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Abstract. The ∆E effect is often presented as the dependency of the Young’s modulus of a material on

its state of magnetization. Nevertheless, the elastic properties of a magnetic material do not depend on

the magnetization state. Actually, the sensitivity of the magnetostriction strain to the application of a

stress explains the ∆E effect. According to this statement, a semi-analytical model for the ∆E effect is

proposed, in which magnetization rotation is not considered. An experimental procedure to measure the

∆E effect in magnetic materials is then built-up. Experimental and modeling results are finally compared,

with satisfying agreement.

PACS. PACS-key discribing text of that key – PACS-key discribing text of that key

1 Introduction

The Young’s modulus E of a material is the ratio between

the stress σ and the elastic strain εel - measured in the

direction parallel to the applied stress - in the case of a

tension or compression test (equation (1)).

E =
σ

εel
(1)

When a stress is applied to a magnetic material, stress-

strain response appears to be non-linear (figure 1). This

effect is called the ∆E effect [1,2]. It is often presented

as a dependency of the Young’s modulus E to the stress

level. On the other hand, the ∆E effect depends on the

state of magnetization of the material as illustrated in

figure 1: the Young’s modulus of a demagnetized speci-
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men appears to be lower than the Young’s modulus of the

same specimen magnetized at saturation. Thus, the ∆E

effect could be seen as an apparent loss of linearity in the

elastic behavior of demagnetized specimens. But it can

also be interpreted as a consequence of the effect of stress

on the magnetostriction strain (magnetostriction is the

spontaneous deformation associated to magnetic domain

structure evolution). The ∆E effect can consequently be

dissociated from the elastic behavior.

σ

ε

saturated

demagnetized

Fig. 1. Illustration of ∆E effect on a tensile stress-strain curve

(ε is the total strain).

Indeed, the application of stress modifies the mag-

netization state of magnetic materials and generates a

magnetostriction strain. This magnetostriction strain εµ

is superimposed to the elastic strain εel, so that the to-

tal measured strain ε is defined by equation (2), all the

strains being measured in the direction parallel to the ap-

plied stress.

ε = εµ + εel (2)

The apparent Young’s modulus Ea is defined by equa-

tion (3).

Ea =
σ

εµ + εel
(3)

In the case of a saturated material, the magnetic do-

main structure has reached a saturated configuration and

the magnetostriction strain cannot evolve anymore. The

apparent Young’s modulus Es
a is then defined by equa-

tion (4), corresponding to the original definition of the

Young’s modulus given by equation (1).

Es
a =

σ

εel
= E (4)

For a given initial magnetic configuration, the ∆E ef-

fect can be quantitatively defined as a function of the ap-

plied stress σ following equation (5):

∆E

E
=

E − Ea(σ)

Ea(σ)
=

εµ(σ)

εel(σ)
(5)

The value of the Young’s modulus E can be easily

identified thanks to an usual tensile test1, for a stress level

such that the stress-strain curve is linear. In the linearity

area of the curve, we define:

E =
dσ

dε
(6)

A predictive model for the ∆E effect should then rely

on the description of the effect of stress on the magneto-

striction strain. Very few models are available in the lit-

erature. Squire treated the case of amorphous ribbons [3],

but did not address the case of crystalline materials. This

latter point is the purpose of that paper. After a brief pre-

sentation of the energetic terms involved in the magnetic

equilibrium of a ferro- or ferri-magnetic body volume el-

ement, a simplified approach for the ∆E effect in cubic

single crystals is presented, in which magnetization rota-

1 whatever the magnetic state of the specimen.
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tion is not considered2. It is applied both for materials

with positive and negative anisotropy constants. An ex-

tension to the behavior of polycrystals is then proposed

and results are compared to original experimental ones.

2 Magneto-elastic equilibrium

The magneto-elastic equilibrium of a ferro- or ferri-magnetic

body can be seen as the result of a competition between

several energetic contributions [4].

– The exchange energy W ex is related to the ferromag-

netic coupling effect between neighboring atoms, tend-

ing to favor an uniform magnetization in a volume el-

ement.

– The magneto-crystalline energy WK tends to align the

magnetization along particular directions, called ”easy

axes”. These easy magnetization directions are mostly

connected to crystallographic structure. In the case of

iron, whose crystallographic structure is body cubic

centered, the anisotropy constant K1 is positive and

magnetization is aligned along <100> axes (six direc-

tions3). In the case of Nickel, whose crystallographic

structure is face cubic centered, the easy axes are the

eight <111> directions (figure 2).

– The magneto-static energy Wmag tends to align the

magnetization direction with the magnetic field direc-

2 Rotation is the mechanism considered in [3]. In that sense,

our proposal is complementary to this previous one and will

not apply to amorphous materials.
3 the notation used for the crystallographic directions refers

to the Miller indices.

