explicit combinatorial interpretation of the coeffiois was
conjectured in[[Sta06] and proved in [Fér10].

Itis easy to deduce from the expansiortit in terms of theV functions
a combinatorial description of the polynom&{ (p x q).

Theorem 1.6. Let i be a partition of the integek and (S, S2) be a fixed
couple of pair-partitions of2k] of typeu. Then:

9) SP(pxq)=

(2_4(13) >, >, II wep- II (2000,

So ¢:L£(S0,52)—>N* 1€L(Sp,S2) 1'€L(S0,51)

wherey(l') := max ©(w) with [ running over the loops of (S, S1) having
at least one element in common with

We postpone the proof until Sectibn B.5.

Example.We continue the previous example in the case (2).

When S, = S;, the graphL(Sy, S2) has only one loop, thus we sum
over index: € N*. The graphZ(.Sy, S;) has two loops in this case, whose
images by are both.. So the expression in the square brackets$for S,

is equal to:
4> pig}
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When S, = S,, the graphZ(.Sy, S») has two loops, thus we sum over
couples(i, ) in (N*)2. The graphZ(Sy, S;) has only one loop, which has
elements in common with both loops 6f .Sy, S2) and thus its image by
ismax(i, j). Therefore, the expression in the brackets can be writtérisn
case as:

—2 Zpiijmax(i,j)-
irj
WhensS, = Ss, both graphsZ(.Sy, S2) andL(Sy, S1) have only one loop.
Thus we sum over one indéx N* which is the image by andi of these
loops. In this case the expression in the brackets is sinmqiglgo:

—2 Zpi%-
i.j
Finally, in this case, EqL{9) becomes:
SoPx @) =2 pig? = > pibitmaxtis) — 9 Pidi-
i ij i
It matches the numerical data given by M. Lassalle in [La$08,0f page

3] (one has to change the signs and substjtute1 in his formula).

1.5. Kerov polynomials.
1.5.1. Free cumulantsFor a Young diagram = (A, s, ... ) and an inte-
gers > 1 we consider the dilated Young diagram

Ds)\ = (S)\l,...,SAl,éAg,...,SA%,...).

Y g
s times s times

If we interpret the Young diagrams geometrically as coitetd of boxes
then the dilated diagram, ) is just the image oA under scaling by factor
S.

This should not be confused with

aX = (al,alg, .. .)

which is the Young diagram stretched anisotropically origng theO X
axis.

Note that, as Jack characters are polynomial functions amyalia-
grams, they can be defined on non-integer dilatation or &ojsigal stretch-
ing of Young diagrams (in fact, they can be defined on any géized
Young diagrams, see [¥10] for details). In the case of zonal characters,
this corresponds to writing Theordm 1.6 for sequensesdq with non-
integer terms.
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Following Biane|Bia98] (who used a different, but equivaldefinition),
for a Young diagram we define it§ree cumulantg,y (\), R3()\), ... by the
formula

1
Ry(\) = lim — 5" (D).
s—o0 S
In other words, each free cumulaR}.()\) is asymptotically the dominant
term of the character on a cycle of lendth- 1 in the limit when the Young
diagram tends to infinity. It is natural to generalize thiSrgon using Jack
characters:
«

R™()\) = lim S (D, N).

500 (us)F
In fact, the generak case can be expressed simply in terms of the usual
free cumulant thanks to [Las09, Theorem 7]:

o 1
R™(\) = —Ri(a).

The quantitiesR,ia) (\) are calledv-anisotropic free cumulants of the Young
diagram\.

With this definition free cumulants might seem to be rathstract quan-
tities, but in fact they could be equivalently defined in ayvexplicit way
using the shape of the diagram and linked to free probapilibence their
name, see [Bia98]. The equivalence of these two descriptizakes them
very useful parameters for describing Young diagrams. kheg Propo-
sition 2 and the Theorem of section 3 in [Las08] imply thatytfierm a
homogeneous algebraic basis of the ring of shifted symméirictions.
Therefore many interesting functions can be written in geainfree cumu-
lants. These features make free cumulants a perfect tobeisttidy of as-
ymptotic problems in representation theory, see for exarf§ia98,Sni06].

1.5.2. Kerov polynomials for Jack character3he following observation
is due to Lassalle [Las09]. Lét > 1 be a fixed integer and let be fixed.

SinceE,(f) is ana-shifted symmetric function and the anisotropic free cu-
muIants(Rl(a))lzg form an algebraic basis of the ring@fshifted symmetric
functions, there exists a ponnomiKI,ia) such that, for any Young diagram
A,
S0 = K7 (B (), By (), ).
This polynomial is callederov polynomial for Jack character
Thus Kerov polynomials for Jack characters express Jadlactes on

cycles in terms of free cumulants. For more complicatedwgengy classes
it turns out to be more convenient to express not directlydharacters
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Z(a)

(k... RUTTathercumulant

()RS D).

This gives rise taggeneralized Kerov polynomials for Jack charactets-
notedk[;’ . Inthe classical context = 1 these quantities have been

introduced by one of us and RattandB8]; in the Jack case they have been
studied by Lassalle [LasD9]. We skip the definitions andrrefehe above
papers for details since generalized Kerov polynomialsnateof central
interest for this paper.

1.5.3. Classical Kerov polynomialsfFora = 1 these polynomials are called
simply Kerov polynomials This case has a much longer history and it was
initiated by Kerov [Ker00] and Biané [BiaD3] who proved thathis case
the coefficients are in fact integers and conjectured their-megativity.
This conjecture has been proved by the first-named authao®9F,éalso
for generalized Kerov polynomials. Then, an explicit conatorial inter-
pretation has been given by the authors, together withdolie [DFS10],
using a different method.

These polynomials have a deep structure, from a combiahtord ana-
lytic point of view, and there are still open problems comieg them. For
a quite comprehensive bibliography on this subject we tef@®FS10].

Most of properties of Kerov polynomials seem to be genesliz in the
case of a general value of the parameterlthough not much has been
proved for the moment (see [Las09]).

1.6. The main result 3: Kerov’s polynomials for zonal characters As

in the classical setting, the coefficients of zonal Kerowpomials have
a nice combinatorial interpretation, analogous to the anefiDES10].

Namely, if we denotdz?" - - - z}| P the coefficient ofe}" - - - z;* in P, we

show the following result.

Theorem 1.7. Let i be a partition of the integek and (S, S2) be a fixed
couple of pair-partitions ofi2k] of typey. Letss, ss,... be a sequence of
non-negative integers with only finitely many non-zero elei

Then the rescaled coefficient

(_1)\u\+£(p)+232+333+--- 2£(p)—(232+333+---) [<R§2)>82 (R§2)>83 N ] K(z)

"
of the (generalized) zonal Kerov polynomial is equal to theher of pairs
(So, q) with the following properties:

(a) So is a pair-partition of [2k] such that the three involutions corres-
ponding toS, S; and S, generate a transitive subgroup &f;
(b) the number of loops iI8(Sy, S1) is equal toss + s3+ - - -;
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(c) the number of loops id (.S, S2) is equal tosy + 2s3 + 354 + - - -

(d) ¢ is a function from the sef(Sy, S;) to the set{2,3,...}; we re-
quire that each numbere {2, 3, ...} is used exactly; times;

(e) for every subsetl C L(Sy,S1) which is nontrivial (i.e.,A # ()
and A # L£(S,51)), there are more tha}",_, (¢(v) — 1) loops
in £(.So, S2) which have a non-empty intersection with at least one
loop from A.

Conditior{{€) can be reformulated in a number of equivaleysyDFS10].
This result will be proved in Sectidn 4.

Example We continue the previous exampje:= = {{1,2},{3,4}}
andsS, = {{1,4},{2,3}}. Recall thatS, can take three valuesy, S, and
another values; = {{1,3},{2,4}}). In each case, conditipna) is fulfilled.
The number of loops i (.Sy, S1) andL(.Sy, S>) in each case was already
calculated in the example on page 9; from the discussior tiiéollows
as well that any € L(Sy, S1) and any?’ € L(S,, S2) have a non-empty
intersection.

o If Sy =S, (resp.Sy = S3), conditiong (D) (d);, (d) and (e) are ful-
filled for (sq, s3,...) = (0,1,0,0,...) (respectively(ss, s3,...) =
(1,0,0,...)) and ¢ associating3 (resp 2) to the unique loop of
L(Sy, S1).

o If Sy = Sy, conditiond (B) and (¢) cannot be fulfilled at the same
time for any sequencg;) because this would imply

2 = 1£(So, S| < |£(So, Sa)] = 1.
Finally, all coefficients ofx ((22)) are equal td), except for:

—1 @@

9 [R2 ]K(z) =1;
L @) @)

1 [R5 ]K@) =1

In other terms,
2 2 2
Ky =4RY —2RY.
This fits with Lassalle’s data [Las09, top of page 2230].

