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ZONAL POLYNOMIALS VIA STANLEY-FÉRAY FORMULA
AND FREE CUMULANTS

VALENTIN FÉRAY AND PIOTR ŚNIADY

ABSTRACT. We study zonal characters which are defined as suitably
normalized coefficients in the expansion of zonal polynomials in terms
of power-sum symmetric functions. We show that zonal characters are
explicitly given by an analogue of Stanley-Féray formula for charac-
ter values of symmetric groups. We also study an analogue of Kerov
polynomials, namely we express zonal characters as polynomials in free
cumulants and we give an explicit combinatorial interpretation of their
coefficients. In this way, we prove two recent conjectures ofLassalle for
Jack polynomials in the special case of zonal polynomials.

1. INTRODUCTION

1.1. Zonal polynomials.

1.1.1. Background.Zonal polynomials were introduced by James [Jam60,
Jam61] (who credits also Hua [Hua63]) in order to solve some problems
from statistics and multivariate analysis. They quickly became a fundamen-
tal tool in this theory as well as in the random matrix theory (an overview
can be found in the book of Muirhead [Mui82] or also in the introduc-
tion to the monograph of Takemura [Tak84]). They also play animpor-
tant role in the representation theory: they appear as zonalspherical func-
tions of the pairs(S2n, Hn) (whereHn is the hyperoctahedral group) and
(GLd(R), Od), which means that they describe canonical basis of the al-
gebra of left and rightHn-invariant (resp.Od-invariant) functions onS2n

(resp.GLd(R)).
This last property shows that zonal polynomials can be viewed as an

analogue of Schur symmetric functions since the latter are zonal spherical
functions for the Gelfand pairs(Sn ×Sn,Sn) and(GLd(C), Ud). There-
fore, many of the properties of Schur functions can be extended to zonal
polynomials and this article goes in this direction.

In this article we use a James’ characterization of zonal polynomials
[Jam61] as their definition. The elements needed in our development (in-
cluding the precise definition of zonal polynomials) are given in Section
2.1. For a more complete introduction to the topic we refer tothe Chapter
VII of Macdonald’s book [Mac95].
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The main results of this article are new combinatorial formulas for zonal
polynomials. Note that, as they are a particular case of Jacksymmetric func-
tions, there exists already a combinatorial interpretation for them in terms
of ribbon tableaux (due to Stanley [Sta89]). But our formulais of different
type: it gives a combinatorial interpretation to the coefficients of the zonal
polynomialZλ expanded in the power-sum basis as a function ofλ. In more
concrete words, the combinatorial objects describing the coefficient ofpµ
in Zλ depend onµ, whereas the statistics on them depend onλ (in Stanley’s
result it is roughly the opposite). This kind ofdual approach makes appear
shifted symmetric functions [OO97] and is an analogue of recent develop-
ments concerning characters of the symmetric group: more details will be
given in Section 1.3.

1.1.2. Jack polynomials.Jack [Jac71] introduced a family of symmetric
functionsJ (α)

λ depending on an additional parameterα. These functions are
now calledJack polynomials. For some special values ofα they coincide
with some established families of symmetric functions. Namely, up to mul-
tiplicative constants, forα = 1 Jack polynomials coincide with Schur poly-
nomials, forα = 2 they coincide with zonal polynomials, forα = 1

2
they

coincide with symplectic zonal polynomials, forα = 0 we recover the ele-
mentary symmetric functions and finally their highest degree component in
α are the monomial symmetric functions. Moreover, some otherspecializa-
tions appear in different contexts: the caseα = 1/k, wherek is an integer,
has been considered by Kadell in relation with generalizations of Selberg’s
integral [Kad97]. In addition, Jack polynomials forα = −(k + 1)/(r + 1)
verify some interesting annihilation conditions [FJMM02].

Jack polynomials for a generic value of the parameterα might appear
rather artificial and invented since, unlike Schur polynomials or zonal poly-
nomials, they do not seem to have a direct interpretation, for example in
the context of the representation theory or as zonal spherical functions for
some Gelfand pairs. Nevertheless, over the time it has been shown that
several results concerning Schur and zonal polynomials canbe generalized
in a rather natural way to Jack polynomials (see, for example, the work of
Stanley [Sta89]), therefore Jack polynomials can be viewedas a natural in-
terpolation between several interesting families of symmetric functions at
the same time.

An extensive numerical exploration and conjectures done byLassalle
[Las08, Las09] suggest that the kind of combinatorial formulas we estab-
lish in this paper have generalizations for any value of the parameterα.
Unfortunately, we are not able yet to achieve this goal yet.
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1.2. The main result 1: a new formula for zonal polynomials.

1.2.1. In terms of pair-partitions.The combinatorial objects we need are
pair-partitions:

Definition1.1. A pair-partitionP of [2n] = {1, . . . , 2n} is a set of pairwise
disjoint two-element sets, such that their (disjoint) union is equal to[2n]. A
pair-partition can be seen as an involution of[2n] without fixpoints, which
associates to each element its partner from the pair.

The simplest example is thefirst pair-partition, which will play a particu-
lar role in our article:

S =
{
{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

}
.

When one has two pair-partitionsS1, S2 of the same set[2n], it is in-
teresting to represent them graphically as a collection of edges connecting
the corresponding elements of the pairs. Then the union of the graphical
representations ofS1 andS2 is a collection of loops which will be denoted
by L(S1, S2). Let 2ℓ1 ≥ 2ℓ2 ≥ · · · be the ordered lengths of these loops
(notice that the length of each loop must be an even number). Then, if we
view the pair-partitions as involutions, the lengths of thecycles of the per-
mutationS1 ◦ S2 are given byℓ1, ℓ1, ℓ2, ℓ2, . . . . The partition(ℓ1, ℓ2, . . . ) is
called the type ofL(S1, S2). We define the sign of a union of pair-partitions
as follows:

(−1)L(S1,S2) = (−1)(ℓ1−1)+(ℓ2−1)+··· = (−1)n−|L(S1,S2)|

and the power-sum symmetric function

(1) pL(S1,S2)(z1, z2, . . . ) = pℓ1,ℓ2,...(z1, z2, . . . ) =
∏

i

∑

j

zℓij .

Letλ = (λ1, λ2, . . . ) be a partition ofn; we consider the Young tableauT
of shape2λ = (2λ1, 2λ2, . . . ) in which boxes are numbered consecutively
along the rows. Permutations of[2n] can be viewed as permutations of the
boxes ofT . Then a pair(S1, S2) is calledT -admissibleif S ◦ S1 preserves
each column ofT andS2 preserves each row.

Theorem 1.2.With the definitions above, the zonal polynomial is given by

Zλ =
∑

(S1,S2) T -admissible

(−1)L(S,S1) pL(S1,S2).

We postpone the proof until Section 2.6.

Remark1.3. This theorem is an analogue of a known result on Schur sym-
metric functions:

(2)
n! · sλ
dim(λ)

=
∑

(−1)|σ1| ptype(σ1◦σ2),
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FIGURE 1. Example of a labeled map on Klein bottle.

where the sum runs over pairs of permutations(σ1, σ2) of the boxes of the
diagramλ such thatσ1 (resp.σ2) preserves the columns (resp. the rows) of
λ andtype(σ1◦σ2) denotes the partition describing the lengths of the cycles
of σ1 ◦ σ2. This formula can be found in [Han88, Equation (1.1)] (where
the author tries unsuccessfully to generalize it to Jack symmetric functions).
For a proof, see [F́S07, Theorem 4].

1.2.2. In terms of maps on surfaces.A labeled bipartite graph drawn on a
(not necessarily orientable and not necessarily connected) surface will be
called amap. We will always assume that the surface is minimal in the
sense that after removing the graph from the surface, the latter becomes a
disjoint collection of open discs. If we draw an edge of such agraph with
a fat pen and then take its boundary, this edge splits into twoedge-sides. In
the above definition of the map, bylabeled, we mean that each edge-side is
labeled with a number from the set[2n] and each number from this set is
used exactly once.

