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ZONAL POLYNOMIALS VIA STANLEY-FERAY FORMULA
AND FREE CUMULANTS

VALENTIN FERAY AND PIOTR SNIADY

ABSTRACT. We study zonal characters which are defined as suitably
normalized coefficients in the expansion of zonal polyndsriraterms

of power-sum symmetric functions. We show that zonal chiara@re
explicitly given by an analogue of Stanley-Féray formula ébarac-

ter values of symmetric groups. We also study an analoguesod\K
polynomials, namely we express zonal characters as polat®m free
cumulants and we give an explicit combinatorial interptietaof their
coefficients. In this way, we prove two recent conjecturdsasisalle for
Jack polynomials in the special case of zonal polynomials.

1. INTRODUCTION
1.1. Zonal polynomials.

1.1.1. Background.Zonal polynomials were introduced by Janies [Jam60,
Jam61] (who credits also Hua [Hua63]) in order to solve soneblpms
from statistics and multivariate analysis. They quicklgdéme a fundamen-
tal tool in this theory as well as in the random matrix theay overview
can be found in the book of Muirhead [Mui82] or also in the acluc-
tion to the monograph of Takemura [Tak84]). They also playirapor-
tant role in the representation theory: they appear as mptadrical func-
tions of the pairg&,,, H,) (Where H,, is the hyperoctahedral group) and
(GL4(R), O4), which means that they describe canonical basis of the al-
gebra of left and rightZ,,-invariant (respOg-invariant) functions or6,,,
(resp.GL4(R)).

This last property shows that zonal polynomials can be vieag an
analogue of Schur symmetric functions since the latter analzspherical
functions for the Gelfand paifsS,, x 6,,,S,,) and(GL4(C), Uy). There-
fore, many of the properties of Schur functions can be exdrid zonal
polynomials and this article goes in this direction.

In this article we use a James’ characterization of zonayrohials
[Jam61] as their definition. The elements needed in our dpveént (in-
cluding the precise definition of zonal polynomials) areegivin Section
[2.1. For a more complete introduction to the topic we refehtoChapter

VIl of Macdonald’s book/[Mac95].
1
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The main results of this article are new combinatorial folasdor zonal
polynomials. Note that, as they are a particular case ofsyatknetric func-
tions, there exists already a combinatorial interpretetay them in terms
of ribbon tableaux (due to Stanley [Sta89]). But our formislaf different
type: it gives a combinatorial interpretation to the coédfits of the zonal
polynomialZ, expanded in the power-sum basis as a functiok df more
concrete words, the combinatorial objects describing dedficient ofp,,
in Z, depend onu, whereas the statistics on them depend @im Stanley’s
result it is roughly the opposite). This kind d@ial approach makes appear
shifted symmetric functions [OO97] and is an analogue oémécdevelop-
ments concerning characters of the symmetric group: mdeelsiavill be
given in Section 1]3.

1.1.2. Jack polynomialsJack [Jac71] introduced a family of symmetric
functionsJi“‘) depending on an additional parametefThese functions are
now calledJack polynomials For some special values afthey coincide
with some established families of symmetric functions. Eamup to mul-
tiplicative constants, forv = 1 Jack polynomials coincide with Schur poly-
nomials, forae = 2 they coincide with zonal polynomials, for = % they
coincide with symplectic zonal polynomials, far= 0 we recover the ele-
mentary symmetric functions and finally their highest degremponent in
« are the monomial symmetric functions. Moreover, some atpecializa-
tions appear in different contexts: the case- 1/k, wherek is an integer,
has been considered by Kadell in relation with generabnatiof Selberg’s
integral [Kad97]. In addition, Jack polynomials far= —(k + 1)/(r + 1)
verify some interesting annihilation conditions [FIMMO02]

Jack polynomials for a generic value of the parametenight appear
rather artificial and invented since, unlike Schur polyraisor zonal poly-
nomials, they do not seem to have a direct interpretatiangfample in
the context of the representation theory or as zonal sidtinctions for
some Gelfand pairs. Nevertheless, over the time it has bleanrsthat
several results concerning Schur and zonal polynomialbeageneralized
in a rather natural way to Jack polynomials (see, for exantpework of
Stanley[[Sta89]), therefore Jack polynomials can be vieaged natural in-
terpolation between several interesting families of syniméunctions at
the same time.

An extensive numerical exploration and conjectures dond.dssalle
[Las08, Las09] suggest that the kind of combinatorial foamwe estab-
lish in this paper have generalizations for any value of tammetera.
Unfortunately, we are not able yet to achieve this goal yet.
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1.2. The main result 1: a new formula for zonal polynomials.

1.2.1. In terms of pair-partitions.The combinatorial objects we need are
pair-partitions:

Definition1.1 A pair-partitionP of [2n] = {1,...,2n} is a set of pairwise
disjoint two-element sets, such that their (disjoint) umi®equal tg2n|. A
pair-partition can be seen as an involution®f] without fixpoints, which
associates to each element its partner from the pair.

The simplest example is tHigst pair-partition, which will play a particu-
lar role in our article:

S={{1,2},{3,4},...,{2n — 1,2n}}.

When one has two pair-partitiorts , S; of the same sef2n], it is in-
teresting to represent them graphically as a collectiordges connecting
the corresponding elements of the pairs. Then the unioneofjthphical
representations &f; and.S, is a collection of loops which will be denoted
by £(5;,52). Let2¢; > 2¢, > --- be the ordered lengths of these loops
(notice that the length of each loop must be an even numbé&gn,Tif we
view the pair-partitions as involutions, the lengths of tiyeles of the per-
mutationS; o S, are given byly, (1, 0y, ls, . ... The partition({y, fs, ... ) is
called the type of2(S}, S»). We define the sign of a union of pair-partitions
as follows:

(_1>£(51,SQ) — (_1)(51—1)+(£2—1)+--- _ (_1)n—\£(51,52)|

and the power-sum symmetric function

1) Pr(si,s:) (21, 22, o) = Dey gy, (21, 22, ... ) = H Z Zf
i

Let A = (A1, Ag, ... ) be a partition of,; we consider the Young tabledu
of shape2\ = (2), 2, ...) in which boxes are numbered consecutively
along the rows. Permutations @fz] can be viewed as permutations of the
boxes ofI". Then a pai.Sy, S,) is called7-admissiblaf S o S; preserves
each column of” andS; preserves each row.

Theorem 1.2. With the definitions above, the zonal polynomial is given by
Z\ = Z (=155 pris, sn)-
(51,S2) T-admissible
We postpone the proof until SectibnP.6.

Remarkl.3. This theorem is an analogue of a known result on Schur sym-
metric functions:
n!- S\

= o]
@ dlm()\) B Z(_l) Ptype(o1002)»
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FIGURE 1. Example of a labeled map on Klein bottle.

where the sum runs over pairs of permutations o,) of the boxes of the
diagram)\ such thab (resp.o;) preserves the columns (resp. the rows) of
A andtype(o; 00y) denotes the partition describing the lengths of the cycles
of oy o 03. This formula can be found in [Han88, Equation (1.1)] (where
the author tries unsuccessfully to generalize it to Jacksgtric functions).

For a proof, see [§07, Theorem 4].