1.7. Symplectic zonal polynomials.As mentioned above, the case= %
is also special for Jack polynomials, as we recover the Beecsymplectic
zonal polynomials. These polynomials appear in a quateimianalogue
of James’ theory, see [Mac95, VII.6].

The symplectic zonal and zonal cases are linked by the gidalimula
for Jack characters (see [Mac¢95, Chapter VI, equation (3]):3

(10) 650 (A) = (=)= gl (Y),
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where)’ is conjugate of the partition.
Using the definition of Jack characters, this equality bezsim

(11) S (A) = (—a)H-1 £ (),

Therefore the combinatorial interpretation of Stanleyid &erov’s polyno-

mials for zonal characters have analogues in the sympleatial case. As
it will be useful in the next section, let us state the one ferd<’s polyno-

mials.

Theorem 1.8. Let i be a partition of the integek and (S, S2) be a fixed
couple of pair-partitions ofi2k] of typey. Letss, ss,... be a sequence of
non-negative integers with only finitely many non-zero elei

Then the rescaled coefficient

ol [( R§1/2>)52 ( Rg/z))% . ] K(/2

of the (generalized) symplectic zonal Kerov polynomiatjisat to the num-
ber of pairs(Sy, ¢) with properties (), (B), (¢), (d) ar/d (e) of Theoreéml1.7.

Proof. This comes from Eq[(11), Theorém 1.7 and the fact that:

RMP(A) = 28Ry (1/2X) = 28Ry, [ D10y (2V)')]
= Re[(2X)] = (D) Re(2X) = (=2)*RP(X). O

1.8. Lassalle’s conjectures.In a series of two papers [Las08, Las09] Las-
salle proposed some conjectures on the expansion of Jac&ctdis in
terms of Stanley’s coordinates and free cumulants. Thesecires sug-
gest the existence of a combinatorial description of Jagkattters. Our
results give such a combinatorial description in the caseoofl charac-
ters. Moreover, we can prove a few statements which are ladoes of
Lassalle’s conjectures.

Let us begin by recalling the latter ([Las08, Conjecture id fLas09,
Conjecture 2]).

Conjecture 1.9. Let i be a partition ofk.

o (—1)k2£ba)(p, —q) is a polynomial in variablep, g anda — 1 with
non-negative integer coefficients.
e there is a “natural” way to write the quantity

PLTOIINS i)

as a polynomial in the variableﬁga), a and1—a with non-negative
integer coefficients.
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In fact, Lassalle conjectured this in the case whehas no part equal to
1, but it is quite easy to see that if it is true for some pamitig it is also
true forp U 1.

Having formulas only in the cases = 1/2 anda = 2, we can not
prove this conjecture. In the following we will present a fearollaries of
Conjecturé 1.9 in the special cases- 2 anda = 1/2 and we shall prove
them. This gives an indirect evidence supporting ConjetiL®.

Proposition 1.10. Let ;. be a partition ofk. Then(—l)’fsz) (p,—q) is a
polynomial in variablep, q with non-negative integer coefficients.

If we look at the expansion of symplectic zonal polynomialStanley’s
coordinates, Lassalle’s conjecture does not imply neititegrity nor posi-
tivity of the coefficients as we specialize the variable 1 to a non-integer
negative value.

Proposition 1.11. Let i, be a partition ofk. Theanf) has integer coeffi-
cients.

In this case there is no positivity result, because one of/én@ables of
the polynomial, namely — «, is specialized to a negative value.

Proposition 1.12. Let ;» be a partition ofk. ThenK,Sl/z) has non-negative
rational coefficients.

Proof. It is a direct consequence of Theorem|1.8. O

In this case there is no integrality result, because thakbbesa andl —«
are specialized to non-integer values.
Proposition§ 1.70 arid 1111 are proved in Sections 3.6 ahd 4.4

1.9. Pair-partitions and zonal characters: the dual picture. It should
be stressed that there was another result linking triplefsao-partitions
and zonal characters; it can be found in the work of GouldehJatkson
[GJ96]. But their result goes in the reverse direction tharsothey count
triplets of pair partitions with some properties using Aaferacters, while
we express zonal characters using triplets of pair-pamsti An analogous
picture exists for pairs of permutations and the usual dters of symmet-
ric groups. It would be nice to understand the link betweaséhtwo dual
approaches.

1.10. Maps on possibly non-orientable surfacesMost of our theorems
involve triplets of pair-partitions. This combinatoriakcture is in fact
much more natural than it might seem at first glance, as theynacor-

respondence with graphs drawn on (possibly non orientaidenan con-
nected) surfaces. In sectibh 5, we explain this relationgivel combinato-
rial reformulations of our main results.
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1.11. Overview of the paper. Section$ 2,13 arld 4 are respectively devoted
to the proofs of the main results 1, 2 and 3. Sedtion 5 is deMotéhe link
with maps.

2. FORMULAS FOR ZONAL POLYNOMIALS

The main result of this section is Theorem|1.2, which givesratmnato-
rial formula for zonal polynomials.

2.1. Preliminaries. In this paragraph we give the characterization of zonal
polynomials, which is the starting point of our proof of Them[1.2. This
characterization is due to James [Jam61]. However, we atltlar base our
presentation on the section VII.3 of Macdonald’s book [Malc®ecause
the link with more usual definitions of zonal polynomials pasticular case
of Jack symmetric functions, Eq. (VII, 2.23)aia zonal spherical functions
(VII, 2.13) is explicit there.

Consider the spade(G) of polynomial functions on the sét = GL,4(R),
i.e.functions which are polynomial in the entries of the masicéhe group
G acts canonically on this space as follows: forX € G andf € P(G),
we define

(LX) = f(L"X).
As a representation @, the space’(G) decomposes aB(G) = D,
where the sum runs over partitions of length at mband whereP, is a
sum of representations of typelMac95, Eq. (VII, 3.2)].

Let us denote’X = O(d). We will look particularly at the subspace
P(G, K) of functionsf € P(G) which are left- and right-invariant under
the action of the orthogonal group, that is such that, forfay € K and
g €a,

fkgk') = f(g).
The intersectio’,N P(G, K) has dimension if 1 = 2\ for some partition
A and0 otherwise[[Mac95, Eq. (VII, 3.15)]. Thus there is a uniquedtion
Q' such that:

(8 2 (16) = 1,

(b) Q(Ad) is invariant under the left action of the orthogonal gréugR),

(c) Q&d) belongs toP;,.
This functionQ&d) is linked to zonal polynomials by the following equation
[Mac95, Eqg. (3.24)]:
Sp(XXT))

o0 - SO,
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whereSp(X X7T) is the multiset of eigenvalues of X”. Therefore if we
find functionsQ\” with the properties above, we will be able to compute
zonal polynomials up to a multiplicative constant.
We will look for such functions in a specific form. Far= v, ® --- ®
va, € (RY)®2" we define a homogeneous polynomial function of degree
onG
Gz(X) = (XTv, XTvg) - (X 091, XT0gy,)  fOr X € My(R)
and for general tensois ¢ (R%)®?" by linearity. Clearly,
$z(X0) = ¢z(X) foranyO € O,4(R);

in other wordsp is invariant under the right action of the orthogonal group
O4(R).

Besides,GL,(IR) acts on(R%)®?": this action is defined on elementary
tensors by

(12) Ly ® - Q) = Ly ® -+ @ Lug,.
Lemma 2.1. The linear mapy : (R%)®* — P(G) is an intertwiner of
G-representation, i.e. for aljy € G andZ € (R%)®?" one has:
99z = Qgz.
Proof. Straightforward from the definition of the actions. O

Thanks to this lemmaj_«) will be left-invariant by multiplication by the
A
orthogonal group if and only iigd) is invariant by the action of the orthog-
onal group. Besides ( is in P, if z{" itself in the isotypic component of
A
typeu in the representatiof®R?)2",
Finally, we are looking for an elemelaid) € (R4)®?" such that:
(@) ¢, is non-zero,
A
(b) z@ is invariant under the left action @f;(R) C GL4(R),

(c) z&d) belongs to the isotypic component of typein the representa-
tion (R%)®2" (in particularn has to be the size of).

In the following paragraphs we exhibit an elemeﬁf € (R%)=2 with
these properties and use it to compute the zonal polynotyial

2.2. A few lemmas on pair-partitions.

Lemma 2.2. Let (54, .S2) be a couple of pair-partitions gPn| of type .
Then if we se&; and S, as involutions of2n], their compositions; o S,
has cycle-type. U p.
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Proof. Let (i1,1is,...,i2) be a loop of lengtt2/ in the graphL(Sy, Ss).
This means that, up to a relabelirtg,(resp.S:) contains the pair§is;, i2j11}
(resp.{ig;j_1, ;) for 1 < j < ¢ (with the conventioriy,; = i;). Then the
restriction ofS; o Sy to {iy, -+ iz}

(Sl I

is a disjoint product of two cycles of length The same is true for the
restriction to the support of each loop, therefafeo S, has cycle-type

Py i, f2, [, - - - O

The symmetric grou.,,, acts on the set of pair-partitions @f:|: if o is
a permutation ir6,,, and7" a pair-partition of2n|, we denote by - T' the
pair partition such thafo (i), o(j)} is a part ofo - T'if and only if {7, j} is
a part of .