Example1.4. Figure 1 shows two different representations of the same map.
On the picture on the left-hand side, if one identifies the opposite sides of the
square respecting the arrows, one obtains a Klein bottle anda graph drawn
on it. On the right-hand side, we forget the surface and draw the graph on
the plane respecting the order of the edge-sides around eachvertex: one has
to add crossings (information about which edge is above the other one is
irrelevant) and (as the surface is non-orientable) twists.

There is a correspondence between maps and triplets(S, S1, S2) of pair-
partitions, given as follows:
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• the pair-partitionS associates to the label of an edge-side the label
of the other edge-side from the same edge;

• the pair-partitionS1 associates to the label of an edge-side the label
of the other edge-side surrounding the same white corner;

• the pair-partitionS2 associates to the label of an edge-side the label
of the other edge-side surrounding the same black corner.

Note that the combinatorics of the map can be easily recovered from
the triplet of permutations, as follows. Each white (resp. black) vertex of
degreed corresponds to two cycles of lengthd of S ◦ S1 (resp.S ◦ S2) or,
equivalently, to a loop of length2d of L(S, S1) (resp.L(S, S2)). Each face
of length2d corresponds to two cycles of lengthd of S1◦S2 or, equivalently,
to a loop of length2d of L(S1, S2). Therefore, our formula from Theorem
1.2 can be restated as a summation over maps.

For instance, the map from Figure 1 is associated to the following triplet
of pair-partitions:

S =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13, 14}, {15, 16}

}

S1 =
{
{1, 15}, {2, 3}, {4, 14}, {13, 16}, {5, 7}, {6, 10}, {8, 11}, {9, 12}

}

S2 =
{
{1, 10}, {2, 7}, {8, 13}, {9, 14}, {3, 5}, {4, 12}, {6, 15}, {11, 16}

}

Note that the unionS ∪ S1 has two loops:(1, 2, 3, 4, 14, 13, 16, 15) and
(5, 6, 10, 9, 12, 11, 8, 7), which correspond to the two white vertices of the
map.

The related combinatorics of maps which are not bipartite has been stud-
ied by Goulden and Jackson [GJ96].

Remark1.5. It is well-known that bipartite graphs on oriented surfacescor-
respond to pairs of permutations. Therefore, Schur analogue of our formula
(see Remark 1.3) can be restated as a summation over graphs onorientable
surfaces.

1.3. Zonal characters. The above formula expresses zonal polynomials in
terms of power-sum symmetric functions. In Section 3, we will extract the
coefficient of a given power-sum. In this way we study an analogue of the
coordinates of Schur polynomials in the power-sum basis of the symmetric
function ring. These coordinates are known to be the irreducible charac-
ters of the symmetric group and have plenty of interesting properties. Some
of them are (conjecturally) generalizable to the context where Schur func-
tions are replaced by Jack polynomials and our results in thecase of zonal
polynomials go in this direction.

1.3.1. Characters of symmetric groups.For a Young diagramλ we denote
by ρλ the corresponding irreducible representation of the symmetric group
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Sn with n = |λ|. Any partitionµ such that|µ| = n can be viewed as a
conjugacy class inSn. Let πµ ∈ Sn be any permutation from this con-
jugacy class; we will denote byTr ρλ(µ) := Tr ρλ(πµ) the corresponding
irreducible character value. Ifm ≤ n, any permutationπ ∈ Sm can be also
viewed as an element ofSn, we just have to addn−m additional fixpoints
to π; for this reason

Tr ρλ(µ) = Tr ρλ
(
µ 1|λ|−|µ|

)

makes sense also when|µ| ≤ |λ|.
Normalized characters of the symmetric group were defined byIvanov

and Kerov [IK99] as follows:

(3) Σ(1)
µ (λ) = n(n− 1) · · · (n− |µ|+ 1)︸ ︷︷ ︸

|µ| factors

Tr ρλ(µ)

dimension ofρλ

(the meaning of the superscript in the notationΣ
(1)
µ (λ) will become clear

later on). The novelty of the idea was to view the character asa function
λ 7→ Σ

(1)
µ (λ) on the set of Young diagrams (of any size) and to keep the con-

jugacy class fixed. The normalization constants in (3) were chosen in such
a way that the normalized charactersλ 7→ Σ

(1)
µ (λ) form a linear basis (when

µ runs over the set of all partitions) of the algebraΛ⋆ of shifted symmetric
functions introduced by Okounkov and Olshanski [OO97], which is very
rich in structure (this property is, for example, the key point in a recent ap-
proach to study asymptotics of random Young diagrams under Plancherel
measure [IO02]). In addition, recently a combinatorial description of the
quantity (3) has been given [Sta06, Fér10], which is suitable for study of
asymptotics of character values [FŚ07].

Thanks to Frobenius’ formula for characters of the symmetric groups
[Fro00], definition (3) can be rephrased using Schur functions. We expand
the Schur polynomialsλ in the base of the power-sum symmetric functions
(pρ) as follows:

(4)
n! sλ
dim(λ)

=
∑

ρ:
|ρ|=|λ|

θ(1)ρ (λ) pρ

for some numbersθ(1)ρ (λ). Then

(5) Σ(1)
µ (λ) =

(
|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(1)

µ,1|λ|−|µ|(λ),

where
zµ = µ1µ2 · · · m1(µ)!m2(µ)! · · ·

andmi(µ) denotes the multiplicity ofi in the partitionµ.
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1.3.2. Zonal and Jack characters.In this paragraph, we will define ana-
logues of the quantityΣ(1)

µ (λ) via Jack polynomials. First of all, as there
are several of them, we have to fix a normalization for Jack polynomials.
In our context, the best is to use the functions denoted byJ in the book of
Macdonald [Mac95, VI, (10.22)]. With this normalization, one has

J
(1)
λ =

n! sλ
dim(λ)

,

J
(2)
λ = Zλ.

If in (4), we replace the left-hand side by Jack polynomials:

(6) J
(α)
λ =

∑

ρ:
|ρ|=|λ|

θ(α)ρ (λ) pρ

then in analogy to (5), we define

(7) Σ(α)
µ (λ) =

(
|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(α)

µ,1|λ|−|µ|(λ).

This quantities are calledJack characters. Notice that forα = 1 we recover
the usual normalized character values of the symmetric groups. The case
α = 2 is of central interest in this article, since then the left-hand side of
(6) is equal to the zonal polynomial; for this reasonΣ

(2)
µ (λ) will be called

zonal character.
Study of Jack characters has been initiated by Lassalle [Las08, Las09].

Just like the usual normalized charactersΣ
(1)
µ , they are (α-)shifted sym-

metric functions [Las08, Proposition 2] as well, which is a good hint that
they might be an interesting generalization of the characters. The names
zonal charactersandJack charactersare new; we decided to introduce them
because quantitiesΣ(α)

µ (λ) are so interesting that they deserve a separate
name. One could argue that this name is not perfect since zonal and Jack
characters are notsensu strictocharacters in the sense of the representation
theory. On the other hand, as we shall see, zonal and Jack characters share
many interesting properties with the usual characters of symmetric groups,
therefore the former can be viewed as generalizations of thelatter which
justifies to some extent their new name.

1.4. The main result 2: combinatorial formulas for zonal characters.

1.4.1. Zonal characters in terms of numbers of colorings functions. Let
S0, S1, S2 be three pair-partitions of the set[2k]. We consider the following
function on the set of Young diagrams:

Definition1.6. N (1)
S0,S1,S2

(λ) is the number of functionsf from [2k] to the
boxes of the Young diagramλ such that for everyl ∈ [2k]:
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(Q0) f(l) = f(S0(l)), in other wordsf can be viewed as a function on
the set of pairs constitutingS0;

(Q1) f(l) andf(S1(l)) are in the same column;
(Q2) f(l) andf(S2(l)) are in the same row.

Note thatλ 7→ N
(1)
S0,S1,S2

(λ) is, in general, not a shifted symmetric func-
tion, so it cannot be expressed in terms of zonal characters.On the other
hand, the zonal characters have a very nice expression in terms of theN
functions:

Theorem 1.7. Letµ be a partition of the integerk andS1, S2 be two fixed
pair-partitions of the set[2k] whose union has typeµ. Then one has the
following equality between functions on the set of Young diagrams:

(8) Σ(2)
µ =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1) 2|L(S0,S1)| N
(1)
S0,S1,S2

,

where the sum runs over pair-partitions of[2k] andℓ(µ) denotes the num-
ber of parts of partitionµ.