1.2.2. In terms of maps on surfaces\ labeled bipartite graph drawn on a
(not necessarily orientable and not necessarily conngstathce will be
called amap We will always assume that the surface is minimal in the
sense that after removing the graph from the surface, ther la¢comes a
disjoint collection of open discs. If we draw an edge of sugraph with

a fat pen and then take its boundary, this edge splits inteetige-sidesin

the above definition of the map, lgbeled we mean that each edge-side is
labeled with a number from the s@i] and each number from this set is
used exactly once.

Examplel.4. Figurell shows two different representations of the same map
On the picture on the left-hand side, if one identifies theose sides of the
square respecting the arrows, one obtains a Klein bottleaayrdph drawn

on it. On the right-hand side, we forget the surface and drengtaph on
the plane respecting the order of the edge-sides aroundredelx: one has

to add crossings (information about which edge is above thermne is
irrelevant) and (as the surface is non-orientable) twists.

There is a correspondence between maps and trigfets , S,) of pair-
partitions, given as follows:
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e the pair-partitionS associates to the label of an edge-side the label
of the other edge-side from the same edge;

¢ the pair-partitionS; associates to the label of an edge-side the label
of the other edge-side surrounding the same white corner;

¢ the pair-partitionS, associates to the label of an edge-side the label
of the other edge-side surrounding the same black corner.

Note that the combinatorics of the map can be easily recdvieom
the triplet of permutations, as follows. Each white (redpck) vertex of
degreel corresponds to two cycles of lengtlof S o S; (resp.S o S,) or,
equivalently, to a loop of lengtld of £(S, S;) (resp.L(S, S2)). Each face
of length2d corresponds to two cycles of lengtlof S; 0 S5 or, equivalently,
to a loop of lengthd of £(5;, S2). Therefore, our formula from Theorem
[1.2 can be restated as a summation over maps.

For instance, the map from Figurke 1 is associated to thevoilptriplet
of pair-partitions:

S = {{1,2},{3,4},{5,6},{7,8},{9, 10}, {11, 12}, {13, 14}, {15, 16} }
S1 = {{1,15},{2,3}, {4, 14}, {13,16}, {5, 7}, {6, 10}, {8, 11}, {9, 12} }
Sy = {{1,10},{2,7},{8,13},{9,14},{3,5}, {4, 12}, {6, 15}, {11, 16} }

Note that the uniort U S; has two loops:(1,2,3,4,14,13,16,15) and
(5,6,10,9,12,11,8,7), which correspond to the two white vertices of the
map.

The related combinatorics of maps which are not bipartiseldegen stud-
ied by Goulden and Jacksan [GJ96].

Remarkl.5. It is well-known that bipartite graphs on oriented surfacess
respond to pairs of permutations. Therefore, Schur analo§aur formula
(see Remark113) can be restated as a summation over graphgatable
surfaces.

1.3. Zonal characters. The above formula expresses zonal polynomials in
terms of power-sum symmetric functions. In Secfibn 3, wé extract the
coefficient of a given power-sum. In this way we study an agadoof the
coordinates of Schur polynomials in the power-sum basik@symmetric
function ring. These coordinates are known to be the irrddeicharac-
ters of the symmetric group and have plenty of interestiogerties. Some

of them are (conjecturally) generalizable to the contexémetSchur func-
tions are replaced by Jack polynomials and our results icdise of zonal
polynomials go in this direction.

1.3.1. Characters of symmetric group&or a Young diagram we denote
by p* the corresponding irreducible representation of the sytriocngroup
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S, with n = |A|. Any partition . such thatiu| = n can be viewed as a
conjugacy class i6,,. Letw, € &, be any permutation from this con-
jugacy class; we will denote by p* (1) := Tr p*(7,,) the corresponding
irreducible character value. #f < n, any permutatiomr € &,,, can be also
viewed as an element &,,, we just have to add — m additional fixpoints
to 7; for this reason

Tr p*(p) = Tr p* (p 1P 7111)

makes sense also wher < |A|.
Normalized characters of the symmetric group were definetvdayov
and Kerov[IK99] as follows:

Tr p* (1)

3 YD) = — 1) (n— 1

@) w N =nln=1) ‘(,n il + ldimensionopr
|| factors

(the meaning of the superscript in the notatbﬁ)(A) will become clear
later on). The novelty of the idea was to view the charactea asiction
A 2,(}) (M) on the set of Young diagrams (of any size) and to keep the con-
jugacy class fixed. The normalization constant$ jn (3) wagsen in such
a way that the normalized charactars- Zf}) (A) form a linear basis (when
1 runs over the set of all partitions) of the algelraof shifted symmetric
functions introduced by Okounkov and Olshanski [O097], chhis very
rich in structure (this property is, for example, the keyrppan a recent ap-
proach to study asymptotics of random Young diagrams unldercRerel
measure [I002]). In addition, recently a combinatorialatggion of the
quantity [3) has been given [Sta06, Fér10], which is suitdbt study of
asymptotics of character valuesJ@7].

Thanks to Frobenius’ formula for characters of the symmoegroups
[Fro00], definition [(B) can be rephrased using Schur fumstidVe expand
the Schur polynomiat, in the base of the power-sum symmetric functions
(p,) as follows:

n!
@ Y ),

p:
lpl=IAl

for some numberé,()l)()\). Then

Al = ] +ma(p
(5) ZLl)(A) _ (‘ | ,‘rn|1<,u) 1( )) ZM efll,iu‘f‘”‘()\%
where

2 = papiz - ma(p)! mo(p)!- -
andm;(u) denotes the multiplicity of in the partitiong.
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1.3.2. Zonal and Jack characterdn this paragraph, we will define ana-
logues of the quantitﬁﬁ)()\) via Jack polynomials. First of all, as there
are several of them, we have to fix a normalization for Jacknmohials.
In our context, the best is to use the functions denoted bythe book of
Macdonald[[Mac95, VI, (10.22)]. With this normalizatiomehas

1 n‘ S\
= dim(\)’
I = 7,
If in (4), we replace the left-hand side by Jack polynomials:
(6) I =" 000\ p,
Fany
then in analogy td (5), we define
o Al = [p] 4+ ma(p) a

(7) 2@ () = ( () 2 0 V).

This quantities are calleghck charactersNotice that fora. = 1 we recover
the usual normalized character values of the symmetricpgoThe case
a = 2 is of central interest in this article, since then the ledt:tl side of
(@) is equal to the zonal polynomial; for this reasiiﬁ)()\) will be called
zonal character

Study of Jack characters has been initiated by LassalleOf,4sas09].
Just like the usual normalized charact&ls, they are ¢-)shifted sym-
metric functions|[Las08, Proposition 2] as well, which is@d hint that
they might be an interesting generalization of the charact&éhe names
zonal characterandJack characterare new; we decided to introduce them
because quantitieEE?)(/\) are so interesting that they deserve a separate
name. One could argue that this name is not perfect sincd aodalack
characters are ngensu strict@haracters in the sense of the representation
theory. On the other hand, as we shall see, zonal and Jackctbia share
many interesting properties with the usual characters winsgtric groups,
therefore the former can be viewed as generalizations ofatiter which
justifies to some extent their new name.

1.4. The main result 2: combinatorial formulas for zonal characters.

1.4.1. Zonal characters in terms of numbers of colorings functioest
So, S1, So be three pair-partitions of the sek|. We consider the following
function on the set of Young diagrams:

Definition 1.6. Né(lj),SLSQ()\) is the number of functiong from [2k] to the
boxes of the Young diagrarnsuch that for every € [2k]:
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(QO) f(I) = f(Su(1)), in other wordsf can be viewed as a function on
the set of pairs constituting;

(Q1) f(I) and f(S1(1)) are in the same column;

(Q2) f(I) and f(S(1)) are in the same row.