Wiy iy = (i - dag = 1)(iz da -+ dze)

Lemma 2.3. Let o be a permutation of the boxes @i which preserves
each column. Then
(_1>cr — (_1)£(0-S,S).

Proof. Young diagranm\ can be viewed as a concatenation of rectangular
Young diagrams of sizéx 2 (: parts, all of them equal t®); for this reason
it is enough to proof the lemma for the case wRan= i x 2. Permutation
o can be viewed as a pais"), ) wheres) € &; is the permutation of
j-th column. Then

(_1>0' _ (_1>a(1)<_1>a(2) _ (_1)00)(0(2))71 _ (_1)(51—1)+(52—1)+~~

wherely, 5, ... are the lengths of the cycles of the permutation (o(?) -

Let (O[e, r]) denote the box of the Young diagram in the columand
the rowr. Then

cSo~1S(0[1,14]) = oS~ (O[2,1]) = 0S(O2, (0(2))_1(1')])
= o(O[1, (™)) = 01, 0™ (6@ (i)].

SooSo~1S = (0 - S)S permutes the first column and its restriction to the
first column has cycles of length, /5, . . .. The same is true for the second
column. It follows that(c - S)S has cycles of lengtl,, ¢, (s, (s, ... oOF,
equivalently, the lengths of the loops 6tc - S, S) are equal t@/y, 205, . ..
which finishes the proof. U

The last lemma of this paragraph concerns the structureeokéh of
couples of pair-partitions dn| endowed with the diagonal action of the
symmetric group. From the definition of the grafhs;, S,) it is clear that
L(0Sy,085) and L(S1,S2) are isomorphic as bipartite graphs, thus they
have the same type. Conversely:
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Lemma 2.4. The set of couplegS;, S2) of typen forms exactly one orbit
under the diagonal action of the symmetric gra&ip,. Moreover, there are
exactly-22L of them.

2,2¢(v)

Proof. Let us consider two couplés);, S») and(S7, S5) of type i such that
both graphs&~ := £(.51, .5;) andG’ := L(S], S}) are collections of loops of
lengths2uy, 25 . ... These two graphs are isomorphic as vertex-bicolored
graphs. Letp be any isomorphism of them. As it sends the edges td
the edges of/, it can be seen as a permutatiorgip,. As it sends the black
(resp. white) vertices af to the black (resp. white) vertices 6f, one has:
©(S1) = S (resp.p(Se) = S). Thus all couples of pair-partitions of type
1 are in the same orbit.

Fix a couple(S;, S;) of type . and denote by.y, . . ., Ly, the loops of
the graphZ(S;, S;). Moreover we fix arbitrarily one edge in each loop
L;. Leto belong to the stabilizer of the action &f,,, on a(5;, Ss); in other
wordso commutes witht; and.S,. Such ar induces a permutationof the
loops (L;) respecting their sizes; there arg m;(1)! such permutations.
Besides, once is fixed, there areu; possible images foe; (it can be
any element of the loop(L;), which has the same size @s which is
equal t02/;). Asa(S;(i)) = S;(o(i)) for j = 1,2, the permutatiorr is
entirely determined by the values®fe;). Conversely, if we fix- and some
compatible values for (e;), there is one permutatianin the centralizer of
Sp and S, corresponding to these values. Finally, the cardinalityhid
centralizer is equal te, 2% = TT. m;(p)! (2i)™ W, O

2.3. Pair-partitions and tensors. If P is a pair-partition of the ground set
[2n], we will associate to it the tensor

\I’P = Z 5P(i1,...,i2n) €4, X ...®ei2n c (Rd)®2n7

1<y, izn <d

whereip(iy, ..., is,) is equaltal if i, = ¢ forall {k,[} € P andisequalto
zero otherwise. The symmetric gro@,, acts on the set of pair-partitions
and on the set of tenso(®&¢)®?" and it is straightforward tha +— Uy is
an intertwiner with respect to these two actions.

Lemma 2.5. Let Z € (R4)®*". Then
bz(X) = (Z, X"V g)

with respect to the standard scalar product(id?)®?", wheresS, given by
(@), is the first pair-partition.
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Proof. We can assume by linearity thdt= v; ® ... ® vs,. The right-hand
side becomes:

(Z, X" g) =
Z <1)1 & "‘®’U2n,X€il ®X€i1 ® ®X€Zn ®X€Zn>

= Z H <U2j—1>Xeij> ) <U2j>Xeij>

1<, . in<d  j=1

Z <XTU2]'_1, 6i> . <XTU2]', 6i> = H(XTU2j—1,XTU2j>~ 0J

n n
=1 L1<i<d J=1

j
Lemma 2.6. Let P be a pair-partition of[2n] and S, as before, the pair-
partition of the same set given fd)). Then

Gup(X) = (Up, XO*'"Ug) = Tr [(XXT)] Tr [(XXT)2]---
= pe(rs) (Sp(XXT)),
where2/,, 2(5, . .. are the lengths of the loops 8f P, S).
Proof. Let us consider the case wheféP, S) has only one loop of length
2(. DefineP’ = {{2,3},{4,5},...,{2¢0 — 2,2¢ — 1},{2¢,1}} Then the
couples(P, S) and(P’, S) have the same type and thus, by Lenima 2.4,
there exists a permutatiensuch that- - P’ = P ando - S = S. Then
<\IIP,X®2”\II5> = <O'\pr/,X®2nO'\If5> = <O'\pr/,O'X®2n\If5>
= (Up, XOUg).
We used the facts thdt — W p is an intertwiner for the symmetric group

action, that this action commutes wiffi*?" and that it is a unitary action.
Therefore, it is enough to consider the cése- P'. In this case,

Vp = Z €5, ®ej Dej Q- Qej , ®ej @ ej,.
1<g1,..,Je<d
Therefore one has:
¢\I/P (X) = Z <XTejea XT6j1> . <XT6j1a XT6j2> o <XT6J'2717XT6J2>

1<j1,mje<d

= Z <XXT€JZ>6J'1> ’ <XXT6]~1,6]-2>---<XXT6]-L_1,6]~[>
1<j1,mje<d

= D (XX (XX (XX,
1<j1,mje<d

= Tr(XXT).
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The general case is simply obtained by multiplication ofaheve one-loop
case. O

It follows that X — ¢y, (X) is invariant under the left action of the
orthogonal groug),(R). The above discussion shows thatifis a pair-
partition (or, more generally, a formal linear combinatadmpair-partitions)
then condition (B) is fulfilled forzy, = ¥ p. For this reason we will look
for candidates for, corresponding to zonal polynomials in this particular
form.

2.4. Young symmetriser. Let a partition\ be fixed; we denote = |\|.
We consider the Young tableduof shape\ in which boxes are numbered
consecutively along the rows. This tableau was chosen imaueay that if
we interpret the pair-partitio’ as a pairing of the appropriate boxesiof
then a box in the colum; — 1 is paired with the box in the coluniz¥ in
the same row, whergis a positive integer (these two boxes will be called
neighbors in the Young diagragi).

TableauT allows us to identify boxes of the Young diagrai with
the elements of the sén]. In particular, permutations fror&,,, can be
interpreted as permutations of the boxe& bf We denote

Py, ={0 € G,,,: o preserves each row ah},
Qo) ={0 € Gy, : o preserves each column 2k}

and define
Ao) = Z g e C[ng],

ogePsy

bQ)\ = Z (—1)‘0‘0' - C[ng],
TEQ2x

cax =baragy.

The element,, is calledYoung symmetriseil here exists some non-zero
scalarayy such thaiwg, oy is a projection. Its imag€|Ss,,|asycay under
multiplication from the right on the left-regular repression gives an ir-
reducible representatigit* of the symmetric group (where the symmetric
group acts by left multiplication) associated to the Youmggdam2\ (see
[FH91, Theorem 4.3, p. 46]).

Recall (see [CSST10, Corollary 1.3.14]) that there is alsergral pro-
jection inC[&,,], denotedy,,, whose imageC|[Ss,|poy under multiplica-
tion from the right (or, equivalently, from the left) on theft-regular repre-
sentation is the sum of all irreducible representationgjoé p>* contribut-
ing to C[G,,]. It follows that C[G,,|csy iS a subspace of Sy, ]pay. It
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follows that there is an inequality

(13) QoxC2x < Par
between projections ii[S,,), i.e.

Q) CoP2) = ParQarCoy = Q2)Ca).