We postpone the proof to Sections 3.1–3.4. This formula is aninterme-
diate step towards Theorem 1.8, but we wanted to state it as anindependent
result because its analogue for the usual characters [FŚ07, Theorem 2] has
been quite useful in some contexts (see [FŚ07, Fér09]).

1.4.2. Zonal characters in terms of Stanley’s coordinates.The notion of
Stanley’s coordinates was introduced by Stanley [Sta04] who found a nice
formula for normalized irreducible character values of thesymmetric group
corresponding to rectangular Young diagrams. In order to generalize this
result, he defined, given two sequencesp andq of positive integers of same
size (q being non-increasing), the partition:

p× q = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , ql, . . . , ql︸ ︷︷ ︸
pl times

).

Then he suggested to consider the quantityΣ
(1)
µ (p × q) as a polynomial in

p andq. An explicit combinatorial interpretation of the coefficients was
conjectured in [Sta06] and proved in [Fér10].

It is easy to deduce from the expansion ofΣ
(2)
µ in terms of theN functions

a combinatorial description of the polynomialΣ
(2)
µ (p× q).
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Theorem 1.8. Letµ be a partition of the integerk andS1, S2 be two fixed
pair-partitions of[2k] whose union has typeµ. Then, one has:

(9) Σ(2)
µ (p× q) =

(−1)k

2ℓ(µ)

∑

S0


 ∑

φ:L(S1,S0)→N⋆

∏

l∈L(S1,S0)

(pϕ(l)) ·
∏

l′∈L(S2,S0)

(−2qψ(l′))




whereψ(l′) := maxl ϕ(w) with l running over the loops ofL(S0, S1) hav-
ing at least one element in common withl′.

Proof. It is a direct application of Lemma 3.6 to Theorem 1.7. �

1.4.3. Lassalle’s conjecture.The following result shows that a conjecture
of Lassalle [Las08] who investigated the expansion of Jack characters in
terms of Stanley’s coordinates holds true in the caseα = 2.

Corollary 1.9. The quantity(−1)|µ|Σ
(2)
µ (p × q) is a polynomial inp and

−q with nonnegative integer coefficients.
Moreover, the coefficient ofp|µ|i (−qi)

ℓ(µ) is equal to1 for anyi (Lassalle
conjectured that at least one of the coefficients is equal to1).

Proof. Except for integrality of the coefficients this is an immediate con-
sequence of Theorem 1.8. In order to prove integrality of thecoefficients,
we need another, but closely related, formula, namely Theorem 1.10. Then,
we just apply Lemma 3.6 and obtain an analogue of Theorem 1.8 with a
formula which does not have the division by2ℓ(µ). �

1.5. Combinatorial interpretation of main result 2.

1.5.1. Gluings of polygons.Similarly as Theorem 1.2, also Theorem 1.7
and hence Theorem 1.8 have a nice combinatorial interpretation.

Letµ be a partition of the integerk andS1, S2 be two fixed pair-partitions
of the set[2k] whose union has typeµ. We consider a collection of bipartite
polygons: each polygon corresponds to a loop ofL(S1, S2) and the number
of sides of the polygon is equal to the size of the loop. The edges are num-
bered with the integers1, . . . , 2k such thatS1 (resp.S2) associates to the
label of an edge the label of the other edge with the same white(resp. black)
extremity. As pair-partitionsS1 andS2 are fixed, this is equivalent to the
choice of one marked edge per polygon.

Then the third pair-partitionS0 will be seen as a way to glue in pairs the
external sides of the edges of our polygons (we always glue edges such that
their white, resp. black, extremities are glued together).After performing
these gluings we obtain a mapM . This map is exactly the one associated to
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the triplet(S0, S1, S2) in Section 1.2.2. Note that the polygons become the
faces ofM .

It is easy to see that the functionN (1)
S0,S1,S2

depends only on the bipartite
graph underlying the mapM associated to(S0, S1, S2). Therefore, Eq. (8)
can be read as a sum over all ways to glue a collection of labeled polygons
of the values of some function associated to the corresponding graphs.

Furthermore, since|L(S0, S1)| is equal to the number of white vertices
in M , the factor2|L(S0,S1)| can be interpreted as the number of choices of a
local orientation at each of the white vertices (we recall that orientation at
a point of a surface is by definition the same as choosing whichone of the
two possible directions of rotation will be called clockwise). Therefore (8)
can be equivalently written as

(10) Σ(2)
µ =

1

2ℓ(µ)

∑

S0

∑

choice of orientation
at every white vertex of map

(−1)L(S0,S1) N
(1)
S0,S1,S2

.

Notice that after ungluing the polygons which formed the mapM with a
fixed orientations at white vertices we obtain the original family of polygons
with additional information about the orientations aroundthe white vertices.
Therefore (10) can be equivalently written as

(11) Σ(2)
µ =

1

2ℓ(µ)

∑

choice of orientation
at every white vertex

of the polygons

∑

S0

(−1)L(S0,S1) N
(1)
S0,S1,S2

,

where the sum overS0 is restricted to pair-partitions with a property that
the orientations of all white vertices which are glued together byS0 must
match.

1.5.2. Gluings of unlabeled polygons and Lassalle’s conjecture.Let us chan-
ge now our combinatorial setup: we remove all the labels fromthe edges of
the considered family of polygons and, instead, we mark one white vertex
per polygon. We shall consider the ways to glue the edges of such poly-
gons and to choose orientations at the white vertices. The best way to do
this will be to consider the corresponding problem for the polygons with
labeled edges and then identify the combinatorial objects which differ just
by the choice of labeling.

For a given polygon we consider its axial reflection around the axis pass-
ing through the marked white vertex and its antipodal vertex. These re-
flections commute and hence they generate the group isomorphic to Z

ℓ(µ)
2 ,

which describes the symmetry of our setup. This groupZ
ℓ(µ)
2 acts on the set

of pairs

(12) (choice of orientations, S0)
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which contribute to (11); each orbit of this action containscombinatorial
objects which differ only by a change of the labeling of the edges. In other
words, the orbits are the wanted ways of gluing edges and choosing orien-
tations for unlabeled polygons.

The axes of reflection pass through white vertices and each such a reflec-
tion flips the orientation of the marked white vertex; it follows immediately
that the stabilizer of any non-identity element with respect to this action
is trivial hence every orbit has2ℓ(µ) elements. In this way we proved the
following result.

Theorem 1.10.Letµ be a partition of the integerk andS1, S2 be two fixed
pair-partitions of the set{1, . . . , 2k} whose union has typeµ. Then

(13) Σ(2)
µ =

∑

Ω

(−1)L(S0(Ω),S1) N
(1)
S0(Ω),S1,S2

,

where the sum runs over the orbits ofZ
ℓ(µ)
2 acting on(12)and whereS0(Ω)

denotes any representative of orbitΩ. Alternatively, the summation can
be taken over all ways of gluing edges of unlabeled polygons (with one
marked white vertex per polygon) and choosing the orientations at the white
vertices.

Remark1.11. The analogous result in the caseα = 1 [FŚ07, Theorem 2]
can be reformulated in the following way which is very similar to Theorem
1.10:

Σ(1)
µ =

∑

Ω

(−1)L(S0(Ω),S1) N
(1)
S0(Ω),S1,S2

,

where the summation is over all ways of gluing edges of unlabeled polygons
(with one marked white vertex per polygon) and over choices of orientations
at white vertices in such a way that any two vertices in a connected com-
ponent have the same orientation. Alternatively, this can be reformulated
in a simpler way which, unfortunately, makes the analogy less apparent:
the summation is over all ways of gluing edges of unlabeled polygons in
such a way that the resulting map is orientable and over the choices of the
orientation in each connected component.

1.6. Kerov polynomials.

1.6.1. Free cumulants.For a Young diagramλ = (λ1, λ2, . . . ) and an inte-
gers ≥ 1 we consider the dilated Young diagram

Dsλ = (sλ1, . . . , sλ1︸ ︷︷ ︸
s times

, sλ2, . . . , sλ2︸ ︷︷ ︸
s times

, . . . ).