Note that\ — Né(lj),SLSQ()\) is, in general, not a shifted symmetric func-
tion, so it cannot be expressed in terms of zonal charac@nsthe other
hand, the zonal characters have a very nice expressionnts tef the NV
functions:

Theorem 1.7.Let ;. be a partition of the integek and S, S, be two fixed
pair-partitions of the sef2k] whose union has type. Then one has the
following equality between functions on the set of Youngrdias:

1 M
(8) Ef) = T Z(_l)ﬁ(so,sl) 9l£(S0,51)] NSO,51,527

So

where the sum runs over pair-partitions @] and ¢(n) denotes the num-
ber of parts of partitiory..

We postpone the proof to Sectidns]3.1+3.4. This formula isiemme-
diate step towards TheorémI1.8, but we wanted to state it elapendent
result because its analogue for the usual charact&87FTheorem 2] has
been quite useful in some contexts (seS0F [ Fér09]).

1.4.2. Zonal characters in terms of Stanley’s coordinatd$ie notion of
Stanley’s coordinates was introduced by Stanley [Sta04] felind a nice
formula for normalized irreducible character values ofgiiemetric group
corresponding to rectangular Young diagrams. In order teegsize this
result, he defined, given two sequenpeandq of positive integers of same
size (@ being non-increasing), the partition:

pXxXq= (‘ha-~~aQI>---aQI>--->(Jl)-
v v
p1 times p; times

Then he suggested to consider the quadtfﬁ)/(p X q) as a polynomial in
p andq. An explicit combinatorial interpretation of the coeffiois was
conjectured in[[Sta06] and proved in [Fér10].

Itis easy to deduce from the expansiorikﬁ) in terms of theV functions

a combinatorial description of the polynom&{ (p x q).
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Theorem 1.8.Let i be a partition of the integek and S, S, be two fixed
pair-partitions of[2k] whose union has type Then, one has:

9) 2P (pxq)=

_1\k
<2@(1“>) > > II e II (200

So ¢:£(S1,SQ)—>N* IEE(SLS()) l’E,C(SQ,SQ)

wherey(I’) := max; p(w) with [ running over the loops of (.S, S1) hav-
ing at least one element in common with

Proof. It is a direct application of Lemnia 3.6 to Theorem|1.7. O

1.4.3. Lassalle’s conjectureThe following result shows that a conjecture
of Lassalle [Las08] who investigated the expansion of Jdwacters in
terms of Stanley’s coordinates holds true in the case2.

Corollary 1.9. The quantity—1)"s? (p x q) is a polynomial inp and
—q with nonnegative integer coefficients.

Moreover, the coefficient gt"/(—g;)* is equal tol for anyi (Lassalle
conjectured that at least one of the coefficients is equa).to

Proof. Except for integrality of the coefficients this is an immediaon-
sequence of Theoreim 1.8. In order to prove integrality ofcibefficients,
we need another, but closely related, formula, namely Téredr.10. Then,
we just apply Lemma_3l6 and obtain an analogue of Thedrem ittBav
formula which does not have the division By, O

1.5. Combinatorial interpretation of main result 2.

1.5.1. Gluings of polygonsSimilarly as Theoremh 112, also Theorém]1.7
and hence Theoreim 1.8 have a nice combinatorial interpyetat

Let i be a partition of the integdrandsS;, S, be two fixed pair-partitions
of the sef2k] whose union has type. We consider a collection of bipartite
polygons: each polygon corresponds to a loog 0f;, S5) and the number
of sides of the polygon is equal to the size of the loop. Theesdge num-
bered with the integers, . .., 2k such thatS; (resp.S;) associates to the
label of an edge the label of the other edge with the same \{riegp. black)
extremity. As pair-partitionss; and S, are fixed, this is equivalent to the
choice of one marked edge per polygon.

Then the third pair-partitioty, will be seen as a way to glue in pairs the
external sides of the edges of our polygons (we always glgessuch that
their white, resp. black, extremities are glued togeth&fjer performing
these gluings we obtain a map. This map is exactly the one associated to
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the triplet(Sy, S1, S2) in Sectior 1.2.2. Note that the polygons become the
faces ofM.

It is easy to see that the functiczhﬁé(l)?shs2 depends only on the bipartite
graph underlying the map/ associated t¢S, S1, S»). Therefore, EqL(8)
can be read as a sum over all ways to glue a collection of ldlpE/gons
of the values of some function associated to the correspgrgtaphs.

Furthermore, sincel(S,, S1)| is equal to the number of white vertices
in M, the factor2/£(50:51)1 can be interpreted as the number of choices of a
local orientation at each of the white vertices (we recadt thrientation at
a point of a surface is by definition the same as choosing winehof the
two possible directions of rotation will be called clockejs Thereforel(8)
can be equivalently written as

1 1
O O I S b

So choice of orientation
at every white vertex of map

Notice that after ungluing the polygons which formed the méamvith a
fixed orientations at white vertices we obtain the origiaahily of polygons
with additional information about the orientations arotimelwhite vertices.
Therefore[(1D) can be equivalently written as

1
2) _ L(S0,51) (1)
(11) ZL) YUM) Z Z s 50 51,527

choice of orientation Sy
at every white vertex

of the polygons

where the sum oves, is restricted to pair-partitions with a property that
the orientations of all white vertices which are glued thgetby S, must
match.

1.5.2. Gluings of unlabeled polygons and Lassalle’s conjectiuret us chan-
ge now our combinatorial setup: we remove all the labels filoeredges of
the considered family of polygons and, instead, we mark omiéewertex
per polygon. We shall consider the ways to glue the edgesadf paly-
gons and to choose orientations at the white vertices. Thewsy to do
this will be to consider the corresponding problem for thé/gons with
labeled edges and then identify the combinatorial objetiishvdiffer just
by the choice of labeling.

For a given polygon we consider its axial reflection arouredekis pass-
ing through the marked white vertex and its antipodal vert€kese re-
flections commute and hence they generate the group |somdqoﬁ€(“
which describes the symmetry of our setup. This grﬁﬂff acts on the set
of pairs

(12) (choice of orientationsSy)
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which contribute to[(1l1); each orbit of this action contagmenbinatorial
objects which differ only by a change of the labeling of thgesl In other
words, the orbits are the wanted ways of gluing edges andsomgaorien-
tations for unlabeled polygons.

The axes of reflection pass through white vertices and eadhasteflec-
tion flips the orientation of the marked white vertex; it tolls immediately
that the stabilizer of any non-identity element with regpecthis action
is trivial hence every orbit hag’™) elements. In this way we proved the
following result.

Theorem 1.10.Let . be a partition of the integet and Sy, S, be two fixed
pair-partitions of the sef1, ..., 2k} whose union has type Then

2) L(So(R),5 (1)
(13) EEL) o Z(_l) (Sole0:5) NSO(Q)7317327
Q

where the sum runs over the orbitsZﬁ(“) acting on(12) and whereS,(2)
denotes any representative of orbit Alternatively, the summation can
be taken over all ways of gluing edges of unlabeled polyguiith (one
marked white vertex per polygon) and choosing the orientstat the white
vertices.