[100]

[011]

[111]

Fig. 2. Crystallographic directions in the cubic symmetry

(Miller indices).

tion, or, at least, to energetically favor domains for

which the magnetization direction is close to the mag-

netic field direction.

– The elastic energy W el introduces the magneto-elastic

interactions in a ferromagnetic crystal. It is often called

”magneto-elastic” energy.

The competition between these energetic contributions

explains the existence of the typical magnetic domain mi-

crostructure of magnetic materials. Each magnetic domain

is uniformly magnetized at saturation. For low magnetic

field level, the magnetization of a magnetic domain is

aligned along an easy axis.

The magnetization process is the result of two con-

comitant processes. On one hand, the magnetic walls, sep-

arating one domain from another, are moving, modifying

the mean magnetization in the material. On the other

hand, the magnetization direction can rotate out of its

initial easy axis. This rotation mechanism is encountered

when the energy given by the applied magnetic field is high

enough to compensate the magneto-crystalline anisotropy

energy. This situation is usually reached for medium to
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high magnetic fields. The application of a stress signifi-

cantly modifies the magnetization of the material, through

the contribution of the elastic energy.

Finally, the elastic energy strongly depends on the lo-

cal magnetostriction strain, through the mechanical in-

compatibilities. This magneto-elastic coupling is at the

origin of the ∆E effect.

3 A simplified approach for the ∆E effect in

single crystals

We develop hereafter a simplified approach for the descrip-

tion of the ∆E effect in single crystals. This approach

is inspired by a multiscale model for the prediction of

magneto-elastic reversible behavior of ferromagnetic ma-

terials presented in [5]. The restriction to the case of no

applied magnetic field allows an analytical derivation of

the ∆E effect.

The approach is limited to the case when no magnetic

field is applied, so that the magneto-static energy does

not appear in the definition of the magnetic equilibrium

(Wmag = 0).

We suppose that no rotation mechanism occurs in the

magnetic domains. The magneto-crystalline anisotropy en-

ergy is then uniform within a single crystal and does not

participate to the evolution of the magnetostriction strain

(WK = constant). The magnetization in a domain is al-

ways aligned along an easy crystallographic direction.

We choose a simplified description of the single crystal mi-

crostructure. The crystal is seen as an aggregate of mag-

netic domains. Considering that only easy directions can

be encountered for the magnetization in the domains, we

divide the single crystal into domain families (num. α),

each family being associated to the corresponding easy

axis. In the case of <100> easy axes, only six domain

families are possible (α = {1, . . . , 6}), eight in the case of

<111> easy axes (α = {1, . . . , 8}).

The exchange energy W ex is responsible for the local

coupling between magnetic moments. It does not partici-

pate anymore in the energetic description of such an ag-

gregate (wall energy is not considered, exchange energy is

hidden in the concept of domain family).

In such conditions, the elastic energy will be the only en-

ergetic term explicitly considered in the description of the

magnetic equilibrium of the single crystal, because this

term is not identical from one domain family to another.

The elastic energy W el
α of a domain α can be written [5]:

W el
α = −σc : ε

µ
α (7)

where σc is the mean stress - second order - tensor

within the single crystal and εµ
α is the magnetostriction

strain - second order - tensor in the domain family α. The

latter, assumed to be homogeneous within a domain fam-

ily, is written, in the crystallographic coordinate system

of the cubic crystal (see for instance [6]):

ε
µ
α =

3

2















λ100(γ
2
1 − 1

3 ) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ
2
2 − 1

3 ) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ
2
3 − 1

3 )















(8)

(γ1, γ2, γ3) are the direction cosines of magnetization

in the domain family α, λ100 and λ111 are the magne-
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tostrictive constants of the material. If we consider a mul-

tiaxial applied stress state σc, written in the crystallo-

graphic coordinate system (equation (9)), the elastic en-

ergy (equation (7)) can be written in the form of equation

(10).

σc =















σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33















(9)

W el
α = − 3

2λ100

[

σ11(γ
2
1 − 1

3 ) + σ22(γ
2
2 − 1

3 ) + σ33(γ
2
3 − 1

3 )
]

−3 λ111 (σ12 γ1 γ2 + σ13 γ1 γ3 + σ23 γ2 γ3)

(10)

It has to be emphasized that the condition on the

magneto-crystalline energy (WK = constant) supposes

that no magnetization rotation occurs. In particular, it

means that the level of stress is not high enough to gener-

ate magnetization rotation in the domains. This condition

can be expressed as |σc : εµ
α| ≪ |K1| in each domain.