2.5. Schur-Weyl duality. The symmetric grou,, acts on the vector
space(R4)®2" by permuting the factors and the linear gratip,(R) acts
on the same space by the diagonal action (12). These twanaatimm-
mute and Schur-Weyl duality (s€e [Mac¢95, paragraph A.8gds that, as
a representation ab,,, x GL4(R), one has:

Rd ®2n @ V > U/m

p2n

whereV,, (resp.U,) is the irreducible representation &h,, (resp.GL4(R))
indexed byu (as we assumed in Sectibn2.1 thiat 2n, the representa-
tion U, does always exist). Buis\(V,) = d,2.V,, therefore the image
pox ((R)®2") of the projectiorp,, is, as representation 6fL;(R), a sum
of some number of copies of the irreducible representatfdilg;(R) as-
sociated to the highest weighf\. Using inequality [(IB), we know that
aoncan ((RY)®27) is a subspace afsy ((R?)®?"). In this way, we proved
thatamycoy ((R?)®?") is a representation @fL,(IR) which is a sum of some
number of copies of the irreducible representatiorGaf;(R) associated
with the highest weighi\.
Thus the element,), - ¥ 5 of (R?)®?" fulfills condition[(C).

2.6. A tensor satisfying James’ conditions.Using the results of Section
2.3 and2.b, we know that

Zg\d) = \IICQXS =c\Ug € (Rd)®2n

fulfills conditiong (b) and (¢).

Therefore, as explained in Sect2.1¢;fd) is non-zero, there exists a
A
constant’, such that:

6. (X) = CrZx(Sp(X XT)).

Of course this is true also if the left hand-side is equal tmzdBesides,
using Lemma 216, one gets:

Cbcz,\‘I’S(X) = Z Z (_1)01<\IIU102~57X®2MIIS>

01€Q2) 02€P)
= Y D (1 Driorons.s)(SP(X X)),

01€Q2) 02€ P2
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where the power-sum symmetric functignshould be understood as id (2).
Finally, we have shown that

Z Z " PL(0102-5,9)

01€Q2)\ 02€Po)

and ()7, have the same evaluation 8p(X X7T). As this is true for all
X € GLg and alld > 2|\, the two symmetric functioly, andC',Z, are
equal. We will use this fact in the following.

2.7. End of proof of Theorem[1.2.
Proof. We know that

14) C\Zya= D Y (=D Priororss)
01€Q2) 026,
Z Z 7 Pr(oy-s0715):

01€Q2N\ 02€Po)

The set of pair-partitions which can be writtenas- S with o5 € P, is
the set of pair-partitions of the boxes of the Young diagrachghat each
pair of connected boxes lies in the same row of the Young diagiwe
fixed the Young tableaif’, so pair-partitions of the sé2n| can be viewed
as pair-partitions of the boxes of the Young diagram). F/As is a group,
each pair-partition in the orbit of can be written ag, - S with o5 € Ps)
in the same number of ways (s&¥%). Therefore, for any; € (s,

Z (=) pr(os-50-1.5) = C2 Z(—l)al PL(S2,0-1-5)
02EP,) Sa
where the sum runs over pair-partitions connecting boxelsarsame row
of T'.

Analogously, the set of pair-partitions which can be writéso, ! - S for
someo; € (D) is the set of pair-partitions; which match the elements
of the2;5 — 1 column of T’ with the elements of thg;j-th column of7" for
1 <5 < A (itis equivalent to ask that the boxes belonging to eachecycl
of S; o S are in one column). As before, such pair-partitions can all b
written aso; ' - S in the same number of ways (séy). Besides, Lemma
[2.3 shows that the sigi+-1)°* depends only o1$; = ;' - S and is equal
to (—1)£(55),

Therefore, for any pair-partitiof,

Z (=17 pe(sso-1-5) = Ch Z(—I)E(S’Sl) PL(82,91)
01€Q2x S1

where the sum runs over pair-partitiofissuch thatS o S; preserves each
column ofT'.
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Finally, Eq. [14) becomes
(15) C\Zy = C1Cy Z Z(—l)ﬁ(s’sl)pg(shgﬂ,

S1 S2

where the sum runs ové&r-admissible(S;, S;). Recall that/'-admissible
means thab, preserves each row @f andS o S; preserves each column.

To get rid of the numerical factors, we use the coefficienp’ofn the
power-sum expansion of zonal polynomials (given by Eq. \tD.29) in
[Mac95], see also Egs. VI, (10.27) and VI, (2.23)):

P2\ = 1.

But the only pair of'-admissible pair-partitionsS;, S,) such that’(.S;, Ss)

is a union ofn loops (the latter implies automatically thet = S) is (.S, .S).
Therefore the coefficient gff in the double sum of the right-hand side of
(@5) is equal td and finally:

Zy = Z Z<_1>£(S’Sl)pﬁ(51,s2)' O

3. FORMULAS FOR ZONAL CHARACTERS

This section is devoted to formulas for zonal characterpanticular, the
first goal is to prove Theorem 1.5.

3.1. Reformulation of Theorem[1.5. Let .Sy, S1, S, be three pair-partitions
of the set2k]. We consider the following function on the set of Young dia-
grams:

Definition 3.1 Let A be a partition of any size. We defid\ééifshsz()\) as
the number of functiong from [2k] to the boxes of the Young diagrain
such that for any € [2k]:

(PO) f(I) and f(Sy(1)) are neighbors in the Young diagrai, i.e., if
f(1) isin the2i+1-th column (resp2i+2-th column), thery (S, (1))
is the box in the same row but in tBé+ 2-th column (resp2i+ 1-th
column);

(P1) f(1) andf(Sy o Si(1)) are in the same column;

(P2) f(I) andf(S:(l)) are in the same row.

We also definé?féifsh& (A) as the number of injective functions fulfilling
the above conditions.

Lemma 3.2. Let Sy, Si, S, be pair-partitions. Then

2 £(S0,8 1
Néo),shsz = 2| (% 1)‘N~(90),S1,S2'
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Proof. Let A be a Young diagram and Igtbe a functionf : [2k] — 2\
verifying properties (P0), (Pl) and (P2). We consider thgjgutionp :
2\ — A, which consists of forgetting the separations between ¢inghivors
in 2\. More precisely, the boxg&i — 1, j) and(2i, j) of 2\ are both sent to
the box(i, j) of \. Itis easy to check that the compositipr= p o f fulfills
(QQ)(QD QD).

Consider a functiop : [2k] — X verifying[(Q0)[(QI) and (Q2). We want
to determine functiong verifying[(P0),[(P1) anfl (PR) such that= g. If
g(k) (which is equal tgy(Sy(k)) by condition (Q0)) is equal to a bax, j)
of A\, thenf(k) and f(Sy(k)) belong to{(2¢ — 1, 5), (24, 5)}. Therefore,f
is determined by the parity of the column §fk) for eachk. Besides, if
f(k) is in an even-numbered (resp. odd-numbered) column, fh&s(k))
and f(S;(k)) are in an odd-numbered (resp. even numbered) column (by
conditiond (PQ) and (P1)). Therefore, if we fix the parity lod tolumn of
f(k) for somek, it is also fixed forf ('), for all £’ in the same loop of
L(Sy, S1). Conversely, choose for one numben each loop ofZ(Sy, S1),
which of the two possible values should be assignefiip. Then there is
exactly one function respecting these values and verifgomgition[ (P0),
[(PI) and (P2) (conditiop (PR) is fulfilled for each functignsuch thatf
verifies[(Q2)). Thus, to each functignwith propertied (Q0)] (Q1) and
correspond exactlgl“(5o-5V)1 functions f with propertied (POQ), (PLL)
and (P2). O

The above lemma shows that in order to show Thedrein 1.5 itdsgin
to prove the following equivalent statement:

Theorem 3.3. Let i be a partition of the integek and (.S, S2) be a fixed
couple of pair-partitions of the s€k| of typew.. Then one has the following
equality between functions on the set of Young diagrams:

1
2) _ L£(S0,51) A7(2)
) = 20 > (FDFERSING

So

where the sum runs over pair-partitions|af:].

We will prove it in Section§ 3]12=3.4.

3.2. Extraction of the coefficients. Let x and\ be two patrtitions. In this
paragraph we consider the case whire= |\|. If we look at the coef-
ficients of a given power-sum functiay, in Z,, using Theorem 112, one

has:
pZa= > (m)EE,

(S1,S2) T-admissible
type ﬁ(Sl ,SQ)Z,U,
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This equation has been proved in the case wiieand.S are, respectively,
the canonical Young tableaux and the first pair-partitiar tbe same proof
works for any fillingT" of 2\ by the elements d2|\||] and any pair-partition
S as long asS matches the labels of the pairs of neighbor@bin T'. As
there arg2|\|)! fillings 7" and one corresponding pair-partitioh= S(7')
per filling, one has:

a2 i Z Z (—1)5SM)5),

" T (S1,S2) T-admissible
typoﬁ(sl Sz)
where the first sum runs over all bijective fillings of the diag 2\. We
can change the order of summation and obtain:
(16)

a2y = ﬁ > (Z( 1)EEMDS) (5, 8,) is T- admussub|¢>

S1,52 T
typo(slst)::u'

where we use the convention thebnditior] is equal tol if the condition is
true and is equal to zero otherwise. Note t&af, acts on bijective fillings
of 2\ by acting on each box. It is straightforward to check that #gtion
fulfills:
e S(c-T)=0-5S(T),
e (0-851,0-85,)is o - T admissible if and only if(S;, Sy) is T-
admissible.