Remarkl.11 The analogous result in the case= 1 [FS07, Theorem 2]
can be reformulated in the following way which is very simtia Theorem

[1.10: )
Zf}) _ Z(_l)c(so(msl) Néo)(ﬂ),sl,s27
Q

where the summation is over all ways of gluing edges of urdabygolygons
(with one marked white vertex per polygon) and over choid¢esientations
at white vertices in such a way that any two vertices in a cotatecom-
ponent have the same orientation. Alternatively, this camdformulated
in a simpler way which, unfortunately, makes the analogg kgsparent:
the summation is over all ways of gluing edges of unlabeldgigmms in
such a way that the resulting map is orientable and over tbees of the
orientation in each connected component.

1.6. Kerov polynomials.

1.6.1. Free cumulantsFor a Young diagram = (A, )s, ... ) and an inte-
gers > 1 we consider the dilated Young diagram

DS)\ = (8)\1,...,S)\l,S)\Q,...,S)\Q,...).
sti‘r;es sti\nrﬁes
If we interpret the Young diagrams geometrically as coiatd of boxes

then the dilated diagram,\ is just the image oA under scaling by factor
S.
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Following Biane|[Bia98] (who used a different, but equivaldefinition),
for a Young diagram we define itg§ree cumulantg,y (\), R3()\), ... by the
formula .

]ﬁ@%zhngﬁﬂﬂDg)
In other words, each free cumulaRy}.()\) is asymptotically the dominant
term of the character on a cycle of lendth- 1 in the limit when the Young
diagram tends to infinity. It is natural to generalize thi@on using Jack

characters:
(8%

gzﬁgpg)

In fact, the generak case can be expressed simply in terms of the usual
free cumulant thanks to [Las09, Theorem 7] (notice that @unralization
of free cumulants differs from the one in Lassalle’s papgrsdme normal-

ization factors):

Rﬁuy:gg

RV () = Rifa)),
where
aX = (@A, alg, ... )
is the Young diagram stretched anisotropically only alomg®.X axis.
The quantities‘%,ia) (\) are calledv-anisotropic free cumulants of the Young
diagram.

With this definition free cumulants might seem to be rathstract quan-
tities, but in fact they could be equivalently defined in ayvexplicit way
using the shape of the diagram and linked to free probabityence their
name, see [Bia98]. The equivalence of these two descriptizakes them
very useful parameters for describing Young diagrams. \ege they
form a homogeneous algebraic basis of the ring of shiftechsgtric func-
tions, so many interesting functions can be written in teansee cumu-
lants. These features make free cumulants a perfect tobeisttidy of as-
ymptotic problems in representation theory, see for exarfBig98/Sni06].

1.6.2. Jack Kerov polynomialsThe following observation is due to Las-
salle [Las09]. Lett > 1 be a fixed integer and let be fixed. Since

2\ is ana-shifted symmetric function and the anisotropic free clants
(Rl(a))lzg form an algebraic basis of the ring atshifted symmetric func-
tions, there exists a polynomiﬁl,ga) such that, for any Young diagram

SO = KL (R0, B, ).

This polynomial is calledack Kerov polynomial
Thus Jack Kerov polynomials express Jack characters oagytterms
of free cumulants. For more complicated conjugacy classesis out to be
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.....

cumulant

(14) ()R D).

This gives rise tgeneralized Jack Kerov polynomiaﬂ‘s((,?l) 77777 k- INnthe clas-
sical contextv = 1 these quantities have been introduced by one of us and
Rattan[RS08]; in the Jack case they have been studied by Lassallégl.as
We skip the definitions and refer to the above papers for ldetaice gen-
eralized Kerov polynomials are not of central interest fos paper.

1.6.3. Classical Kerov polynomialsfFora = 1 these polynomials are called
simply Kerov polynomials This case has a much longer history and it was
initiated by Kerov [Ker00] and Biané [BiaD3] who proved thathis case
the coefficients are in fact integers and conjectured their-megativity.
This conjecture has been proved by the first-named auth®@rop], also
for generalized Kerov polynomials. Then, an explicit conatorial inter-
pretation has been given by the authors, together withdolie [DFS10],
using a new method.

These polynomials have a deep structure, from a combiahtord ana-
lytic point of view, and there are still open problems comieg them. For
a quite comprehensive bibliography on this subject we tef@®FS10].

Most of properties of Kerov polynomials seem to be genesbiliz in the
case of a general value of the parameterlthough not much has been
proved for the moment (see [Las09]).

1.7. The main result 3: Kerov’s polynomials for zonal characters We
will show the following combinatorial interpretation ofetcoefficients of
zonal Kerov polynomials, analogous to the one from §26].

Theorem 1.12.Let ;4 be a partition and lets,, s3,... be a sequence of
non-negative integers with only finitely many non-zero elein
The rescaled coefficient
(—2)408) (1)l +2s2+3s [(Rgcn)” <R§a>>s‘°’ . ] K®

o

of the (generalized) zonal Kerov polynomial is equal to theher of pairs
(M, q) with the following properties:

(a) M is a map created by gluing pairs of edges of a collection of bi-
partite polygons with the numbers of edggs, 24, ... with one
marked edge per polygon;

(b) the number of the black vertices ff is equal toss + s3+ - - -;

(c) the number of all vertices dff is equal to2s, + 3s3 + 484 + - - -



14 VALENTIN FERAY AND PIOTR SNIADY

(d) ¢ is a function from the set of the black verticesMdfto the set
{2,3,...}; we require that each number € {2,3,...} is used
exactlys; times;

(e) forevery subset C V, (M) of black vertices o/ which is nontriv-
ial (i.e., A # 0 and A # V,(M)) there are more thaly", _ , (q(v) —

1) white vertices of\/ which are connected to at least one vertex
from A.

Conditior{{€) can be reformulated in a number of equivaleysyDFS10].
This result will be proved in Sectidn 4.

Remarkl.13 From the viewpoint of the above result it would be more aes-
thetically appealing to change the definition of Jack characand rather
consider quantitiesxé(“)sz) instead since then the coefficients of zonal
Kerov polynomials would be integers.

1.8. Symplectic zonal polynomials.As mentioned above, the case= %
is also special for Jack polynomials, as we recover the Beecsymplectic
zonal polynomials. These polynomials appear in a quateimianalogue
of James’ theory, see [Mac95, VII.6].

Our formulas have immediate analogues in this case tharike wuality
formula for Jack characters (see [Mac95, Chapter VI, eqodti0.30)]):

(15) 9204)()\) — (_a)\p\—#parts ofp 9204*1)()\/)7

where)\’ is the partition conjugate td. For instance, the analogue of The-
orem 1.2 is:

£(S1,5

(1/2) _ oy (1)

(16) J)\ = Z (_1) _5 Pr(S1,82),
(S1,S2) T’-admissible

where the sum runs over paif$;, S;) of pair-partitions which arg”-
admissible with respect to the Young tabléBuof shape(2))’ in which
cases are numbered consecutively along the rows.

The combinatorial interpretation of Stanley’'s and Kergydynomials
for zonal characters have of course also analogue in thelsgtigpzonal
case. In patrticular, for the symplectic zonal Kerov polymals) one has the
following proposition which is a special case of [Las09, {ecture 14.1]:

Proposition 1.14. Recall that the generalized symplectic zonal Kerov poly-
nomials are defined by:

@7 (DR sy = K2 (R R, ).