The equilibrium configuration can be defined through

the relative proportion of each domain family in the crys-

tal. The volumetric fraction of a domain family is obtained

using an explicit relation proposed by [7]:

fα =
exp(−As.Wα)

∑

α

exp(−As.Wα)
=

exp(−As.W
el
α )

∑

α

exp(−As.W
el
α )

(11)

As being a material parameter linked to the initial anhys-

teretic susceptibility χo and to the saturation magnetiza-

tion Ms [5]:

As =
3χo

µoM2
s

(12)

For further simplification, we introduce the quantity

S:

S =
∑

α

exp(−As.W
el
α ) (13)

An analytical model for the ∆E effect can then be

derived from equation (11). Two cases are successively

considered: material with <100> easy magnetization axes

(positive anisotropy constant) and material with <111>

easy magnetization axes (negative anisotropy constant).

3.1 Material with <100> easy magnetization

directions

3.1.1 Definition of variables

Six domain families have to be considered: they will be

noted abc. The subscripts abc can take the value 100, 100,

010, 010, 001 and 001. The magnetization rotation mech-

anism being neglected, the magnetostriction strain tensor

in each domain family is greatly simplified:

ε
µ
abc =

1

2
λ100















3a2 − 1 0 0

0 3b2 − 1 0

0 0 3c2 − 1















(14)

The elastic energy for each domain family is then4:

Wabc = −
1

2
λ100

(

(3a2 − 1)σ11 + (3b2 − 1)σ22 + (3c2 − 1)σ33

)

(15)

4 It can be noticed that the shear terms of the stress tensor,

expressed in the crystal coordinate system, do not appear in

the definition of the elastic energy.
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The quantity S is given by:

S = 2
[

exp
(

Asλ100 (σ11 −
1
2 (σ22 + σ33))

)

+exp
(

Asλ100 (σ22 −
1
2 (σ11 + σ33))

)

+exp
(

Asλ100 (σ33 −
1
2 (σ11 + σ22))

)]

(16)

We deduce the associated volumetric fractions for each

domain family:



































f100 = f100 =
1

S
exp

(

Asλ100 (σ11 −
1
2 (σ22 + σ33))

)

f010 = f010 =
1

S
exp

(

Asλ100 (σ22 −
1
2 (σ11 + σ33))

)

f001 = f001 =
1

S
exp

(

Asλ100 (σ33 −
1
2 (σ11 + σ22))

)

(17)

We can verify that, in accordance with experimental

observation, no magnetization is created in the single crys-

tal by application of a stress:

−→
Mc =

∑

α

fα

−→
Mα = Ms

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f100 − f100

f010 − f010

f001 − f001

=
−→
0 (18)

But a magnetostriction strain εµ
c is created by appli-

cation of a stress:

ε
µ
c =

∑

α

fα ε
µ
α 6= 0 (19)

3.1.2 Uniaxial loadings

The case of a multiaxial applied stress can be first reduced

to the simplified case of uniaxial loadings (tensile or com-

pressive stress).

An uniaxial stress of amplitude σ along the [100] di-

rection5 leads to the strain εµ
100 measured in the direction

5
σij = 0 except σ11 = σ.

parallel to the applied stress6:

εµ
100 =

λ100

[

1 − exp
(

− 3
2Asλ100 σ

)]

1 + 2 exp
(

− 3
2Asλ100 σ

) (20)

An uniaxial stress of amplitude σ along the [110] di-

rection7 leads to the strain εµ
110 measured in the direction

parallel to the applied stress:

εµ
110 =

λ100

[

1 − exp
(

− 3
4Asλ100 σ

)]

2
[

2 + exp
(

− 3
4Asλ100 σ

)] (21)

If an uniaxial stress of amplitude σ is applied along

the [111] direction8, we get:

f100 = f100 = f010 = f010 = f001 = f001 =
1

6
(22)

so that:

ε
µ
111 = 0 (23)

These results are plotted in figure 3 in the case of

iron for which λ100 = 21 10−6 [8]. The value for As is

5 10−3 m3.J−1.

−50 0 50

−10

−5

0

5

10

15

20

σ (MPa)

ε
µ

10−6

<100>

<110>

<111>

Fig. 3. ∆E effect in the case of iron single crystal.

6 if ε
µ
n is the projection of the tensor ε

µ in the direction n,

we have: ε
µ
n = tn ε

µ n.
7

σij = 0 except σ11 = σ22 = σ12 = 1

2
σ.

8
σij = 1

3
σ.
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We can notice the dissymmetry between the tension

and compression behaviors, visible for example in the val-

ues of the strain when -mechanical- saturation is reached:














lim(σ→+∞) εµ
100 = λ100

lim(σ→−∞) εµ
100 = −

1

2
λ100

(24)















lim(σ→+∞) εµ
110 =

1

4
λ100

lim(σ→−∞) εµ
110 = −

1

2
λ100

(25)

3.1.3 Multiaxial loadings

More general and more complicated mechanical loadings

can also be considered. We can study the particular cases

of equi-bitension and hydrostatic pressure and compare

them to uniaxial stress.