Lemma 3.4. The expression in the parenthesis in the right-hand side of
Eq. (16) does not depend ofb;, Ss).

Proof. Consider two couple$S;, S;) and (57, S5), both of typeu. By
Lemmal2.4, there exists a permutatierin S,,, such thatS; = o - 5
andS, = o - Sy. Then

(Z(—l)‘(s(”s@ [(Sy,55) is T—admissibl¢>

T

T

= (ZPU“S(T””‘S“ (0 S1,0-5,)is T-admissib|¢>

= (Z(—l)ﬁ(s(olﬂ’s” [(Sy,Sp)isot - T-admissibl¢>

T

= (Z(—l)“S(T’%Sl) [(S1, S) is T’-admissibl¢> :

T/
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where all sums run over bijective fillings 8. We used the fact that —
o - T'is a bijection of this set. 0

Fix a couple of pair-partition$S;, S2) of type n. As there are%

couples of pair-partitions of type (see Lemma 214), Ed.(IL6) becomes:

P2y = % (Z(—l)ﬁ(s(T' )5 ((Sy, Sy) is T'- adm|SS|bI¢>

T/
As |u| = ||, one has:

1
SO = 2 ) 20 = 5y 2 (~D)FEO[(8), 5,) is T-admissible
T

=ﬁ2(—1)‘(5073” 3" (51, 8,) is T-admissible

5 S(Thesy
Bijective fillings 7" of 2\ are exactly injective functiong : [2n] — 2\
(as the cardinality of two sets are the same, such a fundiantomatically
bijective). Moreover, the conditionS(7") = S, and (S, .S2) being T'-
admissible correspond to conditigns (HO), {P1) [and| (P2indJSefinition
[3.1, the last equality can be rewritten as follows: when= ||,

1 G2
= 507 2 (VTINS5 (),

So

3.3. Extending the formula to any size. Let us now look at the case where
\u| = k < n =|\. We denotg: = p1"~*. Then, using the formula above
for z; [pu]Z», one has:

17) =P =2 (n N ZISI(M)) [prlZy = ﬁzﬁ[pﬁ]ZA

_ c(s)s 2)
- 26( +n— k ’fl— IZ . Sogvlsb()\)

Where(§1, 572) is any fixed couple of pair-partitions of type We can
choose it in the following way. L€tS;, Ss) be a couple of pair-partitions of

the set{1, ..., 2k} of typep and defineS; andS, by, fori = 1, 2:

S;=S;U{{2k+1,2k+2},...,{2n—1,2n} }.
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Lemma 3.5. With this choice ofS;, S5), the quantity]?fé%)fsv1 5 (A is equal
to 0 unless o

(18) }:{{2k+1,2k5+2},...,{2n—1,2n}}.
Proof. Let S, be a pair-partition andgf[2n| — 2\ be a bijection verifying
conditiong (PQ), (P1) arjid (R2) with respect to the tripletS;, Ss.

For anyl > k, condition[(P1]) shows that(2/ + 1) and f (S, (2l + 2))
are in the same column. In addition, conditjon (P0O) shows fita + 2)
and f(Sy(21 + 2)) are neighbors and hence are in the same row. Besides,
condition (P2)) shows that(2] + 1) and f(2/ 4 2) are in the same row. In
this way we proved thaf(2/ + 1) and f(Sy(2 + 2)) are in the same row
and column, hencé(2l + 1) = f(Sy(2l +2)). As f is one-to-one, one has
20+1 = §0(21 +2). In this way we proved that the existence of an injective
function f satisfying (PQ); (P1) and (P2) implies thdt+ 1 = S~0(21 + 2)
foralll > k. O

We need now to evaluaﬂ@é?fsv1 5 (A) when [18) is fufilled.
Lemma 3.6. Let us suppose thzﬁo fulfills Eq. (18). Then denotes, =
2y One has:

A7 (2 n— (2
N () =27 = W R, 5,00,

Proof. Let f : [2n] — 2\ be a function counted iﬁfé?)g g()\). Thenitis
0,901,902
straightforward to see that its restrictigfdmw is counted ianq?ShSQ()\).
Conversely, in how many ways can we extent an injective fancf :
[2k] < 2\ counted ianq?ShSQ()\) into a functionf : [2n] — 2\ counted

in Ng)g 5,;()\)’? One has to place the integers fr¢@k + 1, ..., 2n} in the
2(n — ’k;)vboxes of the se2\ \ f([2k]) such that number& — 1 and2i (for
k < i < n) are in neighboring boxes. There &€ *(n — k)! ways to place
these number with this condition. If we obey this conditiﬂmznfverifies
[(PO),[(P1)) andl (P2) with respect ([go, 571, §2). Therefore, any functiorf

counted inﬁéﬁfshsz (\) is obtained as the restriction as exa&tly*(n —k)!
functionsf counted iV _(\). O
0,01

302

With Eqg. (17), Lemma3]5 and Lemrha B.6 it follows that thedaling
equation holds true for any partitionsand ;. with |A\| > |u| (notice also
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that it is also obviously true fap\| < |u|):

1 ~
2) _ L(S0,51) A7(2)
(19) ZL) 2w Z (_1) s 1)NSO,S17S2’
So pair-partition
of {1,....2/l}

where(S1, Ss) is any couple of pair-partitions of type

3.4. Forgetting injectivity. In this section we will prove Theoreim 3.3 (and
thus finish the proof of Theorem 1.5). In other terms, we ptbe¢ Eq. [(19)
is still true if we replace in each term of the suNfg ¢ by N&s .

In order to do this we have to check that, for amyn-injectivefunction
f:[2|p|]] — 2, the total contribution

(20) > (=15 (£ fulfills (POY, [(PT) and (P2)
So pair-partition
of [2]p]]

of f to the right-hand side of Ed._(1L9) is equal to zero.
Let us fix a coupld S, S;) of pair-partitions of type.. We begin by a
small lemma:

Lemma 3.7. Let f : [2k] — 2\ be a function withf (i) = f(j) for some:
andj. Let us suppose thgtfulfills condition (PO) andl (P1) with respect to
some pair-partitionss, and .S;. Then, ifi and j are the labels of edges in
the same loop of (S, S;) then there is an even distance between these two
edges.

Proof. If two edges labeled and/ are adjacent, this means that eithier
So(k) or j = Si(k). In both cases, ag fulfills condition[(PO) and (P1),
the indices of the columns containing boxgg) and f(k) have different
parities. Hence, the same is true if edges labgleshd £ are in an odd
distance from each other. A3i) = f(j), in particular they are in the same
column and thus, the edges labeleahd; cannot be in the same loop with
an odd distance between them. O

Lemma 3.8. Let f : [2|u|] — 2A with f(¢) = f(j). Then
a) conditions (PQ), (P1) and (P_2) are fulfilled f&¥, if and only if they
are fulfilled for S}, = (i j) - So;
b) if these conditions are fulfilled, then

(—1)FS0S) 1 (—1)£05:5) — @,

Proof. Recall thatS|, is exactly the same pairing &4 except that andj
have been interchanged. Thus the part a) is obvious fromefieitibns.

Besides, the graplf(S), S;) is obtained fromL(Sy, S;) by taking the
edges with labelg and ; and interchanging their black extremities. We
consider two different cases.




VALENTIN FERAY AND PIOTR SNIADY

FIGURE 1. L(Sy, S1) andL(S;, S1) in the first case of proof
of Lemmd3.8.

e If < and; are in different loopd.; and L; of the graphZ(Sy, S1),
then, when we erase the edgeand; we still have the same con-
nected components. To obtafl{.S], S;), one has to draw an edge
between the white extremity gfand the black extremity af These
two vertices were in different connected compondntand L; of
L(Sy, S1), therefore these two components are now connected and
we have one less connected component. We also have to add an-
other edge between the black extremityj@nd the white extremity
of j but they are now in the same connected component so this last
operation does not change the number of connected comonent
Finally, the graphC(.S), S1) has one less connected component
than£(So, S1) and the paift ) of the lemma is true in this case.
This case is illustrated on Figuré 1.
e Otherwisei andj are in the same loop of the graphl(Sy, S1).
When we erase the edgeand; in this graph, the loog is splitinto
two componentd.; and L,. Let us say thaf,; contains the black
extremity ofi. By Lemmal 3.7, there is an even distance between
i andj. This implies that the white extremity gfis also inL;,
while its black extremity and the white extremity ofire both in
L,. Therefore, when we add edges to obtéiib), S;), we do not
change the number of connected components.
Finally, the graphC(S(, S1) has one more connected component
than£(So, S1) and the paft b) of the lemma is also true in this case.
This case is illustrated on Figuré 2. O
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FIGURE 2. L(Sy, S1) andL(S;, S1) in the first case of proof
of Lemmd3.8.