ThenK,Sv/?,)vké is a non-homogeneous polynomial with non-negative coeffi-
cients of degreé; + - - -+ k, — ( + 2.
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Proof. This is a consequence of Theorem 1.12 and[EQ. (15). O

1.9. Link with Weingarten function. Zonal characters are linked with
Weingarten functions (see [Mat10, Section 8]). These fonstappear in
the computation of the integral of a monomial in the coortbsaver the
orthogonal or unitary group. Our combinatorial descriptad zonal char-
acters is a good tool in this context: we will use it in a fodhdng article
to show in a natural way that the asymptotics of Weingarterctions for
both unitary and orthogonal groups are the same.

1.10. Maps and zonal characters: the dual picture. It should be stressed
that a previous result linking maps on not necessarily taige surfaces
and zonal characters can be found in the work of Goulden ackkda
[GJ96]. But their result goes in the reverse direction tharsothey count
maps using zonal characters, while we express zonal ckasarding maps.
The same picture exists for maps on orientable surface andsial char-
acters. It would be nice to understand the link between thesalual ap-
proaches.

1.11. Overview of the paper. The paper is organized according to our
three main results. Sectiond 2, 3 &nd 4 are respectivelytedtothe proofs
of main results 1, 2 and 3.

2. FORMULAS FOR ZONAL POLYNOMIALS

The main result of this section is Theorem|1.2, which givesratmnato-
rial formula for zonal polynomials.

2.1. Preliminaries. In this paragraph we give the characterization of zonal
polynomials, which is the starting point of our proof of Them[1.2. This
characterization is due to James and the content of thigmoh can be
found with more details and proofs in his paper [Jam61].

ForZ = v, ®---®uy, € (R?)®* we define a homogeneous polynomial
function of degre@n on the setM;(R) of d x d matrices by

7(X) = (XTv, XTwg) - (X Tvgp_1, XTv,)  for X € My(R)
and for general tensors € (R4)®2" by linearity. Clearly,
$z(X0) = ¢z(X) foranyO € O,4(R);

in other wordsp is invariant under the right action of the orthogonal group

O4(R).
The action ofGL4(R) on (R%)®?" is defined on elementary tensors by

(18) L(’U1®"'®'U2n) :L1)1®"'®L’U2n.
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The groupGL,(R) acts also canonically on the polynomial functions on
M, (R) as follows:
(LX) = fF(LTX).

In this way both(R?)®?" and the space of polynomial functions st (R)
are representations 6fL.;(R) and it is easy to check thatis an intertwiner,
i.e.

Loz = ¢rz.
James proved that, for a given Young diagranthere is a unique (up to
a multiplicative constant) element € (R%)®2" such that:
(a) ¢., is non-zero,
(b) z) (and hence.,) is invariant under the left action of the orthogonal
groupO,(R) € GL4(R),
(c) 2, (and hence,,) belongs to the subrepresentatior(df,(R) cor-
responding to the highest weighk.

By definition, its imagep., is a polynomial function on the se¥1,;(R)
which is invariant under the left and right action of the ogbnal group.
Therefore, the image., (X) only depends on the multis€p(X XT) =
{21,...,2q4} of eigenvalues ofX X”. As ¢., is a polynomial function of

degreen, there exists a symmetric polynomiﬁid) of degreen such that:
=, (X) = Zx(Sp(X XT)).

If d > 2n (inequality that we assume from now on), the polynonﬂéﬂ)
is unique up to a multiplicative constant, which we fix by asgkthat the
coefficient in the expansion in the power-sum symmetric fions is equal
to1:

2" = 1.

The collection of symmetric polynomia&f\d) defines a symmetric function
Z, which is, by definition, the zonal symmetric function.

In the following paragraphs we will use this definition of th@nal sym-
metric function to prove Theorem 1.2. More precisely, wd exhibit an
elementz, € (R%)®2" having propertie§ (a), (b) afdc) and compute the
corresponding symmetric functiafy,.

2.2. Pair-partitions and tensors. If P is a pair-partition of the ground set
[2n], we will associate to it the tensor

Yp = Z 5P(i17---7i2n) €, X e, € (Rd)®2n,
1<iq,.., i27LSd
wheredp(iy, . .., ia,) is equaltol if i, = ¢, forall {k,(} € P andisequalto

zero otherwise. The symmetric gro@,, acts on the set of pair-partitions
(when we interpret the latter as permutation&i),, the action is given by
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conjugation) as well as on the set of tens@$)“2" and it is easy to check
that P — Up is an intertwiner with respect to these two actions.
Recall that we have defined

(19) S={{1,2},{3,4},...,{2n — 1,2n}}.
Notice that with this choice af, one has the following lemma
Lemma 2.1. Let Z € (R4)®*". Then

62(X) = (2, X" )
with respect to the standard scalar product(i?)®2",

Proof. We can assume by linearity th&dt= v, ® . .. ® vs,. The right-hand
side becomes:

(Z, X" g) =
Z <1)1 & "‘®’U2n,X€il ®X€i1 ® ®X€Zn ®X€Zn>

= Z H <U2j—17Xe’ij> ) <U2j>Xeij>

1<it,.in<d  j=1

Z <XT1)2]'_1, 6i> . <XT1)2]', 6i> = H(XTU2j—1,XTU2j>~ UJ

n n
=1 Li<i<d j=1

Lemma 2.2. Let P be a pair-partition of[2n] and S, as before, the pair-
partition of the same set given Ii38). Then

Pup(X) = (Up, XO*"Ug) = Tr [(XXT)] Tr [(XXT)2]---
= peps) (SP(X X)),
where2/y, 2/, . .. are the lengths of the loops 6 P, S).

Proof. Let us consider the case wheféP, S) has only one loop of length
2¢. Up to a renumbering aP which leavesS invariant one can assume that
P = {{2,3},{4,5},...,{2¢ — 2,2¢ — 1},{2¢,1}}. Such a renumbering
corresponds to the action dn» of an orthogonal operator which commutes
with X®%¢ and leavesl ¢ invariant, and thus does not change the value of
dw,(X). Inthis case

Up = E : €j, ¥ej ®ej Q---®ej  Bej | Qej,.
1<)1,..9e<d
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Therefore one has:
¢‘I’P (X> = Z <XTeje7 XT€j1> ' <XT€J'1 ) XT€j2> T <XTejzf17XTeje>
1<d150-,5e<d
= Z <XXT€J'Z7€J'1> ’ <XXT€j17€j2>”'<XXT€J'Z717€J2>
1<d150-,5e<d
= D (XX (XX ) (XXT)
1<5150-,5e<d
= Tr(X X1
The general case is simply obtained by multiplication ofadhe-loop case.
U

It follows that X — ¢y, (X) is invariant under the left action of the
orthogonal groug),(R). The above discussion shows thatfis a pair-
partition (or, more generally, a formal linear combinatadipair-partitions)
then condition (B) is fulfilled forzy, = ¥ p. For this reason we will look
for candidates for, corresponding to zonal polynomials in this particular
form.

Je,Je—1

2.3. Young symmetriser. Let a partition\ be fixed; we denote = |}|.
We consider the Young tableduof shape\ in which boxes are numbered
consecutively along the rows. This tableau was chosen imaueay that if
we interpret the pair-partitio’ as a pairing of the appropriate boxesiof
then a box in the colum; — 1 is paired with the box in the coluni¥ in
the same row, whergis a positive integer (these two boxes will be called
neighbors in the Young diagragi).

