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This paper proposes a new second order sliding mode output feedback controller. This latter is developped in the case of finite sampling frequency and is using only output information in order to ensure desired trajectory tracking with high accuracy in a finite time in spite of uncertainties and perturbations. This new strategy is evaluated in simulations on an academic example.

Introduction

High order sliding mode control is a nonlinear control strategy with property of robustness with respect to uncertainties and perturbation. Several algorithms have been published, more or less usable on practical applications [START_REF] Levant | Universal siso sliding-mode controllers with finite-time convergence[END_REF][START_REF] Bartolini | On multiinput chattering-free second-order sliding mode control[END_REF]Laghrouche et al., 2006b;[START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF]Plestan et al., 2008a). An other property of this class of controller is the finite time stabilization of the controlled system [START_REF] Moulay | Finite time stability of differential inclusions[END_REF]Moulay and Perruquetti, 2006) . Since few years, applications to experimental set-ups have proved feasibility and applicability of these approaches for robots (high-order sliding mode controllers and observers) (Laghrouche et al., 2006a), electrical machines (Laghrouche et al., 2006a), pneumatic actuators (Laghrouche et al., 2006b;[START_REF] Girin | Robust control of an electropneumatic actuator : application to an aeronautical benchmark[END_REF]. However, a lack of higher order sliding mode control is the use of sliding variables high order time derivatives. By a practical point-of-view, it can decrease the interest of such controllers, due to the bad effect of measurement noise on the control. In order to remove this lack, a mean is to consider output feedback. The objective is then to propose output feedback control which ensures robustness, finite convergence and accuracy by reducing number and order of sliding variables time derivatives. Two kinds of approaches are possible. The first one consists in designing state observer or differentiators [START_REF] Levant | Principles of 2-sliding mode design[END_REF] coupled to a controller: it implies to verify the stability of the observer/differentiators-based controlled system which is in main cases a hard task (in the case of high order sliding mode, it has been done in [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF]). The second one consists in using static output feedback. Very few results are available on second order sliding mode static output feedback. In [START_REF] Bartolini | On multiinput chattering-free second-order sliding mode control[END_REF], an optimal version of the so-called "twisting" algorithm has been provided, its main drawback being the requirement of the output derivative sign. An other major result is the so-called "super-twisting" [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] algorithm which requires no information on the output time derivative; however, this controller has been developed for systems with relative degree equal to 1 with respect to the control input. In [START_REF] Khan | Simple output-feedback 2-sliding controller for systems of relative degree two[END_REF], a second order sliding mode output feedback controller is proposed for systems with relative degree equal to 1 or 2: its main drawback is the absence of a formal closed-loop system stability proof. Finally, a first attempt for sampling controller has been proposed in (Plestan et al., 2008b), but this controller also requires output derivative sign. Note that previous works [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] have been made for high order sliding mode control (with state feedback) by considering discrete measurements. The current paper proposes a new design strategy for sampling output feedback controller. The interest of such controllers is essentially due to practical considerations: in fact, application of control law to real setup requires finite sampling period, which can fondamentally change the closed loop system behaviour (Plestan et al., 2008b). According to an adequate gain tuning, the proposed method ensures the establishment of a "real" high-order sliding mode [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] in a finite time. Furthermore, whereas existing output feedback controllers (for example "super-twisting" algorithm) are applicable only to 1-relative degree systems, the proposed approach can be applied to a larger class of systems, i.e. 1-or 2-relative degree systems. The proposed solution can be also seen in the context of relay controllers [START_REF] Anosov | On stability of equilibrium points of relay systems[END_REF][START_REF] Fridman | Sliding modes of higher order as a natural phenomenon in control theory[END_REF][START_REF] Fridman | Sliding modes of higher order as a natural phenomenon in control theory[END_REF] and their stability. The paper is organized as follows. Section 2 states the problem of high order sliding mode output feedback controller. In Section 3, the control strategy is developped. In Section 4, the control solution is applied to an academic example.