For example, under the hypotheses made, the magneto-

striction strain in a <100> direction is defined, for any

stress state, as:

εµ
100 = λ100 (2f100 − f010 − f001)

=
λ100

S

[

2 exp
(

Asλ100 (σ11 −
1
2 (σ22 + σ33))

)

−exp
(

Asλ100 (σ22 −
1
2 (σ11 + σ33))

)

−exp
(

Asλ100 (σ33 −
1
2 (σ11 + σ22))

)]

(26)

The magnetostriction strain in a <111> direction is

defined, for any stress state, as:

εµ
111 = 0 (27)

Figure 4 shows the response of a single crystal under

uniaxial9, equibiaxial10 and hydrostatic11 loading along

<100> directions.
9

σij = 0 except σ11 = σ.
10

σij = 0 except σ11 = σ22 = σ.
11

σij = 0 except σ11 = σ22 = σ33 = σ.

−50 0 50

−10

−5

0

5

10

15

20

σ (MPa)

ε
µ 1
0
0

10−6

Uniaxial

Equibiaxial

Hydrostatic

Fig. 4. ∆E effect in the case of iron single crystal for a uniaxial,

equibiaxial and hydrostatic loading along <100> directions.

We observe that a hydrostatic stress state has no effect

on the magnetostriction strain.

3.2 Material with <111> easy magnetization

directions

3.2.1 Definition of variables

In that case, eight domain families have to be considered:

they will be noted abc. The subscripts abc take the values

111, 111, 111, 111, 111, 111, 111 and 111. The magneti-

zation rotation mechanism being neglected, the magneto-

striction strain tensor in each domain family is also greatly

simplified:

ε
µ
abc =

1

2
λ111















0 ab ac

ab 0 bc

ac bc 0















(28)

The elastic energy for each domain family is then12:

Wabc = −λ111 (ab σ12 + ac σ13 + bc σ23) (29)

12 It can be noticed that the diagonal terms of the stress ten-

sor, expressed in the crystal coordinate system, do not appear

in the definition of the elastic energy.
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The quantity S is given by:

S = 2 [ exp (Asλ111 (σ12 + σ13 + σ23))

+exp (Asλ111 (−σ12 − σ13 + σ23))

+exp (Asλ111 (−σ12 + σ13 − σ23))

+exp (Asλ111 (σ12 − σ13 − σ23))]

(30)

We deduce the associated volumetric fractions for each

domain family :























































f111 = f111 =
1

S
exp (Asλ111 (σ12 + σ13 + σ23))

f111 = f111 =
1

S
exp (Asλ111 (−σ12 − σ13 + σ23))

f111 = f111 =
1

S
exp (Asλ111 (−σ12 + σ13 − σ23))

f111 = f111 =
1

S
exp (Asλ111 (σ12 − σ13 − σ23))

(31)

Here again, we verify that no magnetization can be

created by application of a stress, but a magnetostriction

strain εµ
c appears:

ε
µ
c =

∑

α

fα ε
µ
α 6= 0 (32)

3.2.2 Uniaxial loadings

We study first the uniaxial case. An uniaxial stress of am-

plitude σ along the [111] direction leads to the strain εµ
111

measured in the direction parallel to the applied stress:

εµ
111 =

λ111

[

1 − exp
(

− 4
3Asλ111 σ

)]

1 + 3 exp
(

− 4
3Asλ111 σ

) (33)

An uniaxial stress of amplitude σ along the [110] di-

rection leads to the strain εµ
110 measured in the direction

parallel to the applied stress:

εµ
110 =

1

2
λ111 tanh

(

1

2
Asλ111 σ

)

(34)

If an uniaxial stress of amplitude σ is applied along

the [100] direction, we get:

f111 = f111 = f111 = f111

= f111 = f111 = f111 = f111 = 1
8

(35)

so that:

ε
µ
100 = 0 (36)

These results are reported in figure 5 in the case of

nickel for which λ111 = −24 10−6 [8]. The value for As is

5 10−3 m3.J−1 (the same than for the iron single crystal).

−50 0 50
−25

−20

−15

−10

−5

0

5

10

15

σ (MPa)

ε
µ

10−6

<100>

<110>

<111>

Fig. 5. ∆E effect in the case of nickel single crystal.

The dissymmetry between the tension and compres-

sion behaviors can also be noticed:














lim(σ→+∞) εµ
111 = −

1

3
λ111

lim(σ→−∞) εµ
111 = λ111

(37)















lim(σ→+∞) εµ
110 = −

1

2
λ111

lim(σ→−∞) εµ
110 =

1

2
λ111

(38)

3.2.3 Multiaxial loadings

As previously said, the proposed modeling allows to con-

sider more general and more complicated loadings.
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The magnetostriction strain in a <100> direction is

defined, for any stress state, as:

εµ
100 = 0 (39)

The magnetostriction strain in a <111> direction is

defined, for any stress state, as:

εµ
111 =

2

3
λ111 (3f111 − f111 − f111 − f111)

=
2λ111

3S
[3 exp (Asλ111 (σ12 + σ13 + σ23))

−exp (Asλ111 (−σ12 − σ13 + σ23))

−exp (Asλ111 (−σ12 + σ13 − σ23))

−exp (Asλ111 (σ12 − σ13 − σ23))]

(40)

We developed a fully analytical model of the effect of

- uniaxial and multiaxial - stress on the magnetostriction

strain of cubic single crystals. This modeling allows a de-

scription of the ∆E effect consistent with the indepen-

dence of the elastic properties of materials on their mag-

netization. The same principles can be applied to the pre-

diction of the behavior of polycrystals.

