
HAL Id: hal-00480033
https://hal.science/hal-00480033

Submitted on 3 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discussion of agglomeration mechanisms between
hydrate particles in water in oil emulsions.

Emilie Colombel, Patrick Gateau, Loïc Barré, Frédéric Gruy, Thierry Palermo

To cite this version:
Emilie Colombel, Patrick Gateau, Loïc Barré, Frédéric Gruy, Thierry Palermo. Discussion of ag-
glomeration mechanisms between hydrate particles in water in oil emulsions.. Oil & Gas Science
and Technology - Revue d’IFP Energies nouvelles, 2009, 64 (5), pp.629-636. �10.2516/ogst/2009042�.
�hal-00480033�

https://hal.science/hal-00480033
https://hal.archives-ouvertes.fr


Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 
 

1 

DDDiiissscccuuussssssiiiooonnn   ooofff   aaagggggglllooommmeeerrraaatttiiiooonnn   mmmeeeccchhhaaannniiisssmmmsss   bbbeeetttwwweeeeeennn   hhhyyydddrrraaattteee   
pppaaarrrtttiiicccllleeesss   iiinnn   wwwaaattteeerrr   iiinnn   oooiiilll   eeemmmuuulllsssiiiooonnnsss...   

EMILIE COLOMBEL(1), PATRICK GATEAU(2), LOÏC BARRE(2), FRÉDÉRIC GRUY(1)*, 
THIERRY PALERMO(2) 

(1) Ecole Nationale Supérieure des Mines de Saint Etienne, Centre SPIN, Département 
GENERIC ; LPMG -UMR CNRS 5148, 158 Cours Fauriel ; 42023 Saint-Étienne Cedex 
2, France 

(2) IFP (Institut Français du Pétrole) 1 et 4, Avenue de Bois Préau ; 92852 Rueil Malmaison, 
France 

Abstract: 
Line blockage due to gas hydrate formation in water/oil emulsions can be understood by 
considering the increase in the effective volume fraction effφ  of dispersed particles in the 

hydrate slurry. This increase is the result of an agglomeration process that takes place during 
hydrate formation.  
Two mechanisms of agglomeration reported in the literature are discussed. The first one is the 
contact-induced agglomeration mechanism for which the crystallization-agglomeration 
process is described as the result of the contact between a water droplet and a hydrate 
particle. The second one is the shear-limited agglomeration mechanism for which the balance 
between hydrodynamic force and adhesive force is considered.  
It is proposed to gather these two mechanisms in a unified model in order to predict the 
evolution of the viscosity of the slurry during hydrate formation. Such a model can be based 
on a Population Balance Model in which the agglomeration kernel is related to the contact-
induced mechanism and the fragmentation kernel is related to the shear-limited mechanism.  

KKeeyywwoorrddss::

                                                       

  

gas hydrate formation ; water/oil emulsions ; hydrate slurry ; agglomeration ; Population 
Balance Model 

Résumé: Discussion sur les mécanismes d'agglomération entre particules 
d'hydrate dans les émulsions eau dans huile. 
Le bouchage des conduites lors de la formation des hydrates de gaz dans les émulsions eau 
dans huile peut être appréhendé par l'augmentation de la fraction volumique effective de la 
suspension de particules d'hydrate. Cette augmentation est due à un processus 
d'agglomération qui se produit pendant la phase de formation des hydrates. 
Deux mécanismes d'agglomération présentés dans la littérature sont discutés. Le premier est 
le mécanisme d'agglomération induit par contact pour lequel le processus de cristallisation-
agglomération est le résultat du contact entre une goutte d'eau et une particule d'hydrate. Le 
second est le mécanisme d'agglomération limité par le cisaillement pour lequel la compétition 
entre force hydrodynamique et force adhésive est considéré.  
Il est proposé de réunir ces deux mécanismes dans un modèle unifié afin de prédire 
l'évolution de la viscosité de la suspension d'hydrate pendant la formation. Un tel modèle 
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repose sur un modèle de bilan de population dans lequel le noyau d'agglomération est associé 
au mécanisme d'agglomération induit par contact et le noyau de fragmentation est associé au 
mécanisme d'agglomération limité par le cisaillement. 