Problem statement

Consider a single-input nonlinear system 

ẋ = f (x) + g(x)u, y = h(x) (1) 
= ā(x) + b(x)u -ḧd (t) = a(x, t) + b(x)u (3) 
Assume that H2. The solutions are understood in the Filippov sense [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF], and system trajectories are supposed to be infinitely extendible in time for any bounded Lebesgue measurable input. H3. Functions a(x, t) and b(x) are bounded uncertain functions. Without loss of generality, one supposes that b(x) sign is strictly positive. Thus, there exists positive constants

a M ≥ 0, b m > 0 and b M > 0 such that |a(x, t)| ≤ a M , 0 < b m < b(x) < b M for x ∈ X ⊂ IR n , X being a bounded open subset of IR n
within which the boundedness of the system dynamics is ensured, and t > 0.

By defining z 1 = s and z 2 = ṡ, the second order sliding mode output feedback control of (1) with respect to the sliding variable s is equivalent to the finite time stabilization of the system

ż1 = z 2 , ż2 = a + b • u(z 1 ) (4) 
under Assumptions H1-H3.

Definition 1 [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] Given the sliding variable s(x, t), the "real second order sliding set" associated to ( 1) is defined as

S Te = {x ∈ X | |s| ≤ k 1 T 2 e , | ṡ| ≤ k 2 T e }. ( 5 
)
with T e > 0 the finite sampling time and k 1 , k 2 positive constants.

Definition 2 [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] Consider the not-empty real second order sliding set S Te (5), and assume that it is locally an integral set in the Filippov sense. The corresponding behavior of system (1) satisfying ( 5) is called "real second order sliding mode" w.r.t. s(x, t).

A second order sliding mode output feedback controller

In this section, output feedback controllers are proposed in case of finite sampling frequency. In a sake of clarity, the first part of this section is devoted to the design of a controller for a double integrator. Then, the result will be extended to uncertain nonlinear systems (1).

A solution for a double integrator

Consider the following system

ż1 = z 2 , ż2 = u (6) with u = -K(t) sign (z 1 (kT e )) (7) 
and K > 0 and k ∈ IN (k can be viewed as a time counter). Gain K is constant on the time interval t ∈ [k • T e , (k + 1) • T e [, and k(0) = 0.

Theorem 1 Consider system (6) controlled by ( 7) and a gain K m > 0. Then, there always exists a sufficiently large gain K M with 0 < K m < K M < ∞ such that the gain K(t) defined as

K(t) = K m if t / ∈ T K M if t ∈ T (8)
with T = {t | sign(z 1 (kT e )) = sign(z 1 ((k -1)T e ))} and the control law (7) ensure the establishment of a real second order sliding mode for system (6) with respect to z 1 , i.e. there exists a finite time t F such that, for t ≥ t F ,

|z 1 | ≤ (K M -K m ) + (K M + K m ) 2 2K M • T 2 e , |z 2 | ≤ K M + K m 2 • T e (9)
Discussion. Theorem 1 displays the control law design through the existence of a positive gain K m and a sufficiently large gain K M . The single condition on K m is its positivity. On an other hand, there always exists a constant value K M0 depending on sampling period, initial conditions such that, if K M > K M0 , a second order sliding mode is established. K M0 is the minimal value of K M allowing to reach trajectories converging to a vicinity of the origin.

Proof. The convergence analysis of system (6) controlled by ( 7) is made in two parts. The first part proves the convergence to a closer vicinity of the origin at each gain commutation whereas the second step characterizes the stable limit cycle that system trajectories reach in a finite time.