4 Extension to the behavior of polycrystals

The magnetostrictive behavior of a polycrystal is sup-

posed, as a first approximation, to be isotropic. The con-

trast of behavior along different directions, exhibited for

example on figure 3 for the single crystal should not ap-

pear. The isotropic polycrystal can be seen as an aggre-

gate of single crystals with random orientation. It can be

defined as a single crystal for which all directions would

be easy directions. In one domain of such a single crystal,

the magnetostriction strain tensor can be written13 (in the

appropriate coordinate system):

ε
µ
m =

1

2
λm















2 0 0

0 −1 0

0 0 −1















(41)

λm denotes, for the polycrystal, the maximum magneto-

striction strain that can be reached during a mechanical

loading. The definition of its value requires a discussion.

4.1 Definition of λm

λm is the value of the maximum magnetostriction strain.

This parameter can be identified from experimental mea-

surements on unstrained specimen, but it can also be de-

fined from the value of the single crystal magnetostriction

coefficient λ100 or λ111. It is shown in [5] that the maxi-

mum magnetostriction strain λm of a polycrystal, in the

case when no magnetization rotation occurs can be writ-

ten in the form:

λm = 2
5λ100k

a for materials with

<100> easy directions

λm = 3
5λ111k

b for materials with

<111> easy directions

(42)

where ka and kb depend on the elastic properties of

the single crystal and on the hypotheses chosen for the

13 in accordance with the usual isochoric hypothesis for the

magnetostriction strain [2].
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description of the material. For instance, if we choose uni-

form stress (Reuss) hypotheses, we have ka = kb = 1, and

if we choose uniform strain (Voigt) hypotheses, we have

ka = 5µa/(2µa + 3µb) and kb = 5µb/(2µa + 3µb), µa and

µb being the cubic shear modulus of the single crystal. For

the sake of simplicity, we will chose ka = kb = 1 in further

numerical applications.

4.2 Multiaxial stress state

A general stress tensor is considered, with 6 independent

components (see equation (9)). We choose to work in the

principal coordinate system for the stress: in that par-

ticular framework, the stress tensor is diagonal and its

components are called the principal stresses:

σ =















σi 0 0

0 σii 0

0 0 σiii















(43)

The definition of the magnetostriction strain of the

polycrystal then follows the same strategy used for sin-

gle crystals. Since a finite number of easy magnetization

directions has been replaced by an infinite number, the

symbol sum has to be replaced by an integral over the

possible directions α.

The transformation matrix from the domain coordi-

nate system to the principal coordinate system is noted P

and defined by equation (44) where θ varies from 0 to 2π

and ϕ from 0 to π.

P =















cosθ sinϕ sinθ cosθ cosϕ

sinθ sinϕ −cosθ sinθ sinϕ

cosϕ 0 −sinϕ















(44)

The magnetostriction strain in a domain α(θ, ϕ) can

be expressed in the principal coordinate system according

to equation (45).

ε
µ
p = t

P ε
µ
m P (45)

In such conditions:






























































































εµ
p11 =

λm

2
(3 cos2θ sin2ϕ − 1)

εµ
p22 =

λm

2
(3 sin2θ sin2ϕ − 1)

εµ
p33 =

λm

2
(3 cos2ϕ − 1)

εµ
p12 = εµ

21 =
3λm

2
cosθ sinθ sin2ϕ

εµ
p13 = εµ

31 =
3λm

2
cosθ cosϕ sinϕ

εµ
p23 = εµ

32 =
3λm

2
sinθ cosϕ sinϕ

(46)

The elastic energy in a domain α, defined by equation

(47), can be developed according to equation (48).

W el
α = −σ : ε

µ
p (47)

W el
α = − 1

2λm

[

σi

(

3 cos2θ sin2ϕ − 1
)

+σii

(

3 sin2θ sin2ϕ − 1
)

+σiii

(

3 cos2ϕ − 1
)]

(48)

Parameter S of equation (13) is now defined by equa-

tion (49).

S =

∫ 2π

0

∫ π

0

exp(−As.W
el
α ) sinϕ dϕ dθ (49)
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The magnetostrictive response E
µ of the polycrystal

can be defined in a similar way to the one obtained in a

direction <100> of a single crystal with <100> easy mag-

netization directions (since all directions are easy axes).