TableauT allows us to identify boxes of the Young diagraih with
the elements of the s@n]. In particular, permutations fror&,, can be
interpreted as permutations of the boxe& bf We denote

Py, ={0 € &,,: o preserves each row ah\},
Q2) ={0 € Gy, : o preserves each column i}
and define

Ag) = Z S C[@Qn],

g€Ps)

boy = Z (—1)‘0‘0' € C[ng],
o€Q2x

Cox =barasgy.

The elements,, is calledYoung symmetriseand it is well-known that
there exists some non-zero scalay, such thatusycyy IS a projection. Its
imageC[Sa,]azxcon under multiplication from the right on the left-regular
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representation gives an irreducible representattdonf the symmetric group
(where the symmetric group acts by left multiplication)@asated to the
Young diagram\.

Recall that there is also a central projectionGfiS,,|, denotedp,,,
whose imageC[&,,]p2, under multiplication from the right (or, equiva-
lently, from the left) on the left-regular representatieriie sum of all irre-
ducible representations of typé* contributing toC[&,,,]. It follows that
C[G2,]cay Is @ subspace d[S,,|pay. It follows that there is an inequality

(20) QaxCoy < Pay

between projections i€[S,,], i.e.
Q) CaxP2ax = P2xQ2xCax = Q2)Cax.

2.4. Schur-Weyl duality. The symmetric grou,, acts on the vector
space(RY)®?" by permuting the factors and the linear gratip,(R) acts
on the same space by the diagonal action (18). The two actionmute
and Schur-Weyl duality asserts that, as a representati@h,ok GL,(R),
one has:

(R ~ PV, x Uy,

pH2n

whereV,, (resp.U,) is the irreducible representation &h,, (resp.GL4(R))
indexed byu (as we assumed in Sectibn2.1 thiat- 2n, the representa-
tion U, does always exist). Buixx(V,,) = d,.2.V,, therefore the image
Pax ((Rd)®2") of the projectiorp,, is, as representation 6fL;(R), a sum
of some number of copies of the irreducible representatidilq,(R) as-
sociated with the highest weigh#. Using inequality[(20), we know that
agncan ((RY)®27) is a subspace afsy ((R?)®2"). In this way, we proved
thatas)y con ((Rd)®2") is a representation @tL,(IR) which is a sum of some
number of copies of the irreducible representatiorGaf;(R) associated
with the highest weighi \.

2.5. A tensor satisfying James’ conditions.The formal linear combina-
tion of pair-partitions

Co) S
can be identified with the tensor

2\ = \IICQA-S = Cg)\\I’s € (Rd)®2n

which obviously fulfills condition$ (B) and (c); the conditi[(a) will be
verified later on, after our calculation of zonal polynomi&é completed
and it will become obvious that they are non-zero polynosnial
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Therefore there exists a const@nt such that

1

Den s (X) = - Za(Sp(X)).

The left-hand side can be transformed as follows:

21) Gepus(X)= D > (1) (W5, XMTg)

01€QaN\ 02€Poy

- Z Z (=) PL(o102-5,5)(SP(X)),

01€Q2)\ 02€ Py

where the power-sum symmetric functignshould be understood as i (1).
Finally, one has the following formula for zonal polynonsial

(22) Z=0x Y Y ()7 eioionss).

01€Q2)\ 02€Po)

Lemma 2.3. Let o be a permutation of the boxes @i which preserves
each column. Then

(-1)7 = ()5,

Proof. Young diagranm)\ can be viewed as a concatenation of rectangular
Young diagrams of sizéx 2 (: parts, all of them equal t®); for this reason

it is enough to proof the lemma for the case wRen= i x 2. Permutation

o can be viewed as a pdir"), o) wheres) € &, is the permutation of
j-th column. Then

(—1)7 = (—1)0'(1)(_1>0'(2) _ (_1)(7(1)(0(2))71 _ (_1)(41—1)+(42_1)+..,

wherely, 5, ... are the lengths of the cycles of the permutation (o(?) -
Let (O[e, r]) denote the box of the Young diagram in the columand
the rowr. Then

0SotS(O[L,i]) = 0So~H(O[2,4]) = oS (T[2, (¢@) (7))
=o(0O[1, (0(2))_1(2')]) =0[1, oW (0(2))_ (1)].

SooSo~1S = (0 - S)S permutes the first column and its restriction to the
first column has cycles of length, /5, . . .. The same is true for the second
column. It follows that(c - S)S has cycles of lengthi,, ¢1, (5, (5, ... or,
equivalently, the lengths of the loops 6tc - S, S) are equal t@/y, 205, . ..
which finishes the proof. U
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2.6. Proof of Theorem[1.2.

Proof of Theorerh 112The right-hand side of(22) shows that we need to
study the (signed) collection of conjugacy classes of thenp&ations

(0105 5) 0 S = 010,50, 07 S
which is conjugate to
(071S01) (02505 1) = 515,

whereS; = 0,50, = 0,-S andS, = o, 'So, = 0, '-S are pair-partitions.
In the above calculation and whenever it does not lead tousiori we
denote the composition of permutations simplyray:= 7 o o.

Wheno, varies overP,), pair-partitionS, varies over all pair-partitions
of the boxes of the Young diagram such that each pair of cdaddioxes
lies in the same row of the Young diagram (we fixed the Yountetalll’, so
pair-partitions of the s¢2n| can be viewed as pair-partitions of the boxes of
the Young diagram). Furthermore, each such a pair-partisiobtained for
the same number of permutatioms (that is for2"n! permutations). Thus
replacing the summation over by summation over pair-partitions, for
which each pair of connected boxes lies in the same row ordpgés the
numerical constant.

Analogously, we can replace summation owerin (Q,, by summation
over all pair-partitionsS; with a property that the boxes belonging to each
cycle of S; o S are in one column. Indeed, if we fix a pair-partitiéh
verifying this condition, it can be written ag - .S in 2"n! different ways.
Lemmd 2.8 shows that the sigr1)7* in each of these different writings is
the same, equal to-1)~(%5),

Finally, our zonal polynomial is equal to

(23) Zy=C > (1) 5, 5,

S1 S2

where the sum runs ové&r-admissible(S;, S;). Recall thatl'-admissible
means thab; preserves each row @f andS o S; preserves each columns.

The numerical value of;, = (2"n!)2C, is easy to determine as, by
definition,

P12y = 1.
But the only pairs of -admissible pair-partitionsS;, Ss) such thatZ(.S;, Ss)
is a union ofz loops (the latter implies automatically thet = Ss) is (.5, S).

Therefore the coefficient gff on the right-hand side of (23) 5}, which
must be equal ta. O
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3. FORMULAS FOR ZONAL CHARACTERS

This section is devoted to formulas for zonal characterpamicular we
will prove Theoreni 1J7.

3.1. Reformulation of Theorem[1.7. Let .Sy, S;, S, be three pair-partitions
of the sef2k]. We consider the following function on the set of Young dia-
grams:

Definition 3.1 qu?’sh&()\) is the number of functiong from [2k] to the
boxes of the Young diagra@ such that:

(PO) f(I) andf(Sy(l)) are neighbors in the Young diagrani.e., if f({)
is in the2i 4+ 1-th column (resp2i + 2-th column),f(Sy(1)) is the
box in the same row but in th# + 2-th column (resp2i + 1-th
column);

(P1) f(1) andf(Sy o Si(1)) are in the same column;

(P2) f(I) andf(S:(l)) are in the same row.