First Part. For a sake of clarity, consider Figure 1-Left; the black points on the curves have the coordinates z 1 (kT e ) and z 2 (kT e ). Obviously, only z 1 (kT e ) is avalaible for control computation. Without loss of generality, suppose that system (6) is evolving on the right-hand side of phase plan, starting from initial conditions (z 1,0 , z 2,0 ) (point O -Figure 1-Left) which gives K(t) = K m and u = -K m . Then, system trajectories are parabola defined by

z 1 (t) = -K m t 2 2 + z 2,0 t + z 1,0 , z 2 (t) = -K m t + z 2,0 (10) 
Due to term sign(z 1 (kT e )), when system trajectories reach point A, control input sign does not change, whereas it changes when point B is reached2 at

t = t B = k B T e (k B ∈ IN ).
From Theorem 1, one has t B ∈ T and, for t ∈ [t B ; t B + T e [, u = K M . It means that system trajectories follow

z 1 (t) = K M (t -t B ) 2 2 + z 2 (t B )(t -t B ) + z 1 (t B ), z 2 (t) = K M (t -t B ) + z 2 (t B ) (11) 
for t ∈ [t B ; t B + T e [. Clearly, to reach a parabola closer to the origin than the symetric of the parabola followed from O to B (dotted curve), K M has to be sufficiently large. Then, point C is reached: from t C = t B + T e , one applies u = K m . The obtained system trajectory in the plan (z 1 , z 2 ) is a parabola closer from the origin than the parabola containing points O, A and B. When point

E is reached at t E = k E T e , control input equals, for t ∈ [t E ; t E + T e [, u = -K M .
Remark 1 The gain commutation between K m and K M is necessary to achieve the convergence: without this commutation, system trajectories are diverging.

Second Part. Without loss of generality, suppose now that, at t = t 0 , [z 1 z 2 ] T = [ǫ 1 ǫ 2 ] T , with ǫ 1 , ǫ 2 positive constants. Suppose also that t 0 ∈ T which gives ż1 = z 2 , ż2 = -K M for t ∈ [t 0 , t 0 + T e [. Then, from t = t 0 to t = t 0 + T e , one has

z 2 (t) = -K M • (t -t 0 ) + ǫ 2 , z 1 (t) = -K M • (t -t 0 ) 2 2 + ǫ 2 • (t -t 0 ) + ǫ 1 (12) 
The maximum value for z 1 (t) for t ∈ [t 0 , t 0 + T e ], denoted z M 1 , reads as z M 1 = ǫ 1 + ǫ 2 2 /K M . Given that z 2 (t 0 ) > 0, it is obvious that z 1 (t 0 + T e ) > 0. From the first step of proof, the duration of parabolic trajectories decreases. Denoting t 1 = t 0 + T e , define k 1 ∈ IN such that, for t ∈ [t 1 , t 1 + (k 1 + 1) • T e [, ż1 = z 2 , ż2 = -K m , and

z 1 (t 1 + k 1 • T e ) > 0, z 1 (t 1 + (k 1 + 1) • T e ) < 0.
Let L I denote the time interval length during which z 1sign does not change: in the present case, L I = (k 1 + 1) • T e . By solving the previous equations, one gets, with

t 2 = t 1 + (k 1 + 1) • T e , z 2 (t 2 ) = -(K m • (k 1 + 1) + K M ) • T e + ǫ 2 z 1 (t 2 ) = -K m • (k 1 + 1) 2 • T 2 e 2 + ǫ 2 • T e + ǫ 1 + (ǫ 2 -K M • T e ) • (k 1 + 1) • T e -K M • T 2 e 2 ( 13 
)
Denoting ∆z 2 the difference between maximal and minimal values of z 2 (t), it is obvious that

∆z 2 = z 2 (t 0 ) -z 2 (t 2 ) = (K m • (k + 1) + K M ) • T e (14)
For t ∈ [t 2 , t 2 + T e [, one has ż1 = z 2 and ż2 = K M . The minimum value of z 1 during this time interval denoted

z m 1 is derived from dz 1 /dt = 0. From first step of proof, it is clear that |z m 1 | ≤ z M 1 . It yields that L I is decreas- ing to L I = T e .
The objective is now to prove that trajectories converge to a stable periodical cycle. When L I = T e , at each sampling period T e , system trajectories are changing of phase plan part in the clockwise which means that ż2 takes the successive values +K M , +K m , -K M and -K m . Then, the average value of ż2 over the four sampling periods equals 0. It also means that z 2 is periodical, as z 1 . Furthermore, when L I = T e , it can be proved that the limit cycle width in z 1 -axis equals

∆z 1 = K M -K m 2 • T 2 e + (K M + K m ) 2 4K M • T 2 e
which gives first condition of ( 9). As z 1 is periodical and allows a constant magnitude ∆z 1 , it means that z 2 allows a null average value. Then, from ∆z 2 , one gets a stable limit cycle such that

Max(z 2 ) = -min(z 2 ) = K m + K M 2 • T e
which gives the second condition of (9).