E
µ =

∫

α

fα ε
µ
p dα (50)

with:

fα =
1

S
exp(−As.W

el
α ) (51)

The magnetostriction strain tensor components, de-

fined in the principal coordinate system, are then written:

Eµ
ij =

1

S

∫ 2π

0

∫ π

0

εµ
pij exp(−As.W

el
α ) sinϕ dϕ dθ (52)

In accordance with experimental observation, the pre-

dicted magnetostriction strain is isochoric:

Eµ
11 + Eµ

22 + Eµ
33 = 0 (53)

Moreover, we observe that the principal coordinate

system for the magnetostriction strain tensor is the prin-

cipal coordinate system for the stress tensor, so that:

E
µ =















Eµ
11 0 0

0 Eµ
22 0

0 0 Eµ
33















=















Eµ
i 0 0

0 Eµ
ii 0

0 0 Eµ
iii















(54)

4.3 Uniaxial tension-compression

The case of uniaxial tension-compression14 of amplitude σ

brings significant simplifications. The elastic energy (equa-

tion (48)) reduces to:

W el
α = −

1

2
λmσ

(

3 cos2ϕ − 1
)

(55)

14 For example σi = σii = 0 and σiii = σ.

Parameter S (equation (49)) is re-written:

S = 2π e(− 1

2
Asλmσ)

∫ π

0

exp(
3

2
Asλmσcos2ϕ) sinϕ dϕ

(56)

The magnetostriction strain in the direction parallel to

the applied stress is then defined by equation (57).

Eµ
iii

=
πλm

S
exp(−

1

2
Asλmσ) I1 (57)

with:

I1 =

∫ π

0

(3 cos2ϕ − 1) exp(
3

2
Asλmσcos2ϕ) sinϕ dϕ (58)

The calculation of the other terms of the tensor allows

to verify the following expression for the magnetostriction

strain tensor:

E
µ =

π λm I1

2S
exp(

1

2
Asλmσ)















−1 0 0

0 −1 0

0 0 2















(59)

5 Experimental characterization of ∆E effect

The measurement of ∆E effect usually consists in the

evaluation of the stress-strain response of a demagnetized

specimen (Figure 1) thanks to a tensile-compressive ma-

chine. The εµ component of the total deformation is then

extracted according to equation (2). This procedure is nev-

ertheless very difficult to apply since amplitude of magneto-

striction is most of the time much lower than the total

deformation ε. Polycrystalline iron is a classical example:

the amplitude of longitudinal magnetostriction is about

10−5; considering a Young’s modulus of about 200 GPa,

a 2 MPa tensile stress produces the same elastic ampli-

tude of deformation than magnetostriction. When stress
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overcomes 20 MPa, the deformation of magnetostriction

only accounts for 10% of the total deformation. This way

of measurement is consequently not accurate. Other meth-

ods can be used [9]. An alternative procedure, based on the

hypothesis of magnetic saturation of the magnetostriction,

is proposed in the next section.

5.1 Principle

The procedure is based on anhysteretic magnetostriction

measurements under different levels of applied stress ie

εµ(M,σ) with σ constant. Accurate measurements require

first to proceed to an efficient demagnetization under stress.

This step leads to an initial deformation εi (equation(60))

that is practically not possible to measure.

εi(0, σ) = εel(σ) + εµ(0, σ) (60)

The deformation is then arbitrarily put to zero. Next

step is to proceed to the anhysteretic magnetostriction

measurement. Measurement is now corresponding to ε′

given by equation (61).

ε′(M,σ) = ε(M,σ) − εi(0, σ)

= εµ(M,σ) − εµ(0, σ)

(61)

The value of ε′(M = 0, σ) is artificially zero whatever

the stress level. The extraction of magnetostriction behav-

ior εµ(M,σ) requires consequently to evaluate εµ(0, σ).

Figure 6 gives a schematic view of ε′(M,σ) for σ = 0

(a) and σ 6= 0 (b). A very simple 2D scheme of the domain

configuration is associated. If we make the hypothesis that

the magnetization reaches Ms at high magnetic field, the

M

ε'

M s

M

ε'

M s

M

ε'

M s

ε' (M,0)

ε' (M,σ)

S(σ)

(a)

(b)

(c)

H

H

H

Fig. 6. Schematic view of the measured deformation ε
′ and

associated domain structure; (a) zero stress; (b) with σ applied

stress; (c) shift of the σ applied stress curve to get the same

saturation value.

domain configurations and thus the values of magneto-

striction are strictly identical whatever the stress level.

The ultimate value ε′(Ms, 0)=εµ(Ms, 0) becomes a refer-

ence value that all the ε′(M,σ) curves must reach. We fi-

nally proceed to a shift S(σ) of the ε′(M,σ) curves (Figure

6c). S(σ) is intrinsically corresponding to the magneto-

striction at zero applied field ie S(σ)=εµ(0, σ), that is a

direct observation of the ∆E effect. We note S(σ)=εµ(σ).