Lemma 3.2. Let .Sy, Si, S, be pair-partitions. Then

2 £(S0,8 1
Néo),SLSz = 2| (% 1)‘N~(90),S1,S2'

Proof. Let A be a Young diagram and Igtbe a functionf : [2k] — 2\
verifying properties (P0), (Pl) and (P2). We consider thggationp :
2\ — A, which consists of forgetting the separations between ¢inghivors
in 2\. More precisely, the boxd&: — 1, j) and(2i, j) of 2\ are both sent to
the box(i, j) of \. Itis easy to check that the compositifn= p o f fulfills
[(QO),[(RI)[(Q2).

But a functiong : [2k] — X\ verifying[(Q0),[(QI)) (Q2) can be written
as f for exactly 214509l different functionsf. Indeed, we can choose
independently, for one numbein each loop ofZ(.Sy, S; ), which of the two
possible values should be assigned td). The functionf is then entirely
determined by these choices because of propérties (POPaRd ( O

The above lemma shows that in order to show Thedrein 1.7 itdegn
to prove the following, equivalent statement:

Theorem 3.3. Let i be a partition of the integek and S, S, be two fixed
pair-partitions of the sef2k] whose union has type. Then one has the
following equality between functions on the set of Youngrdias:
1
2) _ £(S0,51) nr(2)
(24) Zf‘) - W Z(_l) (5 1)NSO,S17S2’

So

where the sum runs over pair-partitions|af].
We will prove it in Section§ 3]2=3.4.
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3.2. Extraction of the coefficients. Firstly, let us consider the case where
\u| = |A]. If we look at the coefficients of a given power-sum functjgn
in .Jy, using Theorem 112, one has:

(25) pZ= Y (FD)FES),

(S1,S2) T-admissible

type £(S1,S2)=p

This equation has been proved in the case wiieand.S are, respectively,
the canonical Young tableaux and the first pair-partitiar the same proof
works for any fillingT" of 2 by the elements gR|\|] and pair-partitionS
as long asS matches the labels of the pairs of neighborgkf As they are
(2|A)! fillings T" and one corresponding pair-partitiSn= S(7") per filling,
one has:

(26) [Pu) 2 = M ,Z S (—1)E8M51),

T (S1,S2) T-admissible
typeC(S1 So)=p
where the first sum runs over all bijective fillings of the demg 2\. We
can change the order of summation and obtain:

1

2= == Y. [ Do (=D (8, 9,) is T-admissible |

CIADY &= \F
typo(slst)::u'

where[conditior] is equal tol if the condition is true and is equal to zero

otherwise. The next step is to show that the expression ipanenthesis

does not depend qb;, S;). This is a consequence of the following lemma:

Lemma 3.4. If we consider the diagonal action @,,, on couples of pair-
partitions given by

0-(81,8) = (0-51,0-55) = (65107, 0S,071),

then the set of pairs of pair-partitions of a given type isahkaan orbit of
this action.

Proof. Let us represent the pdif;, S2) as a graph as explained in Section
[1.2.1, except that edges corresponding to pairs; ifresp.S.,) are colored
in blue (resp. red). Then two pairs have the same type if ahdibtheir
graphs are isomorphic, which is equivalent to the existehegpermutation

o sending one couple to the other. O

The lemma also helps to count the number of couples of a giysyL
Indeed, the stabilizer of a coup(#8;, S») is easy to describer can permute
the loops of( 51, S2) which gives rise to the facton, (1)!ma(p)! - - -, where
m;(p) is the multiplicity of the part in x. After we have fixed WhICh loop
is sent to which loop, we can choose the image of one elemeidqe(the
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images of the other elements of the loop are then uniquelraéed).
Finally, the cardinality of the stabilizer is

l_ImZ H 2u;) =: 2°W 2,
J

So the number of coupless;, Ss) of type i is equal to(2|\])!/ (24 z,)
and, if|u| = ||, one has:

1 . .
SPN) = 2, [pu) 2y = ) D (—1)AEM5 (8, S,) is T-admissible
where(S, Ss) is any fixed couple of pair-partitions of type

This last equality can be rewritten in the following form. |[lfj = ||,
one has:

1 ) o2
(27) 21(12)()\) - 2¢(w) Z(_l)ﬁ(&)vs )Néo),shsz()\)’
So

Whereﬁéi?sl,&()\) is the number of bijective fillingg" of the Young dia-
gram2) such that(Sy, Ss) is T-admissible and, = S(7). Note that this
corresponds exactly to the conditions (F0), [P1)[and (P&)rcase: = n.

3.3. Extending the formula to any size. Let us now look at the case where
\u| = k < n =|\. We denotg: = p1"~*. Then, using the formula above
for [pz]Z», one has:

@) () = » n—k+mi(p),
0= (" i

_ 1 (S0,51) A7(2)
= S (= )l Z(—l 0,51 NS‘ES‘TSZO\)

Where(§1, §2) is any fixed couple of pair-partitions of type We can
choose it in the following way. L€tS;, Ss) be a couple of pair-partitions of

the set{1, ..., 2k} of type . and defineS, andsS, by, fori = 1,2:
Si=S;U{{2k+1,2k+2},....{2n — 1,2n}}.
With this choice of(S;, S,), it is quite obvious thaINQ 75*2(’\) =0
unless
(28) ={{2k+1,2k+2},...,{2n—1,2n}}.
Indeed, for any > k conditior[(@) shows thagt(2{ + 1) and f (Sp (20 +2))
are in the same column; furthermore condition {P0) shows fti + 2)

and f(Sy(2! + 2)) are neighbors and hence they are in the same row and
condition (P2)) shows that(2/ + 1) and f(2] + 2) are in the same row. In
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this way we proved thaf (2! + 1) and f(Sy(2( + 2)) are in the same row
and column hencég(2] + 1) = f(S5y(20 + 2)) therefore2l + 1 = Sy (20 + 2)
which proves[(28).

In the case wheré (28) is fulfilled, we dendfe = So|, ..
bijective fillingsT counted inﬁé?,sv < () are obtained as follows:

e the boxes corresponding to the numbkr, . . ., 2k are given by an
injective functionf verifying conditiong (PQ), (P1) arid (B2) (with
respect tq.Sy, S1, S2));

¢ the only condition on the places of the numbgks+ 1,...,2n is
that numbergi — 1 and2i (for k£ < ¢ < n) must be in neighboring
boxes of the diagrard)\. Therefore there arg"—*(n — k)! ways to
place these numbers in the remaining boxes.