Control of uncertain nonlinear system

Output feedback controller is now proposed for continuous uncertain nonlinear systems.

Theorem 2 Consider nonlinear system (1) with sliding variable s(x, t) defined by (2). Suppose that assumptions H1, H2 and H3 are fulfilled, and state the gain K m such that K m > a M /b m . Then, there always exists a sufficiently large gain K M with 0 < K m < K M < ∞ such that the gain K(t) defined as

K(t) = K m if t / ∈ T K M if t ∈ T (15) with T = {t | sign(s(kT e )) = sign(s((k -1)T e ))} , k ∈ IN and the control input u = -K(t) • sign(s(kT e )) (16) 
ensure the establishment of a real second order sliding mode for system (1) with respect to sliding variable s(x, t).

Proof. As previously, the proof is composed by 2 steps.

First step. Without loss of generality, suppose that system (3) is starting from initial conditions

(z 1,0 , z 2,0 ) (point O -Figure 1-Right) which gives K(t) = K m and u = -K m . One gets ż1 = z 2 and ż2 = a -K m b. Then, one has z 1m (t) < z 1 (t) < z 1M (t) with z 1m (t) = -(K m b M + a M ) t 2 2 + z 2,0 t + z 1,0 , z 1M (t) = -(K m b m -a M ) t 2 2 + z 2,0 t + z 1,0 and -(K m b M + a M )t + z 2,0 < z 2 < -(K m b m -a M )t + z 2,0 .
It means that system is evolving in a domain defined by upper-and lower-parabolas (see domain between dotted lines (OB 1 ) and (OB 2 ) -Figure 1-Right). As in the previous "ideal" case, from Theorem 2, one has t B ∈ T : then, for t

∈ [t B ; t B + T e [, u = K M and ż1 = z 2 , ż2 = a + K M b (17) 
Thanks to an adequate gain K M , system trajectories reach trajectories family closer to the origin than the previous one (Point C -Figure 1-Right). This trajectories family is limited by upper-and -lower parabolas (see domain between dotted lines (OC 1 ) and (OC 2 ) -Figure 1-Right). Then, gain K M has to be sufficiently large. Point E being reached at

t E = k E T e , one gets, for t ∈ [t E ; t E + T e ], u = -K M . Note that • If u = K m for t ∈ T
, system follows trajectories family which could engender divergence (see point F and trajectories family limited by (BD 1 ) and (BD 2 )). • As shown by Figure 1-Right, the point C is located in a trajectories family closer to the origin. K M must be sufficiently large so that system reaches this domain.

Second step. The idea here consists in using the result of "ideal" double integrator in order to prove that, in uncertain case, system is reaching a vicinity of the origin whose limits depend on T e and T 2 e . The previous proof methodology can be used in the uncertain case by supposing the "worst" case, i.e. the trajectories resulting from the maximum values of uncertainties. In the "worst" case, these trajectories are evolving between two parabolas. Then, it can be derived that |s| ≤ k 1 T 2 e and | ṡ| ≤ k 2 T e with k 1 , k 2 positive constants.