If we interpret the Young diagrams geometrically as collections of boxes
then the dilated diagramDsλ is just the image ofλ under scaling by factor
s.
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Following Biane [Bia98] (who used a different, but equivalent definition),
for a Young diagramλwe define itsfree cumulantsR2(λ), R3(λ), . . . by the
formula

Rk(λ) = lim
s→∞

1

sk
Σ

(1)
k−1(Dsλ).

In other words, each free cumulantRk(λ) is asymptotically the dominant
term of the character on a cycle of lengthk− 1 in the limit when the Young
diagram tends to infinity. It is natural to generalize this definition using Jack
characters:

R
(α)
k (λ) = lim

s→∞

α

sk
Σ

(α)
k−1(Dsλ).

In fact, the generalα case can be expressed simply in terms of the usual
free cumulant thanks to [Las09, Theorem 7] (notice that our normalization
of free cumulants differs from the one in Lassalle’s papers by some normal-
ization factors):

R
(α)
k (λ) = Rk(αλ),

where
αλ = (αλ1, αλ2, . . . )

is the Young diagram stretched anisotropically only along theOX axis.
The quantitiesR(α)

k (λ) are calledα-anisotropic free cumulants of the Young
diagramλ.

With this definition free cumulants might seem to be rather abstract quan-
tities, but in fact they could be equivalently defined in a very explicit way
using the shape of the diagram and linked to free probability, whence their
name, see [Bia98]. The equivalence of these two descriptions makes them
very useful parameters for describing Young diagrams. Moreover, they
form a homogeneous algebraic basis of the ring of shifted symmetric func-
tions, so many interesting functions can be written in termsof free cumu-
lants. These features make free cumulants a perfect tool in the study of as-
ymptotic problems in representation theory, see for example [Bia98,Śni06].

1.6.2. Jack Kerov polynomials.The following observation is due to Las-
salle [Las09]. Letk ≥ 1 be a fixed integer and letα be fixed. Since
Σ

(α)
k is anα-shifted symmetric function and the anisotropic free cumulants

(R
(α)
l )l≥2 form an algebraic basis of the ring ofα-shifted symmetric func-

tions, there exists a polynomialK(α)
k such that, for any Young diagramλ,

Σ
(α)
k (λ) = K

(α)
k

(
R

(α)
2 (λ), R

(α)
3 (λ), . . .

)
.

This polynomial is calledJack Kerov polynomial.
Thus Jack Kerov polynomials express Jack characters on cycles in terms

of free cumulants. For more complicated conjugacy classes it turns out to be
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more convenient to express not directly the charactersΣ
(α)
(k1,...,kℓ)

but rather
cumulant

(14) (−1)ℓ−1κid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

).

This gives rise togeneralized Jack Kerov polynomialsK(α)
(k1,...,kℓ)

. In the clas-
sical contextα = 1 these quantities have been introduced by one of us and
Rattan [ŔS08]; in the Jack case they have been studied by Lassalle [Las09].
We skip the definitions and refer to the above papers for details since gen-
eralized Kerov polynomials are not of central interest for this paper.

1.6.3. Classical Kerov polynomials.Forα = 1 these polynomials are called
simply Kerov polynomials. This case has a much longer history and it was
initiated by Kerov [Ker00] and Biane [Bia03] who proved thatin this case
the coefficients are in fact integers and conjectured their non-negativity.
This conjecture has been proved by the first-named author in [Fér09], also
for generalized Kerov polynomials. Then, an explicit combinatorial inter-
pretation has been given by the authors, together with Dołęga, in [DFŚ10],
using a new method.

These polynomials have a deep structure, from a combinatorial and ana-
lytic point of view, and there are still open problems concerning them. For
a quite comprehensive bibliography on this subject we referto [DFŚ10].

Most of properties of Kerov polynomials seem to be generalizable in the
case of a general value of the parameterα, although not much has been
proved for the moment (see [Las09]).

1.7. The main result 3: Kerov’s polynomials for zonal characters. We
will show the following combinatorial interpretation of the coefficients of
zonal Kerov polynomials, analogous to the one from [DFŚ10].

Theorem 1.12. Let µ be a partition and lets2, s3, . . . be a sequence of
non-negative integers with only finitely many non-zero elements.

The rescaled coefficient

(−2)ℓ(µ)(−1)|µ|+2s2+3s3+···
[(
R

(α)
2

)s2 (
R

(α)
3

)s3
· · ·
]
K(2)
µ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs
(M, q) with the following properties:

(a) M is a map created by gluing pairs of edges of a collection of bi-
partite polygons with the numbers of edges2µ1, 2µ2, . . . with one
marked edge per polygon;

(b) the number of the black vertices ofM is equal tos2 + s3 + · · · ;
(c) the number of all vertices ofM is equal to2s2 + 3s3 + 4s4 + · · · ;
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(d) q is a function from the set of the black vertices ofM to the set
{2, 3, . . . }; we require that each numberi ∈ {2, 3, . . . } is used
exactlysi times;

(e) for every subsetA ⊂ V•(M) of black vertices ofM which is nontriv-
ial (i.e.,A 6= ∅ andA 6= V•(M)) there are more than

∑
v∈A

(
q(v)−

1
)

white vertices ofM which are connected to at least one vertex
fromA.

Condition (e) can be reformulated in a number of equivalent ways [DF́S10].
This result will be proved in Section 4.

Remark1.13. From the viewpoint of the above result it would be more aes-
thetically appealing to change the definition of Jack characters and rather
consider quantitiesαℓ(µ)Σ(α)

µ instead since then the coefficients of zonal
Kerov polynomials would be integers.

1.8. Symplectic zonal polynomials.As mentioned above, the caseα = 1
2

is also special for Jack polynomials, as we recover the so-called symplectic
zonal polynomials. These polynomials appear in a quaternionic analogue
of James’ theory, see [Mac95, VII.6].

Our formulas have immediate analogues in this case thanks tothe duality
formula for Jack characters (see [Mac95, Chapter VI, equation (10.30)]):

(15) θ(α)ρ (λ) = (−α)|ρ|−#parts ofρ θ(α
−1)

ρ (λ′),

whereλ′ is the partition conjugate toλ. For instance, the analogue of The-
orem 1.2 is:

(16) J
(1/2)
λ =

∑

(S1,S2) T ′-admissible

(−1)L(S,S2)

(
−
1

2

)|L(S1,S2)|

pL(S1,S2),

where the sum runs over pairs(S1, S2) of pair-partitions which areT ′-
admissible with respect to the Young tableauT ′ of shape(2λ)′ in which
cases are numbered consecutively along the rows.

The combinatorial interpretation of Stanley’s and Kerov’spolynomials
for zonal characters have of course also analogue in the symplectic zonal
case. In particular, for the symplectic zonal Kerov polynomials, one has the
following proposition which is a special case of [Las09, Conjecture 14.1]:

Proposition 1.14.Recall that the generalized symplectic zonal Kerov poly-
nomials are defined by:

(17) (−1)ℓ−1κid(Σ
(1/2)
k1

, . . . ,Σ
(1/2)
kℓ

) = K
(1/2)
k1,··· ,kℓ

(R2, R3, . . . ).

ThenK(1/2)
k1,··· ,kℓ

is a non-homogeneous polynomial with non-negative coeffi-
cients of degreek1 + · · ·+ kℓ − ℓ+ 2.
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Proof. This is a consequence of Theorem 1.12 and Eq. (15). �

1.9. Link with Weingarten function. Zonal characters are linked with
Weingarten functions (see [Mat10, Section 8]). These functions appear in
the computation of the integral of a monomial in the coordinates over the
orthogonal or unitary group. Our combinatorial description of zonal char-
acters is a good tool in this context: we will use it in a forthcoming article
to show in a natural way that the asymptotics of Weingarten functions for
both unitary and orthogonal groups are the same.

1.10. Maps and zonal characters: the dual picture. It should be stressed
that a previous result linking maps on not necessarily orientable surfaces
and zonal characters can be found in the work of Goulden and Jackson
[GJ96]. But their result goes in the reverse direction than ours: they count
maps using zonal characters, while we express zonal characters using maps.
The same picture exists for maps on orientable surface and the usual char-
acters. It would be nice to understand the link between thesetwo dual ap-
proaches.