From the discussion above it is clear that the lemma allows ggoup
the terms in[(20) into canceling pairs. Thusl(20) is equdl tor any non-
injective functionf, which implies that

1 £(S0,51) A7(2)
2[(,0 Z (_1> (0 1)N50,S1,52

So pair-partition
of {1,....2/u|}

_ £(S0,51) Ar(2)
- 2@(“) Z (_1> ( 0 1)N50751,Sz'

So pair-partition
of {1,...,2/ul}

Using Eg. [(19), this proves Theorém13.3, which is equivalerfheorem
[L.5.

3.5. Number of functions and Stanley’s coordinates.In this paragraph
we express thé/ functions in terms of Stanley’s coordinatesndq. This
is quite easy and shows the equivalence between Thebreland h6.

Lemma 3.9. Let (.S, S1, Ss) be atriplet of pair-partitions. We will view the
graphsL(Sy, S1) and L(Sp, S2) as the sets of their connected components.
One has:

Ng)),sh& (p x q> = Z H DPo(e) H dy(m),

p:L(S0,52)—=N* £eL(S,52) meL(So,51)

wherey)(m) = maxy p(¢), with £ running over loops inC(.Sy, S2), which
have an edge with the same label as some edge of

Proof. Fix a triplet (Sy, S1, S2) of pair-partitions and sequencesand q.
We setA = p x q as in Sectio 1.412. Lej : [2k] — A be a function
verifying conditiong (QQ); (Q1) and (Q2). Asfulfills and[(Q2), all

elements in a given loopl € L(Sy, S2) have their image by in the same
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row r,. We definep(¢) as the integei such that
(21) prto P <re<prt-ec+pi

This associates tga functiony : £(Sy, S2) — N*.
Let us fix a functionp : £(Sy, S2) — N*. We want to find its pre-images
g : [2k] — X. We have the following choices to make:

e we have to choose, for each lobog L(5y, S>), the value of-,. Due
to inequality [21), one has, ;) choices for each loofy

¢ then we have to choose, for each loape L£(Sy, S1), the value of
¢m, the index of the common column of the imagesjtf elements
in m (as we wany to fulfill conditions[(Q0) andl (Q1), all images of
elements inn must be in the same column). By definitionafm),
there is an integer € m, which belongs to a loop € £(.Sy, S>)
with ¢(¢) = 1,,. The image ofi by g is the box(r, c,,). As the
r-th row of the diagram\ hasg,,) boxes, one has

(22) Cm < qp(e)-

Finally, for each loopn € L(Sy, S1), one hasy.») possible values
of ¢,,,.

e Afunctiong : [2k] — X verifying[(QO0),[(QI) and (Q2) is uniquely
determined by the two collections of nuMbe€rs, ),.c.(s,,s,) and
(1e)ecr(so,s0)- INdeed, ifi € [2K], its image byg is the box(r, ¢;y,),
wherem and/ are the loops of(.Sy, S1) andL(.Sy, S2) containing
1.

Conversely, if we choose two sequences of numbers,.c.(s,,s,) and
(T¢)eec(so,s.) fulfilling inequalities [21) and (22), this defines a uniqued-

tion ¢ fulfilling and (Q2) associated ta It follows that each
functiony : £(Sy, S2) — N* has exactly

II »ee I @wm:
fGE(S@,Sg) mEﬁ(So,Sl)
pre-images and the lemma holds. O

The above lemma shows that Theoifeni 1.5 implies Thebreim 1.6.

Proof of Theorer_116lt is a direct application of Theorem_1.5 and of the

expression ofV é(l)?sh s, in terms of Stanley’s coordinates that we establish
in Lemma3.9. O

3.6. Action of the axial symmetry group. The purpose of this paragraph
is to prove Proposition 1.10.

Theoreni 16 implies that the coefficients(efl)’fzf)(p, —q) are non-
negative. But it is not obvious from this formula that the fficeents are
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integers. We will prove it in this paragraph by grouping soichentical
terms in Theorer 115 before applying Lemma 3.9.
The following lemma will be useful to find some identical texm

Lemma 3.10. Let (Sy, S, S2) be a triplet of pair-partitions of2k] and o
be a permutation ir5,,. Then

(1) N ACY)
N(U-SO,U-Sl,o-Sz) — 77(80,51,52)"

Proof. Map f : [2k] — 2\ satisfies conditions (QO), (Q1) apd (Q2) with
respect tqo - Sy, 0 - 51,0 -Ss) if and only if f o o satisfies conditiors (Q)),
and (Q2) with respect @, S, S2). O

From now on, we fix a partitiom of & and a couplg.S;, Sy) of pair-
partitions of|2k] of type u.

Choose arbitrarily an edgg; in each loopL; (which is of length2y;).
Denotej; s = S2(Ji1), Jiz = S1(ji2) and so on until; o, = Sa(Ji20—1),
which fulfills Sy (j; 2,,) = ji.1. We consider the permutatienin S, which
sendsj; ,, 10 J; 2., 41—-m fOr anym € [2y;] and fixes all other integers. Ge-
ometrically, the sequendg; . )mcj2,,) iS Obtained by reading the labels of
the edges along the lodp andr; is an axial symmetry of the loop;.

e r; permutes the black vertices of the graphs;, Ss) (it is an ax-
lal symmetry ofL; and fixes the elements of the other connected
components). It means that- S; = 5.
In the same way, it permutes the white vertices thereforg, =
Ss.
e Permutations; are of order2 and they clearly commute with each
other (their supports are pairwise disjoint); therefoneytgenerate
a subgroup of order2“® of &,,;. Moreover, for a fixed integer
j, the orbit{g(j) : ¢ € G} contains exactly two elementg:and
ri(j), wherei is the index of the loop of (5, S>) containingi.

Using Lemma& 3.0, for any pair-partitidfy, one has

(1) _ (D
Ng-So,Sl,Sg =N,

_ (D
9-50,9-51,9-S2 — NSO,Sl,Sz’

whereg is equal to any one of the. It immediately extends to anyin G.
In the same way, we have

(_1)5(9'50751) _ (_1)5(9'5079'31) — (_1)5(50,51).
Therefore Theorem 1.5 can be restated as:

L(S0(2),51
@3) =P=>) (_1)£<So<ﬂ>,sl>2' S

(1)
H 26(n) i Ny

(£2),51,52’
€ orbits
underG
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where the sum runs over the orbitof the set of all pair-partitions glk|
under the action off and whereS,(£2) is any element of the orbf?.

Lemma 3.11. For each orbit(2 of the set of pair-partitions of2k] under
the action ofG, the quantity
9I£(S0(%2),51)]

2¢(w) o

is an integer.

This lemma and Eq[(23) imply Propositibn 1.10 (becauseNhiginc-
tions are polynomials with integer coefficients in variaeand q, see
Lemmd3.9).

Proof. Let us fix an elemens, = Sy(2) in the orbit2. The quotient

2~ is the cardinality of the stabilize$tab(Sy) C G of S,. Therefore

it divides the cardinality of%, which is2/*), and, hence is a power af
Besides, any permutation € Stab(S;) C G leavesS, and S; invariant
hencer is entirely determined by the its values ¢ey, : L € £(Sy, S1)},
whereey, is an arbitrary element in the loap (the argument is the same
as in the proof of Lemm@a 2.4). As each integer, and in padice&che;,,
has only two possible images by the elementg-othis implies that the
cardinality ofStab(.Sy) is smaller or equal tal“(-51)l, But it is power of

250| Stah(Sp)| = Zgr divides2£(5o-51). O

We will give now an alternative way to end the proof, whichesd natural
but more meaningful from the combinatorial point of view. Before, the
partitiony + k is fixed, as well as a coupl(&, S>) of pair-partitions of2k|
of type u. We call an orientatior of the elements if2k|, the choice, for
each number if2k], of a color (red or green).

If Sy is a pair-partition, we say that an orientatipns compatible with
the loopsL(Sy, Sy) if each pair ofS, and each pair of; contains one red
and one green element. We denoteRythe set of couplesSy, ¢) such
that¢ is compatible withC (S, S1).