An academic example

The system [START_REF] Levant | Principles of 2-sliding mode design[END_REF] (Figure 2) is a variable-length pendulum evolving in a vertical plane is displayed in the sequel. In [START_REF] Levant | Principles of 2-sliding mode design[END_REF], performances of second order sliding mode controller with sliding mode differentiators are evaluated on this system; in (Plestan et al., 2008b), a first attempt for second order sliding mode output feedback control is proposed. The sampling time (control computation period) is larger than integration steps (not the case in [START_REF] Levant | Principles of 2-sliding mode design[END_REF]). Thus, simulations have been made with a control input sampling timeat least 100 times higher than the integration step (10 -5 sec) in order to well-simulate the continuous plant. Furthermore, the control solution only needs pendulum angular position whereas, in [START_REF] Levant | Principles of 2-sliding mode design[END_REF], both angular position and velocity are needed, and in (Plestan et al., 2008b), the sign of its angular velocity is also needed. System dynamics reads as

ẋ1 = x 2 ẋ2 = -2 Ṙ(t) R(t) x 2 - g R(t) sin(x 1 ) + 1 mR(t) 2 u (18)
with (x 1 , x 2 ) the angular position and velocity of the rod, m = 1 kg the load mass, g = 9.81 ms -2 the gravitational constant, R(t) the distance from the fix point O and the mass, and u the control torque. R(t) is a non-measured disturbance and reads as R(t) = 0.8 + 0.1 sin(8t) + 0.3 cos(4t). Function R(t) and its time derivative Ṙ(t) are such that 0.4515 ≤ R(t) ≤ 1.1485 and -2.5226 ≤ Ṙ(t) R(t) ≤ 1.4989. With s(x, t) = x 1 -0.5 sin(0.5t) -0.5 cos(t), system is initialized such that s(0) = -0.5 rad and ṡ(0) = -0.25 rad

• s -1 . One has s = - 2 Ṙ(t) R(t) x 2 - g R(t) sin(x 1 ) = a(x, t) + 1 mR(t) 2 = b(t) u.
For x 2 ∈ [-10, 10], one gets | a(t) | < 72.18 and 0 < 0.7581 ≤ b(t) ≤ 4.9055. As gain K m has to fulfill K m > a M /b m , one gets K m > 95.21. It is stated as K m = 150. The control sampling period is stated as T e = 0.001s, whereas the choice for K M is K M = 800. It implies that system trajectories converge, in a finite time, in the neighborhood of desired trajectories (Figure 3). Controller performances are at least so good than [START_REF] Levant | Principles of 2-sliding mode design[END_REF], knowing that only x 1 is used whereas x 2 is required in [START_REF] Levant | Principles of 2-sliding mode design[END_REF]. Precision on s and ṡ is linked to T 2 e and T e respectively (see Table 1): a "real" second order sliding mode is well-established. 

Conclusion

A new strategy for second order sliding mode control based on output feedback for a large class of uncertain sampling controlled systems is proposed. This control law has been established by taking into account the sampling time period T e . Only the sliding variable information is required. Futurs works on this topic will concern experimentations and use of this control strategy for robust observers design. Moulay, E. and W. Perruquetti (2006) 
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  Evaluation of the maximum values of |s| and | ṡ| in case of two different Te values for t ∈ [6 sec; 12 sec].

	Te(sec)	10 -3	10 -4
	Max(|s|) (rad)	3.1.10 -2 4.10 -4
	Max(| ṡ|) (rad.s -1 )	7.1	0.78
	Table 1		

  . Finite-time stability and stabilization: state of the art. In: Advances in Variable Structure and Sliding Mode Control, Lecture Notes in Control and Information Sciences. Vol. 334. Springer-Verlag, Ed. C. Edwards, E. Fossas Colet, L. Fridman. pp. 23-41. Plestan, F., A. Glumineau and S. Laghrouche (2008a). A new algorithm for high order sliding mode control. International Journal of Robust and Nonlinear Control 18(4-5), 441-453. Plestan, F., E. Moulay, A. Glumineau and T. Cheviron (2008b). Second order sliding mode control: a new output feedback solution. In: Proc. IFAC World Congress. Seoul, Korea.

Note that results given in the sequel are also applicable on nonlinear systems with relative degree equal to 1: in this case, the discontinuous control law developed in the sequel is applied on the first time derivative of u.

Note that control input is switching with a delay w.r.t. z1 sign commutation which is a consequence of the finite sampling period Te.