1.11. Overview of the paper. The paper is organized according to our
three main results. Sections 2, 3 and 4 are respectively devoted to the proofs
of main results 1, 2 and 3.

2. FORMULAS FOR ZONAL POLYNOMIALS

The main result of this section is Theorem 1.2, which gives a combinato-
rial formula for zonal polynomials.

2.1. Preliminaries. In this paragraph we give the characterization of zonal
polynomials, which is the starting point of our proof of Theorem 1.2. This
characterization is due to James and the content of this paragraph can be
found with more details and proofs in his paper [Jam61].

ForZ = v1⊗· · ·⊗ v2n ∈ (Rd)⊗2n we define a homogeneous polynomial
function of degree2n on the setMd(R) of d× d matrices by

φZ(X) = 〈XTv1, X
Tv2〉 · · · 〈X

Tv2n−1, X
Tv2n〉 for X ∈ Md(R)

and for general tensorsZ ∈ (Rd)⊗2n by linearity. Clearly,

φZ(XO) = φZ(X) for anyO ∈ Od(R);

in other wordsφZ is invariant under the right action of the orthogonal group
Od(R).

The action ofGLd(R) on (Rd)⊗2n is defined on elementary tensors by

(18) L(v1 ⊗ · · · ⊗ v2n) = Lv1 ⊗ · · · ⊗ Lv2n.
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The groupGLd(R) acts also canonically on the polynomial functions on
Md(R) as follows:

(Lf)(X) = f(LTX).

In this way both(Rd)⊗2n and the space of polynomial functions onMd(R)
are representations ofGLd(R) and it is easy to check thatφ is an intertwiner,
i.e.

LφZ = φLZ .

James proved that, for a given Young diagramλ, there is a unique (up to
a multiplicative constant) elementzλ ∈ (Rd)⊗2n such that:

(a) φzλ is non-zero,
(b) zλ (and henceφzλ) is invariant under the left action of the orthogonal

groupOd(R) ⊂ GLd(R),
(c) zλ (and henceφzλ) belongs to the subrepresentation ofGLd(R) cor-

responding to the highest weight2λ.

By definition, its imageφzλ is a polynomial function on the setMd(R)
which is invariant under the left and right action of the orthogonal group.
Therefore, the imageφzλ(X) only depends on the multisetSp(XXT ) =
{z1, . . . , zd} of eigenvalues ofXXT . As φzλ is a polynomial function of
degree2n, there exists a symmetric polynomialZ(d)

λ of degreen such that:

φzλ(X) = Zλ(Sp(XX
T )).

If d ≥ 2n (inequality that we assume from now on), the polynomialZ
(d)
λ

is unique up to a multiplicative constant, which we fix by asking that the
coefficient in the expansion in the power-sum symmetric functions is equal
to 1:

[p
|λ|
1 ]Z

(d)
λ = 1.

The collection of symmetric polynomialsZ(d)
λ defines a symmetric function

Zλ, which is, by definition, the zonal symmetric function.
In the following paragraphs we will use this definition of thezonal sym-

metric function to prove Theorem 1.2. More precisely, we will exhibit an
elementzλ ∈ (Rd)⊗2n having properties (a), (b) and (c) and compute the
corresponding symmetric functionZλ.

2.2. Pair-partitions and tensors. If P is a pair-partition of the ground set
[2n], we will associate to it the tensor

ΨP =
∑

1≤i1,...,i2n≤d

δP (i1, . . . , i2n) ei1 ⊗ · · · ⊗ ei2n ∈ (Rd)⊗2n,

whereδP (i1, . . . , i2n) is equal to1 if ik = il for all {k, l} ∈ P and is equal to
zero otherwise. The symmetric groupS2n acts on the set of pair-partitions
(when we interpret the latter as permutations inS2n, the action is given by
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conjugation) as well as on the set of tensors(Rd)⊗2n and it is easy to check
thatP 7→ ΨP is an intertwiner with respect to these two actions.

Recall that we have defined

(19) S =
{
{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

}
.

Notice that with this choice ofS, one has the following lemma

Lemma 2.1. LetZ ∈ (Rd)⊗2n. Then

φZ(X) = 〈Z,X⊗2nΨS〉

with respect to the standard scalar product in(Rd)⊗2n.

Proof. We can assume by linearity thatZ = v1 ⊗ . . .⊗ v2n. The right-hand
side becomes:

〈Z,X⊗2nΨS〉 =∑

i1,...,in

〈
v1 ⊗ · · · ⊗ v2n, Xei1 ⊗Xei1 ⊗ · · · ⊗Xein ⊗Xein

〉

=
∑

1≤i1,...,in≤d

n∏

j=1

〈v2j−1, Xeij〉 · 〈v2j, Xeij〉

=

n∏

j=1

[
∑

1≤i≤d

〈XTv2j−1, ei〉 · 〈X
Tv2j , ei〉

]
=

n∏

j=1

〈XTv2j−1, X
Tv2j〉. �

Lemma 2.2. Let P be a pair-partition of[2n] andS, as before, the pair-
partition of the same set given by(19). Then

φΨP
(X) = 〈ΨP , X

⊗2nΨS〉 = Tr
[
(XXT )ℓ1

]
Tr
[
(XXT )ℓ2

]
· · ·

= pL(P,S)(Sp(XX
T )),

where2ℓ1, 2ℓ2, . . . are the lengths of the loops ofL(P, S).

Proof. Let us consider the case whereL(P, S) has only one loop of length
2ℓ. Up to a renumbering ofP which leavesS invariant one can assume that
P =

{
{2, 3}, {4, 5}, . . . , {2ℓ − 2, 2ℓ − 1}, {2ℓ, 1}

}
. Such a renumbering

corresponds to the action onΨP of an orthogonal operator which commutes
with X⊗2ℓ and leavesΨS invariant, and thus does not change the value of
φΨP

(X). In this case

ΨP =
∑

1≤j1,...,jℓ≤d

ejℓ ⊗ ej1 ⊗ ej1 ⊗ · · · ⊗ ejℓ−1
⊗ ejℓ−1

⊗ ejℓ .
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Therefore one has:

φΨP
(X) =

∑

1≤j1,...,jℓ≤d

〈XT ejℓ , X
Tej1〉 · 〈X

Tej1 , X
Tej2〉 · · · 〈X

Tejℓ−1
, XTejℓ〉

=
∑

1≤j1,...,jℓ≤d

〈XXT ejℓ , ej1〉 · 〈XX
Tej1, ej2〉 · · · 〈XX

Tejℓ−1
, ejℓ〉

=
∑

1≤j1,...,jℓ≤d

(XXT )j1,jℓ · (XX
T )j2,j1 · · · (XX

T )jℓ,jℓ−1

= Tr(XXT )ℓ.

The general case is simply obtained by multiplication of theone-loop case.
�

It follows thatX 7→ φΨP
(X) is invariant under the left action of the

orthogonal groupOd(R). The above discussion shows that ifP is a pair-
partition (or, more generally, a formal linear combinationof pair-partitions)
then condition (b) is fulfilled forzλ = ΨP . For this reason we will look
for candidates forzλ corresponding to zonal polynomials in this particular
form.

2.3. Young symmetriser. Let a partitionλ be fixed; we denoten = |λ|.
We consider the Young tableauT of shape2λ in which boxes are numbered
consecutively along the rows. This tableau was chosen in such a way that if
we interpret the pair-partitionS as a pairing of the appropriate boxes ofT
then a box in the column2i − 1 is paired with the box in the column2i in
the same row, wherei is a positive integer (these two boxes will be called
neighbors in the Young diagram2λ).

TableauT allows us to identify boxes of the Young diagram2λ with
the elements of the set[2n]. In particular, permutations fromS2n can be
interpreted as permutations of the boxes of2λ. We denote

P2λ ={σ ∈ S2n : σ preserves each row of2λ},

Q2λ ={σ ∈ S2n : σ preserves each column of2λ}

and define

a2λ =
∑

σ∈P2λ

σ ∈ C[S2n],

b2λ =
∑

σ∈Q2λ

(−1)|σ|σ ∈ C[S2n],

c2λ =b2λa2λ.