Considering several stress levels σ, figure 6c is consequently
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corresponding to the complete magnetostriction behavior

εµ(M,σ)15.

5.2 Experimental procedure

The benchmark for magneto-mechanical measurements is

based on a non-standard experimental frame [10]. It is

constituted of two face-to-face positioned ferrimagnetic

U-yokes (figure 7). Samples are placed between the two

yokes. Their shape and length depend on the nature of

the investigated material. In order to measure magneto-

striction, samples have been instrumented with longitudi-

nal and transverse strain gages. A half Wheatstone bridge

configuration with temperature compensation has been

chosen for strain measurement (low-pass second order But-

terworth filtering). A primary winding is placed on the

specimen. B-coil and H-coil ensure the measurement of

magnetic quantities.

We restrict the experiment to reversible behavior with

usual methods (so-called anhysteretic measurement). The

anhysteretic curves are measured point by point by ap-

plying a sinusoidal magnetic field of mean value H, and of

exponentially decreasing amplitude.

15 It is not rigorously ”pure” magnetostriction because the

parasitic elastic deformation due to the magnetic forces still re-

mains (ie form effect). This deformation is sometimes of same

order of magnitude and has the same dynamic (frequency, even

function) than magnetostriction. A second correction proce-

dure should be applied especially with sheet specimen. But,

because ε
µ(σ) is corresponding to a zero magnetization level,

the correction is not necessary for this figure.

Fig. 7. Apparatus for measurement of magnetostriction under

applied stress - with articulated heads.

Two solutions are possible to get uniaxial stress: the

first solution is to suspend loads to the specimen, which

is previously equipped with specific articulated heads (fig-

ure 7)16. This technique creates a pure uniaxial stress state

and avoid vibrations, but compression is not possible; it is

used for sheet format specimen (iron-silicon, iron-cobalt).

The second solution is to use a hydraulic machine. This

solution leads to noisy deformation measurements but en-

ables compression. It is used for bulk materials (pure iron,

Ni-Zn ferrite). The procedure detailed in section 5.1 is fi-

nally applied.

Figure 8 gives an example of measurement carried out

with the experimental set-up [11]. It shows the longitu-

dinal magnetostrictive behavior of pure iron under ten-

16 The maximal load is about 50 kg leading to a maximal

stress from 16 MPa to 100 MPa depending on the section of

the specimen.
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sile and compressive stress17. εµ(σ) is extracted from this

measurement and plotted in figure 9 for longitudinal and

transverse directions.
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10

x 10
-6

σ (MPa)

E
µ

M (106 A/m)

Fig. 8. Influence of uniaxial stress on the anhysteretic longi-

tudinal magnetostrictive behavior of pure iron [11].
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E
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Fig. 9. ∆E effect for pure iron - longitudinal and transverse

behaviors.

Experimental results have been carried out with other

materials: they are compared to the previsions of the model

in the next section.

17 The specimen is a 10mm diameter plain cylinder of iron;

form effect is negligible and so not withdrawn to the results.

6 Comparison between experiments and

modeling

The ∆E effect measurement has been performed on four

different materials. Bulk specimens of pure iron and NiZn

ferrite (composition Ni0.48Zn0.52Fe2O4), and sheet speci-

men of non-oriented 3%silicon-iron and 29%cobalt-iron al-

loys have been tested. The magnetostriction coefficients of

the single crystals of these materials are reported in table

1. The variables ka and kb (equation (42)) have been ar-

bitrarily taken equal to 1, corresponding to uniform stress

hypotheses. The data used for the modeling are given in

table 2.

λ100 λ111 K1 (J.m−3) Ref.

Pure iron 21 10−6
−21 10−6 42 700 [6,8]

Ni-Zn ferrite −26 10−6
−5 10−6

−1 700 [12]

FeSi alloy 25 10−6
−5 10−6 38 000 [6,8]

FeCo alloy 100 10−6 10 10−6 35 000 [13]

Table 1. Magnetostriction constants of the materials used for

experiments.

As (m3/J) λm

Pure iron 5 10−3 8.4 10−6

Ni-Zn ferrite 3 10−2
−3.0 10−6

FeSi alloy 3 10−2 10 10−6

FeCo alloy 5 10−3 40 10−6

Table 2. Modeling parameters.