I. Introduction  
The hazard of gas hydrate formation causing blockages in production lines remains today one 
of the main concerns to deepwater field developments. The present strategy of operators is 
commonly focused on the deployment of prevention methods that aim at producing outside 
the hydrate domain. This can mainly be achieved via pipeline insulation (for oil dominated 
systems) or thermodynamic chemical injection (for gas dominated systems).  
Another strategy is to produce inside the hydrate domain by transporting the hydrate phase 
as a slurry of hydrate particles dispersed in the oil phase. It was first proposed about twenty 
years ago [1] and led to developments of Anti-Agglomerant additives (AA), a family of the so-
called Low Dosage Hydrate Inhibitors (LDHI). Investigations at lab scale [2] and pilot scale 
[3-4] up to field deployment under deepwater environment [5] demonstrated the applicability 
of this strategy. Even so, injection of such chemicals remains still marginal. Similarly, natural 
surfactants (asphaltenes, resins, acidic compounds, etc.) present in most of black oils were 
also considered as potential agents enabling hydrates to be transported as a slurry [6]. 
Operators have been envisaged to take advantage of such surfactant properties, particularly to 
ensure restarting after a long shutdown. Associated with subsea water separation, oil 
properties would also make viable the development of satellite fields connected to existing 
platforms via long tie-backs.  Investigations of crude oils with respect to hydrate control have 
thus been conducting for numerous years [7-9]. Most of them show results on plugging or 
non-plugging occurrence in laboratory facilities or pilot loops and do not allow us to predict 
flow conditions inside the hydrate domain. In a first attempt [10], the concept of formation of 
hydrate fractal aggregates, derived from colloid science [11], was introduced. Later, a series of 
papers dealing with agglomeration mechanisms have been published [12-17].  
In the following, mainly based on previous reported studies, we will discuss agglomeration 
mechanisms thought to be involved between hydrate particles in systems composed of water 
in crude oil emulsions. Note that, from a practical point of view, limitation to such systems is 
not restrictive. Indeed, most crude oils contain natural surfactants that promote formation of 
water in oil emulsions [18], at least up to water cut of 50%.   
It is expected that hydrate plug formation for oil dominated systems is mainly related to the 
evolution of bulk properties. That excludes blockage caused by deposit formation. Hydrate 
deposits are expected to form with gas or gas/condensate dominated systems. They also 
might form in oil when hydrate particles are subjected to temporarily flow in a section above 
the melting temperature, which is in favour of making "wet" hydrate particles.  
Evolution of bulk properties can be formalized in terms of the evolution of the "effective 
volume fraction" of hydrate particles: effφ  . During hydrate formation, hydrate crystals form at 

the water-oil interface, making a solid shell around water droplets. The system is therefore a 
dispersion that changes progressively from a water-in-oil emulsion to a hydrate-in-oil 
suspension. Rheological properties of hydrate suspensions have been presented and discussed 
in former papers [10, 12]. If no agglomeration process takes place, we can consider that effφ  

will roughly correspond to the water cut. On the other hand, agglomeration of primary 
hydrate particles will lead to an increase in effφ . Particles that result from an agglomeration 

process are generally large and porous. In this case, effφ  can be expressed as a function of the 

water cut φ  and the average radius ratio between agglomerates ( R ) and water droplets ( ) 

according the following equation: 

a
3( / ) D

eff R aφ φ −= . For porous agglomerates, the fractal 

dimension  is a number lower than 3. It is well accepted that, for perikinetic aggregation, it 
ranges from about 1.7 to 2.1. Under shear conditions, it is generally reported that aggregates 
are more compact with a fractal dimension larger than 2 and up to 2.7 [10]. As an indication, 

D
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for  we can see that 2D ≈ effφ  would increase linearly with the average size of hydrate 