The elementc2λ is calledYoung symmetriserand it is well-known that
there exists some non-zero scalarα2λ such thatα2λc2λ is a projection. Its
imageC[S2n]α2λc2λ under multiplication from the right on the left-regular
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representation gives an irreducible representationρ2λ of the symmetric group
(where the symmetric group acts by left multiplication) associated to the
Young diagram2λ.

Recall that there is also a central projection inC[S2n], denotedp2λ,
whose imageC[S2n]p2λ under multiplication from the right (or, equiva-
lently, from the left) on the left-regular representation is the sum of all irre-
ducible representations of typeρ2λ contributing toC[S2n]. It follows that
C[S2n]c2λ is a subspace ofC[S2n]p2λ. It follows that there is an inequality

(20) α2λc2λ ≤ p2λ

between projections inC[S2n], i.e.

α2λc2λp2λ = p2λα2λc2λ = α2λc2λ.

2.4. Schur-Weyl duality. The symmetric groupS2n acts on the vector
space(Rd)⊗2n by permuting the factors and the linear groupGLd(R) acts
on the same space by the diagonal action (18). The two action commute
and Schur-Weyl duality asserts that, as a representation ofS2n × GLd(R),
one has:

(Rd)⊗2n ≃
⊕

µ⊢2n

Vµ × Uµ,

whereVµ (resp.Uµ) is the irreducible representation ofS2n (resp.GLd(R))
indexed byµ (as we assumed in Section 2.1 thatd ≥ 2n, the representa-
tion Uµ does always exist). Butp2λ(Vµ) = δµ,2λVµ, therefore the image
p2λ
(
(Rd)⊗2n

)
of the projectionp2λ is, as representation ofGLd(R), a sum

of some number of copies of the irreducible representation of GLd(R) as-
sociated with the highest weight2λ. Using inequality (20), we know that
α2λc2λ

(
(Rd)⊗2n

)
is a subspace ofp2λ

(
(Rd)⊗2n

)
. In this way, we proved

thatα2λc2λ
(
(Rd)⊗2n

)
is a representation ofGLd(R) which is a sum of some

number of copies of the irreducible representation ofGLd(R) associated
with the highest weight2λ.

2.5. A tensor satisfying James’ conditions.The formal linear combina-
tion of pair-partitions

c2λ · S

can be identified with the tensor

zλ := Ψc2λ·S = c2λΨS ∈ (Rd)⊗2n

which obviously fulfills conditions (b) and (c); the condition (a) will be
verified later on, after our calculation of zonal polynomials is completed
and it will become obvious that they are non-zero polynomials.
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Therefore there exists a constantCλ such that

φc2λΨS
(X) =

1

Cλ
Zλ(Sp(X)).

The left-hand side can be transformed as follows:

(21) φc2λΨS
(X) =

∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1〈Ψσ1σ2·S, X
⊗2nΨS〉

=
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)(Sp(X)),

where the power-sum symmetric functionsp should be understood as in (1).
Finally, one has the following formula for zonal polynomials:

(22) Zλ = Cλ
∑

σ1∈Q2λ

∑

σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S).

Lemma 2.3. Let σ be a permutation of the boxes of2λ which preserves
each column. Then

(−1)σ = (−1)L(σ·S,S).

Proof. Young diagram2λ can be viewed as a concatenation of rectangular
Young diagrams of sizei×2 (i parts, all of them equal to2); for this reason
it is enough to proof the lemma for the case when2λ = i× 2. Permutation
σ can be viewed as a pair(σ(1), σ(2)) whereσ(j) ∈ Si is the permutation of
j-th column. Then

(−1)σ = (−1)σ
(1)

(−1)σ
(2)

= (−1)σ
(1)(σ(2))

−1

= (−1)(ℓ1−1)+(ℓ2−1)+···,

whereℓ1, ℓ2, . . . are the lengths of the cycles of the permutationσ(1)
(
σ(2)
)−1

.
Let (�[c, r]) denote the box of the Young diagram in the columnc and

the rowr. Then

σSσ−1S(�[1, i]) = σSσ−1(�[2, i]) = σS
(
�[2, (σ(2))−1(i)]

)

= σ
(
�[1, (σ(2))−1(i)]

)
= �[1, σ(1)

(
σ(2)
)−1

(i)].

SoσSσ−1S = (σ · S)S permutes the first column and its restriction to the
first column has cycles of lengthℓ1, ℓ2, . . . . The same is true for the second
column. It follows that(σ · S)S has cycles of lengthℓ1, ℓ1, ℓ2, ℓ2, . . . or,
equivalently, the lengths of the loops ofL(σ ·S, S) are equal to2ℓ1, 2ℓ2, . . .
which finishes the proof. �
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2.6. Proof of Theorem 1.2.

Proof of Theorem 1.2.The right-hand side of (22) shows that we need to
study the (signed) collection of conjugacy classes of the permutations

(σ1σ2 · S) ◦ S = σ1σ2Sσ
−1
2 σ−1

1 S

which is conjugate to

(σ−1
1 Sσ1)(σ2Sσ

−1
2 ) = S1S2,

whereS1 = σ1Sσ
−1
1 = σ1·S andS2 = σ−1

2 Sσ2 = σ−1
2 ·S are pair-partitions.

In the above calculation and whenever it does not lead to confusion we
denote the composition of permutations simply byπσ := π ◦ σ.

Whenσ2 varies overP2λ, pair-partitionS2 varies over all pair-partitions
of the boxes of the Young diagram such that each pair of connected boxes
lies in the same row of the Young diagram (we fixed the Young tableauT , so
pair-partitions of the set[2n] can be viewed as pair-partitions of the boxes of
the Young diagram). Furthermore, each such a pair-partition is obtained for
the same number of permutationsσ2 (that is for2nn! permutations). Thus
replacing the summation overσ2 by summation over pair-partitionsS2 for
which each pair of connected boxes lies in the same row only changes the
numerical constant.

Analogously, we can replace summation overσ1 in Q2λ by summation
over all pair-partitionsS1 with a property that the boxes belonging to each
cycle of S1 ◦ S are in one column. Indeed, if we fix a pair-partitionS1

verifying this condition, it can be written asσ1 · S in 2nn! different ways.
Lemma 2.3 shows that the sign(−1)σ1 in each of these different writings is
the same, equal to(−1)L(S,S1).

Finally, our zonal polynomial is equal to

(23) Zλ = C ′
λ

∑

S1

∑

S2

(−1)L(S,S1)pL(S1,S2),

where the sum runs overT -admissible(S1, S2). Recall thatT -admissible
means thatS2 preserves each row ofT andS ◦ S1 preserves each columns.

The numerical value ofC ′
λ = (2nn!)2Cλ is easy to determine as, by

definition,

[pn1 ]Zλ = 1.

But the only pairs ofT -admissible pair-partitions(S1, S2) such thatL(S1, S2)
is a union ofn loops (the latter implies automatically thatS1 = S2) is (S, S).
Therefore the coefficient ofpn1 on the right-hand side of (23) isC ′

λ, which
must be equal to1. �
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3. FORMULAS FOR ZONAL CHARACTERS

This section is devoted to formulas for zonal characters; inparticular we
will prove Theorem 1.7.

3.1. Reformulation of Theorem 1.7. LetS0,S1,S2 be three pair-partitions
of the set[2k]. We consider the following function on the set of Young dia-
grams:

Definition3.1. N (2)
S0,S1,S2

(λ) is the number of functionsf from [2k] to the
boxes of the Young diagram2λ such that:

(P0) f(l) andf(S0(l)) are neighbors in the Young diagram2λ i.e., if f(l)
is in the2i + 1-th column (resp.2i + 2-th column),f(S0(l)) is the
box in the same row but in the2i + 2-th column (resp.2i + 1-th
column);

(P1) f(l) andf(S0 ◦ S1(l)) are in the same column;
(P2) f(l) andf(S2(l)) are in the same row.

Lemma 3.2. LetS0, S1, S2 be pair-partitions. Then

N
(2)
S0,S1,S2

= 2|L(S0,S1)|N
(1)
S0,S1,S2

.