Laurent Daniel, Olivier Hubert: An analytical model for the ∆E effect in magnetic materials 15

6.1 Bulk specimens

The results for pure iron and Ni-Zn bulk specimens are

respectively presented in figures 10 and 11. Figure 10 ex-

hibits a very good agreement between modeling and ex-

perimental results. Some significant discrepancies are ob-

served for Ni-Zn ferrite. A higher value for λm would be

necessary in the modeling to get a better agreement. Con-

sidering the elastic constants of the single crystal [12],

another mechanical hypothesis than uniform stress state

would not lead to a significant change of λm. The rela-

tively low value of K1 explains these discrepancies: indeed

for such a low magnetocrystalline anisotropy, the hypoth-

esis of no magnetization rotation under stress is not veri-

fied. The maximum value for the magnetostriction strain

cannot be defined as simply as in equation (42). This re-

sults points out a limitation of the proposed approach. In

such a case, where the behavior results from the combi-

naison of domain wall motion and magnetization rotation

mechanisms, the full multiscale [5] should be used. The

corresponding results (presented in reference [12]) have

been added on figure 11.

6.2 Sheet specimens

The results for iron-silicon and iron-cobalt sheet speci-

mens18 are respectively presented in figures 12 and 13.

The agreement between modeling (plain lines) and ex-

perimental (points) results is good considering the longi-

18 In both cases, the experimental data have been collected

with a tensile stress applied in the direction TD perpendicular

to the rolling direction of the sheet.
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Fig. 10. ∆E effect for pure iron: longitudinal and transverse

magnetostriction strain as a function of the applied stress σ,

modeling (line) and experimental results.
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Fig. 11. ∆E effect for Ni-Zn ferrite: longitudinal and trans-

verse magnetostriction strain as a function of the applied stress

σ, modeling (line) and experimental results. Dashed lines: Re-

sults obtained with a full multiscale model [12].

tudinal direction, but the comparison is not satisfactory

in the transverse direction. The explanation of these dis-

crepancies may be found in the initial distribution of the

magnetic domains in the material. Indeed the model is

designed for bulk materials so that the initial distribu-

tion of the domains is assumed to be random into a uni-
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Fig. 12. ∆E effect for an iron-silicon steel: longitudinal and

transverse magnetostriction strain as a function of the applied

stress σ, modeling (line) and experimental (points) results.

Plain line for isotropic strain and dot line (transverse direction)

for configuration energy effect. Dashed lines: Results obtained

with a full multiscale model with configuration energy effect

[5,15,16].

form distribution (every domain directions have the same

probability of existence). As a consequence, the behavior

is isotropic and the transverse magnetostriction is equiv-

alent in any direction perpendicular to the longitudinal

direction. Considering an isochoric strain, it comes:

Eµ
Trans = −

1

2
Eµ

Long (62)

This hypothesis obviously does not apply to sheet spec-

imen. For such shapes, demagnetizing phenomena lead to

a non-uniform distribution of domains [14,15]. This initial

configuration is such that the domains with magnetization

along the rolling direction of the sheet are in higher pro-

portion than the others19. As a consequence, the behavior

19 This change (compared to the uniform distribution) de-

pends on the material composition, on the crystallographic
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Fig. 13. ∆E effect for an iron-cobalt alloy: longitudinal and

transverse magnetostriction strain as a function of the applied

stress σ, modeling (line) and experimental (points) results.

Plain line for isotropic strain and dot line (transverse direction)

for configuration energy effect. Dashed lines: Results obtained

with a full multiscale model with configuration energy effect

[5,15,16].

is anisotropic. The simplifying hypotheses used do not ap-

ply. However, the ∆E effect can be predicted using the full

- numerical - multiscale model [5]. The initial configura-

tion is taken into account in the model using configuration

energy [16,15]. This procedure has been applied to iron-

silicon and iron-cobalt alloys. Results are plotted in figures

12 and 13 (dashed lines) showing a better agreement with

experimental results.

It appears that the magnetostriction strain in the di-

rection perpendicular to the sheet is close to zero (for these

materials). The transverse magnetostriction strain satis-

texture, on the dimensions and on the forming process of the

sheet.
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fies the relation (63).

Eµ
Trans = −Eµ

Long (63)

Using this result as an hypothesis for the analytical model,

the agreement between experimental and model data (dot

line in figures 13 and 12) becomes better.

7 Conclusion

A model for the ∆E effect in magnetic materials has been

proposed. This model is based on the description of the

physical mechanisms responsible for magneto-elastic cou-

plings at the single crystal scale. The proposed analyti-

cal approach does not include magnetization rotation as

a source of magnetostriction strain. It is limited to mate-

rial exhibiting high magneto-crystalline constants. A spe-

cific procedure for the experimental characterization of the

∆E effect has been proposed. Modeling and experimental

results have been compared for bulk and sheet polycrys-

talline specimen. The results on Ni-Zn ferrite have allowed

to illustrate the limitations and conditions of use of the

model. In the case of sheet samples, an initial domain

configuration has to be accounted for. This model pro-

vides a simple tool to describe the effect of stress on the

magnetostriction strain. It could be used in electrical en-

gineering to improve the macroscopic models for magneto-

elastic coupling, that often neglect the effect of stress on

magnetostriction.
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