agglomerates.  
The effective volume fraction can be considered as a relevant variable indicating limitation in 
transporting hydrate suspensions. Theoretically, the maximum volume fraction corresponds 
to the maximum packing fraction associated with a viscosity tending to infinity. For 
monodisperse spheres, it is around 60%. However, above a lower value, the suspension does 
not behave as a liquid anymore but behaves as a paste or a visco-plastic solid, corresponding 
to a high risky situation with respect to plug formation. It is difficult to estimate precisely this 
critical threshold. In a first approximation, it can be set around 50%. Figure 1 illustrates the 
typical evolution of the relative viscosity (apparent viscosity of the hydrate suspension divided 
by the oil viscosity) with the effective volume fraction. In this example, the agglomeration 
process makes effφ  evolving towards the plugging zone up to more than 50 vol %. 
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FFiigguurree  11::  TTyyppiiccaall  eevvoolluuttiioonn  ooff  tthhee  rreellaattiivvee  vviissccoossiittyy  wwiitthh  tthhee  eeffffeeccttiivvee  vvoolluummee  ffrraaccttiioonn..  [[EEvvoolluuttiioonn  ttyyppee  ddee  llaa  
vviissccoossiittéé  rreellaattiivvee  aavveecc  llaa  ffrraaccttiioonn  vvoolluummiiqquuee  eeffffeeccttiivvee]]..  

In case of black oil systems, for moderate water cuts, the increase in the effective volume 
fraction is generally limited and only an increase in the pressure drop is observed (DPin/out in 
Figure 2). As soon as water droplets are transforming into hydrate particles (Conversion in 
Figure 2), the pressure drop rises, reaches a maximum magnitude and then often stabilizes at 
a lower plateau value. 
Basic mechanisms involved in hydrate agglomeration are not yet definitively established. As 
frequently reported by the hydrate community, hydrate plug formation is seldom observed 
once hydrate formation is completed and hydrate particles are well dispersed in the oil phase. 
On the other hand, the risk of plug formation mainly occurs during the hydrate formation 
phase. As a result of the expected hydrophilic character of hydrate surface, it was suggested 
that capillary forces may be responsible for the agglomeration process between hydrate 
particles [19, 10]. Recently, particle–particle pulloff adherence forces were measured as a 
function of temperature in the ice/n-decane/ice and tetrahydrofuran (THF) 
hydrate/n-decane/THF hydrate systems using a micromechanical testing technique [13]. The 
observed forces and trends were explained by the capillary cohesion of rough surfaces, with 
the capillary bridging liquid being stabilized below its freezing point by the negative curvature 
of the bridging liquid/n-decane interface. Regarding the prediction of the hydrate slurry 
viscosity two different approaches have been reported in the literature. The first one can be 
referred as a contact-induced agglomeration model [14-16]. In this model, the crystallization-
agglomeration process is described as the result of a contact mechanism between a water 
droplet and a hydrate particle. The size of hydrate aggregates mainly depends of a 
characteristic time of crystallization and of a characteristic time of agglomeration. The growth 
of hydrate particles stops when all the water droplets are crystallized. The second one can be 
referred as a shear-limited agglomeration model [17]. In this case, the size of aggregates 



Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 
 

4 

mainly depends on the balance between the hydrodynamic force exerted on the aggregates 
and the adhesive force between primary particles inside the aggregates.  
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FFiigguurree  22::  HHyyddrraattee  ffoorrmmaattiioonn  uunnddeerr  sstteeaaddyy  ssttaattee  mmuullttiipphhaassee  ffllooww  ffoorr  aa  ccrruuddee  ooiill  ssyysstteemm  [[99]]..  TToouutt::  tteemmppeerraattuurree  aatt  
tthhee  oouuttlleett  ooff  tthhee  lliinnee,,  DDPPiinn//oouutt::  pprreessssuurree  ddrroopp  aalloonngg  tthhee  114400  mm  lliinnee,,  CCoonnvveerrssiioonn::  ppeerrcceennttaaggee  ooff  wwaatteerr  ccoonnvveerrtteedd  iinnttoo  
hhyyddrraattee,,  PPsseepp  ::  pprreessssuurree  aatt  tthhee  oouuttlleett  ooff  tthhee  lliinnee..  [[FFoorrmmaattiioonn  dd''uunnee  ssuussppeennssiioonn  dd''hhyyddrraattee  ssoouuss  ééccoouulleemmeenntt  
ssttaattiioonnnnaaiirree  ppoollyypphhaassiiqquuee  ppoouurr  uunnee  hhuuiillee  [[99]]  ]]  

Below, we will mainly come back both on the contact-induced agglomeration and the shear 
limited agglomeration mechanisms. We will show that these two models are not opposite. On 
the contrary, a merge of these two approaches in a unified model should yield a consistent 
understanding of the agglomeration process during hydrate formation under flow conditions. 