Proof. Let λ be a Young diagram and letf be a functionf : [2k] → 2λ
verifying properties (P0), (P1) and (P2). We consider the projectionp :
2λ→ λ, which consists of forgetting the separations between the neighbors
in 2λ. More precisely, the boxes(2i−1, j) and(2i, j) of 2λ are both sent to
the box(i, j) of λ. It is easy to check that the compositionf = p ◦ f fulfills
(Q0), (Q1), (Q2).

But a functiong : [2k] → λ verifying (Q0), (Q1), (Q2) can be written
as f for exactly 2|L(S0,S1)| different functionsf . Indeed, we can choose
independently, for one numberi in each loop ofL(S0, S1), which of the two
possible values should be assigned tof(i). The functionf is then entirely
determined by these choices because of properties (P0) and (P1). �

The above lemma shows that in order to show Theorem 1.7 it is enough
to prove the following, equivalent statement:

Theorem 3.3. Letµ be a partition of the integerk andS1, S2 be two fixed
pair-partitions of the set[2k] whose union has typeµ. Then one has the
following equality between functions on the set of Young diagrams:

(24) Σ(2)
µ =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1)N
(2)
S0,S1,S2

,

where the sum runs over pair-partitions of[2k].

We will prove it in Sections 3.2–3.4.
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3.2. Extraction of the coefficients. Firstly, let us consider the case where
|µ| = |λ|. If we look at the coefficients of a given power-sum functionpµ
in Jλ, using Theorem 1.2, one has:

(25) [pµ]Zλ =
∑

(S1,S2) T -admissible
typeL(S1,S2)=µ

(−1)L(S,S1).

This equation has been proved in the case whereT andS are, respectively,
the canonical Young tableaux and the first pair-partition, but the same proof
works for any fillingT of 2λ by the elements of[2|λ|] and pair-partitionS
as long asS matches the labels of the pairs of neighbors of2λ. As they are
(2|λ|)! fillings T and one corresponding pair-partitionS = S(T ) per filling,
one has:

(26) [pµ]Zλ =
1

(2|λ|)!

∑

T

∑

(S1,S2) T -admissible
typeL(S1,S2)=µ

(−1)L(S(T ),S1),

where the first sum runs over all bijective fillings of the diagram 2λ. We
can change the order of summation and obtain:

[pµ]Zλ =
1

(2|λ|)!

∑

S1,S2

type(S1,S2)=µ

(
∑

T

(−1)L(S(T ),S1) [(S1, S2) is T -admissible]

)
,

where[condition] is equal to1 if the condition is true and is equal to zero
otherwise. The next step is to show that the expression in theparenthesis
does not depend on(S1, S2). This is a consequence of the following lemma:

Lemma 3.4. If we consider the diagonal action ofS2n on couples of pair-
partitions given by

σ · (S1, S2) = (σ · S1, σ · S2) = (σS1σ
−1, σS2σ

−1),

then the set of pairs of pair-partitions of a given type is exactly an orbit of
this action.

Proof. Let us represent the pair(S1, S2) as a graph as explained in Section
1.2.1, except that edges corresponding to pairs inS1 (resp.S2) are colored
in blue (resp. red). Then two pairs have the same type if and only if their
graphs are isomorphic, which is equivalent to the existenceof a permutation
σ sending one couple to the other. �

The lemma also helps to count the number of couples of a given typeµ.
Indeed, the stabilizer of a couple(S1, S2) is easy to describe:σ can permute
the loops of(S1, S2) which gives rise to the factorm1(µ)!m2(µ)! · · · , where
mi(µ) is the multiplicity of the parti in µ. After we have fixed which loop
is sent to which loop, we can choose the image of one element per loop (the
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images of the other elements of the loop are then uniquely determined).
Finally, the cardinality of the stabilizer is

∏

i

mi(µ)! ·
∏

j

(2µj) =: 2ℓ(µ)zµ.

So the number of couples(S1, S2) of type µ is equal to(2|λ|)!/(2ℓ(µ)zµ)
and, if |µ| = |λ|, one has:

Σ(2)
µ (λ) = zµ [pµ]Zλ =

1

2ℓ(µ)

∑

T

(−1)L(S(T ),S1) [(S1, S2) is T -admissible],

where(S1, S2) is any fixed couple of pair-partitions of typeµ.
This last equality can be rewritten in the following form. If|µ| = |λ|,

one has:

(27) Σ(2)
µ (λ) =

1

2ℓ(µ)

∑

S0

(−1)L(S0,S1)N̂
(2)
S0,S1,S2

(λ),

whereN̂ (2)
S0,S1,S2

(λ) is the number of bijective fillingsT of the Young dia-
gram2λ such that(S1, S2) is T -admissible andS0 = S(T ). Note that this
corresponds exactly to the conditions (P0), (P1) and (P2) inthe casek = n.

3.3. Extending the formula to any size. Let us now look at the case where
|µ| = k ≤ n = |λ|. We denotẽµ = µ1n−k. Then, using the formula above
for [pµ̃]Zλ, one has:

Σ(2)
µ (λ) = zµ

(
n− k +m1(µ)

m1(µ)

)
[pµ̃]Zλ

=
1

2ℓ(µ)+n−k (n− k)!

∑

S̃0

(−1)L(S̃0,S̃1)N̂
(2)

S̃0,S̃1,S̃2
(λ),

where(S̃1, S̃2) is any fixed couple of pair-partitions of typẽµ. We can
choose it in the following way. Let(S1, S2) be a couple of pair-partitions of
the set{1, . . . , 2k} of typeµ and defineS̃1 andS̃2 by, for i = 1, 2:

S̃i = Si ∪
{
{2k + 1, 2k + 2}, . . . , {2n− 1, 2n}

}
.

With this choice of(S̃1, S̃2), it is quite obvious thatN̂ (2)

S̃0,S̃1,S̃2
(λ) = 0

unless

(28) S̃0

∣∣
{2k+1,...,2n}

=
{
{2k + 1, 2k + 2}, . . . , {2n− 1, 2n}

}
.

Indeed, for anyl ≥ k condition (P1) shows thatf(2l+1) andf(S0(2l+2))
are in the same column; furthermore condition (P0) shows that f(2l + 2)
andf(S0(2l + 2)) are neighbors and hence they are in the same row and
condition (P2) shows thatf(2l + 1) andf(2l + 2) are in the same row. In
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this way we proved thatf(2l + 1) andf(S0(2l + 2)) are in the same row
and column hencef(2l+1) = f(S0(2l+2)) therefore2l+1 = S0(2l+2)
which proves (28).

In the case where (28) is fulfilled, we denoteS0 = S̃0

∣∣
{1,...,2k}

. The

bijective fillingsT counted inN̂ (2)

S̃0,S̃1,S̃2
(λ) are obtained as follows:

• the boxes corresponding to the numbers1, 2, . . . , 2k are given by an
injective functionf verifying conditions (P0), (P1) and (P2) (with
respect to(S0, S1, S2));

• the only condition on the places of the numbers2k + 1, . . . , 2n is
that numbers2i − 1 and2i (for k < i ≤ n) must be in neighboring
boxes of the diagram2λ. Therefore there are2n−k(n− k)! ways to
place these numbers in the remaining boxes.

Therefore

N̂
(2)

S̃0,S̃1,S̃2
(λ) = 2n−k(n− k)! N̂

(2)
S0,S1,S2

(λ),

whereN̂ (2)
S0,S1,S2

(λ) is the number of injective functionsf : [2k] →֒ 2λ
verifying conditions (P0), (P1) and (P2) (in this definition, the ground set of
S0, S1 andS2 is [2k]). Notice that this definition of̂N (2) is an extension of
the one given at the end of Section 3.2 which corresponds to the case where
k is the size ofλ (and thus the functionf must be a bijective fillingT ).

The above discussion shows that

(29) Σ(2)
µ =

1

2ℓ(µ)

∑

S0 pair-partition
of {1,...,2|µ|}

(−1)L(S0,S1)N̂
(2)
S0,S1,S2

,

where(S1, S2) is any couple of pair-partitions of typeµ.