Therefore

The

NO - () =2 (n = R NG, 6, (M),
Whereﬁg))’sh&()\) is the number of injective functiong : [2k] — 2\
verifying conditions$ (PQJ, (P1) and (R2) (in this definitjdihe ground set of
So, S andS, is [2k]). Notice that this definition oV is an extension of
the one given at the end of Sectlon|3.2 which correspond®toabke where
k is the size of\ (and thus the functiorf must be a bijective filling").
The above discussion shows that
1

2) _ £(S0,51) A7(2)
(29) Z/(i) o W Z (_1) o 1)NSO,S17S2’

So pair-partition
of {1,....2||}

where(.Sy, S2) is any couple of pair-partitions of type

3.4. Forgetting injectivity. In this section we will prove Theorelm 3.3 (and
thus finish the proof of Theorelm 1.7). In other terms, we ptbe¢Eq. [(29)

. . . . (2 2

is still true if we replace in each term of the SUV@O),SL& by Né()),sl,sz- To
do this, we have to check that, for angn-injectivefunction f : [2|u|] —
2, the total contribution

(30) Y (=1)FEeS) [ £ fulfills [PO),[(PT) and (P3)
So pair-partition
of [2]u]]

of f to the right-hand side of Ed. (R9) is equal to zero.
Let us fix a couplé Sy, Sy) of pair-partitions of type:.
Lemma 3.5. Let f : [2|u|] — 2A with f(¢) = f(j). Then

a) conditions (PQ), (P1) and (P_2) are fulfilled f&¥, if and only if they
are fulfilled forS; = (i j) - So = (i 7)So(i 7);
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b) if these conditions are fulfilled, then
(—1)~£050:5) 4 (—1)£050:51) — g,

From the discussion above, it is clear that the lemma allew® @group
the terms in[(30) into canceling pairs and finishes the prodheoreni 3.8.

Proof. Recall thatS|, is exactly the same pairing & except that andj
have been exchanged. Thus the part a) is obvious from thetatefa
For the parf B) let us consider two different cases.

e If s andj are in different loops of the uniofi( Sy, S1), thenL(.Sj, Sh)
is obtained from_(Sy, S;) by joining the loops containingand .
Thus (S, S1) has one loop less thafy(.Sy, S1) and the result fol-
lows.

e If 7 andj are in the same loop of the unidi{ S, S;), note that they
must also be in the same cycle &f o S; (recall that each loop of
L(Sy, S1) is composed of two cycles @i, o S;; conditiong (PQ),
[(PI) imply that one of these cycles is mappedfbyp boxes in the
even columns and the other is mapped to boxes in the odd celumn
of 2)\). In this casef(S], S1) is obtained fromC(Sy, S;) by cutting
the loop containing and; into two parts. Thusl(Sj, S1) has one
loop more tharnC (.S, S1) and the result follows. O

3.5. Proof of Theorem[1.8. In this paragraph we express thefunctions
in terms of Stanley’s coordinatgsandq. This is quite easy and shows the
equivalence between Theorems| 1.7 1.8.

Functionf : [2k] — X can be alternatively viewed as a function on
the set of edge-sides of the map associated to pair-partitiort), S, Ss.
Condition[(Q0) implies that this functioff is, in fact, well-defined as a
function on the edges of the underlying gra@hlt is easy to check that in

this setup conditior{s (Q[1) and (Q2) take the following eglént form:

(Q1’) If two edges have the same white extremitydntheir images byf
are in the same column of

(Q2’) If two edges have the same black extremityintheir images byf
are in the same row of.

For a given bipartite grapliy will denote byNg)()\) the number of the
functions f : Es — X which fulfill conditions[(QT") and (QZ2]). This
definition was chosen in such a way thét’ = N, o whenG is the
bipartite graph underlying the maps associated to ba{iiﬁnms S, 52, 95.
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Lemma 3.6.LetG be a bipartite graph},(G) (resp.V,(G)) its set of white
(resp. black) vertices. One has:

NYexa= Y I] rew qu

Ve (G)—=N* beVa (G) weVs (G

wherey(w) = max, ¢(b), w running overb which are nelghbors ofv in
G.

Proof. Letg : E; — X be a function verifying conditions (Q1’) and (QR").
As g fulfills all the edges leaving a vertéxc V,(G) have theirimage
by ¢ in the same row,. We definep(b) as the integei such that

prte P <Tp S pitcc A+

This associates tgpa functiony : V,(G) — N*. The number of pre-images
of a given functiony can be computed as follows:

e we have to choose, for each black verbexhe value ofr,. Due to
the equation above, one has;) choices for each black vertéx

e then we have to choose, for each white veriexthe value ofc,,,
the common column of the images kyof the edges leaving.
This value can not be greater than,,, otherwise the image of the
edge linkingw with its black neighbor which maximizes would
be outside the Young diagram Finally, one hag, ., choices for
each white vertexv.

e we have no more choices as a functipnE; — X verifying[(Q1")
and (Q2) is uniquely determined by the two collection of rhers

(Cw)weve(@) ANA(73) ceva()- O
The above lemma shows that Theoifend 1.7 implies Thebreim 1.8.

4. KEROV POLYNOMIALS

4.1. General formula for Kerov polynomials. Our analysis of zonal Kerov
polynomials will be based on the following general result.

Lemma 4.1. LetG be a finite collection of connected bipartite graphs and
letG > G — mg be a scalar-valued function on it. We assume that

N =Y meNg' (A

Geg
is a polynomial function on the set of Young diagrams; in otherds F'
can be expressed as a polynomial in free cumulants.
Let s9,83,... be a sequence of non-negative integers with only finitely
many non-zero elements; then

[RZR3?---|F = (-1) sats3+- HZZmG’

Geg ¢
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where the sums runs ovéfrandq such that:

(b) the number of the black vertices@fis equal tos, + s3 + - - -;

(c) the number of all vertices @f is equal t02sy + 3s3 + 454 + - - +;

(d) ¢ is afunction from the set of the black vertices to the{ge8, . . . };
we require that each number {2.3, ...} is used exactly; times;

(e) for every subset C V,(G) of black vertices of; which is nontriv-
ial (i.e., A # 0 and A # V,(G)) there are more thai}, ., (q(v) —
1) white vertices which are connected to at least one verter #o

This result was proved in our previous paper with Dotega$D#] in
the special case whefi = » andg is the collection of bipartite maps
corresponding to all factorizations of a cycle, howeves ihot difficult to
verify that the proof presented there works without any rficalions also
in this more general setup.

4.2. Proof of Theorem[1.12.

Proof of Theorerh 1.12We consider for simplicity the case when= (k)
has only one part. Theordm 1.7 can be rewritten in the form

1 1 1
PO =5 () = 3o v (33).

So

FunctionF is a polynomial function on the set of Young diagraims [Las08]
Then the map corresponding £, S1, S> is connected and Lemrha 4.1 can
be applied. Since; + s, + - - - is equal to the number of black vertices and
|L£(So, S1)| is equal to the number of white vertices,

[R;2R§3 .. ] F = %(_1)1+|,u|+282+383+434+--- Z Z 1
So g

where the sum runs ove&p andg such that the corresponding maf, s, s,
andq fulfill the assumptions of Lemma 4.1. Under a change of véemb
A= xwe haver? () = F(\) andR; = R;(\) = R ()) which finishes
the proof.

Consider now the general cage= (k,...,k¢). In an analogous way
as in [DFS10] one can show thafd(E,(jf), . Z,Efj)) is equal to the right-
hand side of[(B), wheré&;, S, are chosen so thatpe(S;, S2) = p and
the summation runs ovef, with a property that the corresponding map
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Ms, s, .s, is connected. Therefore
i « « 1
F() = ()42, ) <§>\> -

1 -1 +/£(S0,8 (1) 1
2Z(M)(_1) Z(—l)'“' £(S0,51)] Ng's, s, 5)\ .

So
The remaining part of the proof follows in an analogous way. O
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