In such an orientation, the color of an elementn a loopL € £(.Sy, S1)
determines the colors of all elements in this loop. Nevégse the colors of
the{e,, L € L(S1,52)}, wheree, is an arbitrary element df, can be cho-
sen idependently. Therefore, for a given pair-partitignthere are exactly
21£(50,591)I grientations compatible with ( Sy, S;). Hence, Theorefn 1.5 can
be rewritten as:

1
2) L(Sp,S (1)
24 n = 2L() Z (=15 Ngs, s,
(S0,¢)

where the sum runs ovéte,



ZONAL POLYNOMIALS 35

Of course, the grou,,, and hence its subgroup, acts on the set of
orientations of2k]. By definition, if ¢ is an orientation and a permutation,
the color given tas (i) in the orientation - ¢ is the color given ta in ¢.

We will consider the diagonal action 6f on coupleg .Sy, ¢). Itis imme-
diate that this action preserves.

Lemma 3.12. The diagonal action ofr onP¢ is faithful.

Proof. Let us suppose that- (S, ¢) = (So, »). We use the definition of
the integerg; ., given at the beginning of the paragraph to define the group
G. Recall thatS; contains, for each, the pair{j; 1, ji 2., }. Hence, ag is
compatible withZ(Sy, S1), the integerg; ; andj; »,, have different colors

in ¢. But ¢ is fixed byg, sog(j;1) cannot be equal tg, 5,,,. This means
that g does not act like the mirror symmetryon the loopL;; henceg acts

on the loopL; like the identity. As this is true for all loops (.51, S), the
permutatiory is equal to the identity. O

Finally, asN{}, ¢ s, = Ni's s, we can group together in EQ.{24)
the terms corresponding to th&" couples(Sy, ¢) in the same orbit. We
obtain the following result.

Theorem 3.13.Let i be a partition of the integet and(.5;, S2) be a fixed

couple of pair-partitions of2k] of typeu. Then,

(25) Z;(E) — Z(_l)ﬁ(so(ﬁ)ﬁﬂ Néi)(ﬂ)’sl’&’
Q

where the sum runs over orbifsof P° under the action of (for such an

orbit, Sy(£2) is the first element of an arbitrary couple ).

Using Lemmd_3J9, this formula gives an alternative proof cip®si-
tion[1.10. From a combinatorial point of view, it is more sting than the
one above because we are unable to interpret the nuﬁiﬁgﬁiﬂm\ in
Eq (23). More details are given in Section|5.4.

Remark3.14 Let us consider orientatiogscompatible withZ(.S,, S;) and
L(So, S2). Each such an orientation can be viewed as a partitig2kdinto
two sets of sizé;, such that each pair ifl,, S; or S, contains an element of
each set. If such a partition is given, the pair-partitipsS; andS; can be
interpreted as permutations and the Schur case can be feduh these
terms (see Remark1.3).

4. KEROV POLYNOMIALS

4.1. Graph associated to a triplet of pair-partitions. Let (Sy, Si, Ss) be
atriplet of pair partitions of2k|. We define the bipartite gragh(.Sy, S1, S2)
in the following way.
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e Its set of black vertices i§(Sy, S1).
e |ts set of white vertices i£(.Sy, o).
e There is an edge between a black vertex £(S,, S;) and a white
vertex?' € L(Sy, S2) if (and only if) the corresponding subsets of
[2k] have a non-empty intersection.
Note that the connectivity af (S, S1, S2) corresponds exactly to condi-
tion[(@) of Theorenn 117.
This definition is relevant because the functils75ﬁ§?shs2 depends only on
the graph(G(.Sy, 51, 52). Indeed, let us define, for any bipartite gragha
function N((;l) on Young diagram as follows:

Definition 4.1 Let G be a bipartite graph and a Young diagram. We
denoteNg)()\) the number of functiong
e sending black vertices @f to the set of column indices of,
e sending white vertices dF to the set of row indices of;
e such that, for each edge 6f between a black vertéxand a white
vertexw, the box(f(w), f(b)) belongs to the Young diagram(i.e.
1< f() < Ap(w))-

Then, using the arguments of the proof of Lenima 3.9, one has:

1) _ A
NSO7SI,S2 - NG(SO,SLS2) ’

As characters and cumulanﬁg) can be defined on non-integer stretching
of Young diagrams using Lemma8.9.

4.2. General formula for Kerov polynomials. Our analysis of zonal Kerov
polynomials will be based on the following general result.

Lemma 4.2. Let G be a finite collection of connected bipartite graphs and
letG > G — mg be a scalar-valued function on it. We assume that

FO) =Y meNG (\)
Geg

is a polynomial function on the set of Young diagrams; in otherds F'
can be expressed as a polynomial in free cumulants.

Let s9, s3,... be a sequence of non-negative integers with only finitely
many non-zero elements; then

[R§2R§3 .. ] F = (_1)s2+253+354+---+1 Z Z ma,
Geg ¢
where the sums runs ovér € G andgq such that:

(b) the number of the black vertices@fis equal tos, + s3 + - - -;
(c) the total number of vertices 6f is equal t02s5 + 3s3 + 454 + - - -
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(d) ¢ is afunction from the set of the black vertices to the{8e8, . . . };
we require that each numbekr {2, 3, ...} is used exactly; times;

(e) for every subset C V,(G) of black vertices ofs which is nontriv-
ial (i.e., A # 0 and A # V,(G)) there are more thal}~, _, (q(v) —
1) white vertices which are connected to at least one verter #o

This result was proved in our previous paper with Dotega$D#] in
the special case when = >V andg is the (signed) collection of bipartite
maps corresponding to all factorizations of a cycle, howavenot difficult
to verify that the proof presented there works without anylifications also
in this more general setup.

4.3. Proof of Theorem[1.7.

Proof of Theorerh 1] 7We consider for simplicity the case when= (k)
has only one part. By definition, it is obvious that, for aryand,

NG (@) = ol *@ING (),
where|V,(G)| is the number of black vertices 6. Hence, Theorern 1.5

can be rewritten in the form

1 1
F()\) = s (?) = 5 > (-~ N, 6, (V).
So
FunctionF' is a polynomial function on the set of Young diagrams [Las08,
Proposition 2]. As the involutions correspondingtoandS; span a transi-
tive subgroup of5,; (because the couplé;, S2) has type(k)), the graph
corresponding t®,, S, S, is connected and Lemnha 4.2 can be applied.

[Rnggg . ] F = %(_1)1+k+L(So,sl)|+32+233+334+--- Z Z 17
So ¢

where the sum runs ovei; andq such that the grapt¥(.S, Si, S2) andgq
fulfill the assumptions of Lemmnia 4.2. Notice that, for suc$yathe number
|L£(So, S1)| of black vertices o7( Sy, S1, S2) IS so+s3+s4. Under a change
of variables\ = 1\ we havex{”’ (\) = F(\) andR; = R;(\) = 2/R® (V)
and thus

(R (RD) | 5 = oot (R Ry ) F

— (_1)1+/l~c+2s:2+3sg+---2—1+232+333+..._/\[7

where\ is the number of couplesS,, ¢) as above. This ends the proof in
the case. = (k).

Consider now the general cage= (k1, ..., k). In an analogous way as
in [DES10, Theorem 4.7] one can show thii(z,(jf), . 2,(;;)) is equal to
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the right-hand side of{7), wher®, S, are chosen so thagpe(S;, S2) = p
and the summation runs ovey with the property that the corresponding
graphG(Sy, S1, S2) is connected. Therefore

F() = ()4, o) <%)\> —

1 - 1
s (LD () HHEESIEND ().
So

The remaining part of the proof follows in an analogous way. U

4.4. Particular case of Lassalle conjecture for Kerov polynomids. The
purpose of this paragraph is to prove Propositionl1.11, liates that the
coefficients

(R () 1

are integers.

This does not follow directly from Theorem 1.7 because of famtor
2t As in Section 36 we will use Theordm 3113. With the sameraent
as in the previous paragraph, one obtains the followingtesu

Theorem 4.3. Let i be a partition of the integek and (S, S2) be a fixed
couple of pair-partitions ofi2k| of typey. Letss, s3,... be a sequence of
non-negative integers with only finitely many non-zero ele

Then the rescaled coefficient

(1)) 252k 9 (o254 351 [(Rgm)” (RY)™ - ] K

is equal to the number of orbit$ of coupleq Sy, ¢) in P° under the action
of G, such that any elemetsi)(2) of this orbit fulfills condition$ (@), (b),

[(c),[(d] and (€) of Theorem1.7.

This implies immediately Proposition 1]11. In fact, onewwba stronger
result, which fits with Lassalle’s data: the coefficien{ &, )" (R{”)™ - - -

in K;(Lz) is a multiple of2s2+2sst3sat

5. MAPS ON POSSIBLY NON ORIENTABLE SURFACES

The purpose of this section is to emphasize the fact thdetsipf pair-
partitions are in fact a much more natural combinatoriaéobjhan it may
seem at the first glance: each such a triple can be seen asraedyeayn on
a (non-oriented) surface.
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FIGURE 3. Polygons associated to the couftg, S).