3.4. Forgetting injectivity. In this section we will prove Theorem 3.3 (and
thus finish the proof of Theorem 1.7). In other terms, we provethat Eq. (29)
is still true if we replace in each term of the sum̂N (2)

S0,S1,S2
byN (2)

S0,S1,S2
. To

do this, we have to check that, for anynon-injectivefunctionf : [2|µ|] →
2λ, the total contribution

(30)
∑

S0 pair-partition
of [2|µ|]

(−1)L(S0,S1) [f fulfills (P0), (P1) and (P2)]

of f to the right-hand side of Eq. (29) is equal to zero.
Let us fix a couple(S1, S2) of pair-partitions of typeµ.

Lemma 3.5. Letf : [2|µ|] → 2λ with f(i) = f(j). Then

a) conditions (P0), (P1) and (P2) are fulfilled forS0 if and only if they
are fulfilled forS ′

0 = (i j) · S0 = (i j)S0(i j);
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b) if these conditions are fulfilled, then

(−1)L(S0,S1) + (−1)L(S
′
0,S1) = 0.

From the discussion above, it is clear that the lemma allows us to group
the terms in (30) into canceling pairs and finishes the proof of Theorem 3.3.

Proof. Recall thatS ′
0 is exactly the same pairing asS0 except thati andj

have been exchanged. Thus the part a) is obvious from the definitions.
For the part b) let us consider two different cases.

• If i andj are in different loops of the unionL(S0, S1), thenL(S ′
0, S1)

is obtained fromL(S0, S1) by joining the loops containingi andj.
ThusL(S ′

0, S1) has one loop less thanL(S0, S1) and the result fol-
lows.

• If i andj are in the same loop of the unionL(S0, S1), note that they
must also be in the same cycle ofS0 ◦ S1 (recall that each loop of
L(S0, S1) is composed of two cycles ofS0 ◦ S1; conditions (P0),
(P1) imply that one of these cycles is mapped byf to boxes in the
even columns and the other is mapped to boxes in the odd columns
of 2λ). In this case,L(S ′

0, S1) is obtained fromL(S0, S1) by cutting
the loop containingi andj into two parts. ThusL(S ′

0, S1) has one
loop more thanL(S0, S1) and the result follows. �

3.5. Proof of Theorem 1.8. In this paragraph we express theN functions
in terms of Stanley’s coordinatesp andq. This is quite easy and shows the
equivalence between Theorems 1.7 and 1.8.

Functionf : [2k] → λ can be alternatively viewed as a function on
the set of edge-sides of the mapM associated to pair-partitionsS0, S1, S2.
Condition (Q0) implies that this functionf is, in fact, well-defined as a
function on the edges of the underlying graphG. It is easy to check that in
this setup conditions (Q1) and (Q2) take the following equivalent form:

(Q1’) If two edges have the same white extremity inG, their images byf
are in the same column ofλ.

(Q2’) If two edges have the same black extremity inG, their images byf
are in the same row ofλ.

For a given bipartite graphG will denote byN (1)
G (λ) the number of the

functionsf : EG → λ which fulfill conditions (Q1’) and (Q2’). This
definition was chosen in such a way thatN

(1)
G = N

(1)
S1,S2,S3

whenG is the
bipartite graph underlying the maps associated to pair-partitionsS1, S2, S3.
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Lemma 3.6.LetG be a bipartite graph,V◦(G) (resp.V•(G)) its set of white
(resp. black) vertices. One has:

N
(1)
G (p× q) =

∑

ϕ:V•(G)→N⋆

∏

b∈V•(G)

pϕ(b)
∏

w∈V◦(G)

qψ(w),

whereψ(w) = maxb ϕ(b), w running overb which are neighbors ofw in
G.

Proof. Let g : EG → λ be a function verifying conditions (Q1’) and (Q2’).
As g fulfills (Q1’), all the edges leaving a vertexb ∈ V•(G) have their image
by g in the same rowrb. We defineϕ(b) as the integeri such that

p1 + · · ·+ pi−1 < rb ≤ p1 + · · ·+ pi.

This associates tog a functionϕ : V•(G) → N
⋆. The number of pre-images

of a given functionϕ can be computed as follows:
• we have to choose, for each black vertexb, the value ofrb. Due to

the equation above, one haspϕ(b) choices for each black vertexb;
• then we have to choose, for each white vertexw, the value ofcw,

the common column of the images byg of the edges leavingw.
This value can not be greater thanqψ(w), otherwise the image of the
edge linkingw with its black neighbor which maximizesϕ would
be outside the Young diagramλ. Finally, one hasqψ(w) choices for
each white vertexw.

• we have no more choices as a functiong : EG → λ verifying (Q1’)
and (Q2’) is uniquely determined by the two collection of numbers
(cw)w∈V◦(G) and(rb)c∈V•(G). �

The above lemma shows that Theorem 1.7 implies Theorem 1.8.

4. KEROV POLYNOMIALS

4.1. General formula for Kerov polynomials. Our analysis of zonal Kerov
polynomials will be based on the following general result.

Lemma 4.1. LetG be a finite collection of connected bipartite graphs and
let G ∋ G 7→ mG be a scalar-valued function on it. We assume that

F (λ) =
∑

G∈G

mGN
(1)
G (λ)

is a polynomial function on the set of Young diagrams; in other wordsF
can be expressed as a polynomial in free cumulants.

Let s2, s3, . . . be a sequence of non-negative integers with only finitely
many non-zero elements; then

[Rs2
2 R

s3
3 · · · ]F = (−1)s2+s3+···+1

∑

G∈G

∑

q

mG,
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where the sums runs overG andq such that:

(b) the number of the black vertices ofG is equal tos2 + s3 + · · · ;
(c) the number of all vertices ofG is equal to2s2 + 3s3 + 4s4 + · · · ;
(d) q is a function from the set of the black vertices to the set{2, 3, . . .};

we require that each numberi ∈ {2, 3, . . . } is used exactlysi times;
(e) for every subsetA ⊂ V•(G) of black vertices ofG which is nontriv-

ial (i.e.,A 6= ∅ andA 6= V•(G)) there are more than
∑

v∈A

(
q(v)−

1
)

white vertices which are connected to at least one vertex fromA.

This result was proved in our previous paper with Dołęga [DFŚ10] in
the special case whenF = Σ

(1)
n andG is the collection of bipartite maps

corresponding to all factorizations of a cycle, however it is not difficult to
verify that the proof presented there works without any modifications also
in this more general setup.

4.2. Proof of Theorem 1.12.

Proof of Theorem 1.12.We consider for simplicity the case whenµ = (k)
has only one part. Theorem 1.7 can be rewritten in the form

F (λ) := Σ
(2)
k

(
1

2
λ

)
=

1

2

∑

S0

(−1)|µ|+|L(S0,S1)| N
(1)
S0,S1,S2

(
1

2
λ

)
.

FunctionF is a polynomial function on the set of Young diagrams [Las08].
Then the map corresponding toS0, S1, S2 is connected and Lemma 4.1 can
be applied. Sinces1 + s2 + · · · is equal to the number of black vertices and
|L(S0, S1)| is equal to the number of white vertices,

[Rs2
2 R

s3
3 · · · ]F =

1

2
(−1)1+|µ|+2s2+3s3+4s4+···

∑

S0

∑

q

1,

where the sum runs overS0 andq such that the corresponding mapMS0,S1,S2

andq fulfill the assumptions of Lemma 4.1. Under a change of variables
λ̃ = 1

2
λ we haveΣ(2)

µ (λ̃) = F (λ) andRi = Ri(λ) = R
(2)
i (λ̃) which finishes

the proof.
Consider now the general caseµ = (k1, . . . , kℓ). In an analogous way

as in [DF́S10] one can show thatκid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

) is equal to the right-
hand side of (8), whereS1, S2 are chosen so thattype(S1, S2) = µ and
the summation runs overS0 with a property that the corresponding map
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MS0,S1,S2 is connected. Therefore

F (λ) := (−1)ℓ−1κid(Σ
(α)
k1
, . . . ,Σ

(α)
kℓ

)

(
1

2
λ

)
=

1

2ℓ(µ)
(−1)ℓ−1

∑

S0

(−1)|µ|+|L(S0,S1)| N
(1)
S0,S1,S2

(
1

2
λ

)
.

The remaining part of the proof follows in an analogous way. �
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