5.1. Gluings of bipartite polygons. It has been explained in Section 112.2
how a couple of pair-partition&S;, S2) of the same sefk| can be rep-
resented by the collectiof(5;, S;) of edge-labeled polygons: the white
(resp. black) vertices correspond to the pairspfresp.S,). For instance,
let us consider the couple

Sy = {{1,15},{2,3},{4,14},{13,16},{5,7}, {6, 10}, {8,11},{9, 12} };
Sy = {{1,10},{2,7},{8,13},{9, 14}, {3,5}, {4, 12}, {6, 15}, {11, 16} }

The corresponding polygons are drawn on Figre 3.

With this in mind, one can see the third pair-partiti§nas a set of in-
structions to glue the edges of our collection of polygorfsi dnd; are
partners inSy, we glue the edges labelédand j together in such a way
that their black (respectively, white) extremities areegliogether. When
doing this, the union the polygons becomes a (non-oriemteskibly non-
connected) surface, which is well-defined up to continuafertnation of
the surface. The border of the polygons becomes a biparagghgdrawn
on this surface (when it is connected, this object is usualiedmap. We
denoteM (Sy, S1, S2) the union of maps obtained in this way. An edge of
M Sy, S1, S2) is formed by two edge-sides, each one of them corresponding
to an edge of a polygon.

For instance, we continue the previous example by choosing

So = {{1,2},{3,4}, {5,6},{7,8}, {9,10}, {11,12}, {13,14}, {15,16} }.

We obtain a graph drawn on a Klein bottle, represented onetftédrand
side of Figurd 4 (the Klein bottle can be viewed as the squaite some
identification of its edges). A planar representation of thiap, involving
artificial crossings and twists of edges, is given on thetsigind side of the
same figure.

5.2. The underlying graph of a gluing of polygons. By definition, the
black vertices of(.S;, S») correspond to the pairs ify. If {7, j} is a pair
in Sy, when we glue the edgeand; together, we also glue the black vertex
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FIGURE 4. Example of a labeled map on Klein bottle.

containing: with the black vertex containing. Hence, when all pairs of
edges have been glued, we have one black vertex per la®05§ 51 ).

In the same way, the white vertices of the union of mapsS,, S, So)
correspond to the loops ifi(.Sy, S2).

The edges of the union of maps correspond to pairSyintherefore a
black vertex! € L(S,S1) is linked to a white vertexX’ € L(Sy, Ss) if
there is a pair ofS, which is included in botY and/’. As ¢ and /¢’ are
unions of pairs ofSy, this is equivalent to the fact that they have a non-
empty intersection.

Hence the underlying graph of (S, S1, S2) (i.e. the graph obtained by
forgetting the surface, the edge labels and the multiplegxdg exactly the
graphG(Sy, S1, S2) defined in Section 411.

It is also interesting to notice (even if it will not be usefalthis paper)
that the faces of the union of map$(Sy, S, S2) (which are, by definition,
the connected components of the surface after removingrdghycorre-
spond by construction to the loopsi.S;, Ss).

Remarks.1 The related combinatorics of maps which are not bipartite ha
been studied by Goulden and Jackson [GJ96].

5.3. Reformulation of Theorems[1.5 and_1.l7.In some of our theorems,
we fix a partitionu - k& and a couple of pair-partitionss;, S2) of type .
Using the graphical representation of Secfion 1.2.2, iéssame as fixing
1 and a collection of edge-labelled polygons of lengths, 2.5, . . ..

In this context, the set of pair-partitions is the set of maptined by
gluing by pair the edges of these polygons (see Sectidn 5.1).
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Then the different quantities involved in our theorems hawmbina-
torial translation:G(Sy, S1, S2) is the underlying graph of the map (Sec-
tion[5.2), £(Sy, S1) the set of its black vertices an@{.Sy, S>) the set of its
white vertices.

One can now give combinatorial formulations for two of ougdhems.

Theorem 5.2. Let be a partition of the integet. Consider a collection of
edge-labelled polygons of lengthg, , 21, . . .. Then one has the following
equality between functions on the set of Young diagrams:

9 (=1)F S (o) N
(26) ZL) - 20(1) (_2)‘ (o NG(M)a
M

where the sum runs over unions of maps obtained by gluing bytipa
edges of our collection of polygons in all possible walyg;(M)| is the
number of black vertices dff andG (M) the underlying graph.

Proof. Reformulation of Theorein1.5. dJ

Theorem 5.3. Let i be a partition of the integek. Consider a collection
of edge-labelled polygons of lengths;, 2.5, . . ..

Let s9,83,... be a sequence of non-negative integers with only finitely
many non-zero elements.

The rescaled coefficient

504354 (25543534 2) %2 2) 3
(1) G+ 252850 () £0)— (252+3sa+ )[<R§)> (Ré)) } K&z)

of the (generalized) zonal Kerov polynomial is equal to theber of pairs
(M, q) such that

e M is a connected map obtained by gluing edges of our polygons by
pair;

e the pair (G(M), q), whereG(M) is the underlying graph of\/,
fulfill conditiong (b)[ (c)[ (d) and (€) of Lemrha®.2.

Proof. Reformulation of Theorein1.7. O

Remark5.4. As G(M) is an unlabelled graph, the edge-labelling of the
polygons is not important. But we still have to consider aifgraf poly-
gons without automorphism. So, instead of edge-labelldggons, we
could consider a family of distinguishable edge-rootedygohs (which
means that each polygon has a marked edge and that we caryudiisti
the polygons, even the ones with the same size).

Remark5.5. These results are analogues to results for characters of the
symmetric groups. The latter are the same (up to normaliaciyrs), ex-
cept that one has to consider a family of oriented polygors@msider
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FIGURE 5. A black vertex after a black-compatible orienta-
tion and gluing.

only gluings which respect this orientation (hence theltesusurface has
also a natural orientation). These results can be foundpensdFS07] and
[DES10], but, unfortunately, not under this formulation.

5.4. Orientations around black vertices. The purpose of this section is
to give a combinatorial interpretation of Theorem 3.13 ahddreni 4.3.

As before,S, is interpreted as a map obtained by gluing by pair the edges
of a collection of distinguishable edge-rooted polygons.

An orientationy consists in orienting each edge of this collection of poly-
gons (.e. each edge-side of the map). It is compatible wittt,, S;) if,
around each black vertex, outgoing and incoming edge-siliesate (see
Figure5).

To make short, we will say in this case, that the orientatimhthe gluing
are black-compatible. SP° is the set of black-compatible orientations and
gluings of our family of polygons.

In our formulas we consider orbits ° under the action of-. Recall
that G is the group generated by the, for L € L£(S,S;) wherer is
an axial symmetry of the loop (and its axis of symmetry goes through a
black vertex).

Notice that, in general, combinatorial objects with unladeeomponents
are, strictly speaking, equivalence classes of the cortdniahobjects of the
same type with labeled components; the equivalence classeabe orbits
of the action of some group which describes the symmetryetithabeled
version.

In our case, a (bipartite) polygon with a marked edge has norsstry.
But, if we consider a polygon with a marked black vertex, itoanorphism
group is exactly the two-element group generated by thd ayimametry
going though this vertex.

Therefore, the orbits gP° under the action off can be interpreted as the
black-compatible orientations and gluing of a collectidmlistinguishable
vertex-rooted polygons.

We can now reformulate Theoreis 3.13 4.3.

Theorem 5.6. Let be a partition of the integet. Consider a collection of
unlabeled polygons of lengtt2s:,, 215, . .. with one marked black vertex
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per polygon. Then one has the following equality betweectimms on the
set of Young diagrams:

_ . 1)
B = (—1)F S (-0 N,

—

M

where the sum runs over all unions of maps with oriented eildes ob-
tained by a black-compatible orientation and gluing of tluges of our
collection of polygons)M is the map obtained by forgetting the orienta-
tions of the edge-sides, (M)| is the number of black vertices 8f and

G (M) the underlying bipartite graph.

Theorem 5.7.Let be a partition of the integet. Consider a collection of
unlabeled polygons of lengtt2s:,, 21, ... with one marked black vertex
per polygon. Leks, ss3, ... be a sequence of non-negative integers with only
finitely many non-zero elements.

Then the rescaled coefficient

S S - 0—(s s s 2 52 2 53
s (O C N

of the (generalized) zonal Kerov polynomial is equal to theher of pairs
(M, q) such that

e )M is a connected map with oriented edge-sides obtained byckbla
compatible orientation and gluing of the edges of our caitetof
polygons; denoté/ the map obtained by forgetting the orientations
of the edge-sides.

e the pair (G(M), q), whereG(M) is the underlying graph of\/,
fulfills conditiong (B)[ (@), (d) and () of Lemmal4.2.

Remarks.8. Itis easy to see that a black- and white-compatible orientat
and gluing of a collection of polygons leads to a map on a teBurface.
Therefore the analogue results in the Schur case can bpretied in these
terms.

This remark is the combinatorial version of Remlark 8.14.
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