II. Evidence of the contact-induced agglomeration mechanism 
Methane hydrate formation and agglomeration for different water in oil emulsions were 
investigated in a high pressure cell implemented in a Differential Scanning Calorimeter 
(microDSCVII from SETARAM) [15]. 
Emulsions were prepared by mixing 30 wt% of deionised water with 70 wt% of crude oil. 
Three different crude oils, named A, B and C were studied. Observation by optical microscopy 
showed similar size distribution of water droplets with radius not exceeding 10 μm.  
Heat flow was recorded for successive runs of formation – dissociation. Hydrate formation 
took place under isothermal conditions at a working temperature T* of 263 K and a pressure 
of  13.5 MPa. Once hydrate formation was completely achieved, the emulsion was warmed up 
to 298 K, in order to dissociate hydrates. Then, the system was cooled down again for the 
following run. The rate of cooling and warming was fixed at 1 K/min. Following this 
procedure, no ice formation was observed (no peak at T ≈ 272 K at P = 13.5 MPa). Analysis of 
the shape of exothermic peak recorded under isotherm conditions allowed the authors to 
discuss the kinetic of hydrate formation while the quantity of hydrate formed was determined 
by measuring the area of the endothermic peak during dissociation.  
First, the change in the quantity of hydrate formed during successive runs was reported. This 
variation was expected to be related to the agglomeration process between hydrate particles 
that occurs during hydrate formation. The relation between the change in the quantity of 
hydrate and the agglomeration process was based on the following assumptions: 

 The quantity of hydrate depends on the specific surface area of the water - oil interface. 
Let us define a primary particle as a particle formed from the crystallization of only one 
water droplet. It is supposed to be composed of a liquid core and a hydrate shell whose 
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thickness does not strongly depend of the size of the water droplet (hydrate shell 
model).  

 If hydrate particles are formed from the agglomeration of several primary hydrate 
particles, hydrate dissociation will result in the formation of larger water droplets and, 
thus, will lead to a decrease of the specific surface area. Indeed, for a given total volume 
of water  , the total surface area of water droplets  is :  totV totA

3 tot
tot

VA
a

= , with  the radius of the droplets. a

Regarding the second assumption, it should be noted that the authors neglected the possible 
breaking of the emulsion during dissociation due to the coalescence between two droplets 
formed from the melting of two separated hydrate particles. The possibility of such an effect 
was recently highlighted by others also utilizing the DSC technique [20].  
 
Effect of the specific surface area is clearly highlighted in Figure 3. Tests were carried out for 
two systems composed of 30 wt% of water and 70 wt% of crude C. In the first case, the water 
phase was dispersed in the oil phase as an emulsion. In the second case, the water phase was 
in contact with the oil phase as free water. Thermograms show that the magnitude of the peak 
of dissociation is strongly affected depending on the dispersion state of the water phase.  
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FFiigguurree  33::  DDSSCC  tthheerrmmooggrraammss  ooff  mmeetthhaannee  hhyyddrraattee  ddiissssoocciiaattiioonn  ffoorr  3300  wwtt%%  wwaatteerr  //  7700  wwtt%%  ccrruuddee  CC  ssyysstteemmss::  
eemmuullssiioonn  aanndd  ffrreeee  wwaatteerr  ((aaddaapptteedd  ffrroomm  [[1155]]))..  [[TThheerrmmooggrraammmmee  ddee  ddiissssoocciiaattiioonn  ddee  ll''hhyyddrraattee  ddee  mméétthhaannee  ppoouurr  llee  
ssyyssttèèmmee  3300%%  eeaauu  //  7700%%  hhuuiillee  CC  ::  éémmuullssiioonn  eett  eeaauu  lliibbrree  ((dd''aapprrèèss  [[1155]]))]]..  

Endothermic peaks of dissociation corresponding to two or three successive runs, are given in 
Figure 4 for each crude oil emulsions. Heats of dissociation for the first run are nearly 
identical for each system (without any peak related to ice formation). It means that the same 
amount of hydrate has been formed during the first isotherm, which is in agreement with size 
similarity of water droplets whatever the crude oil. On the other hand, it can be seen that the 
crude oils exhibit different behaviours regarding the variation of the quantity of hydrate 
formed from the first run of formation - dissociation and the following ones. For crude A, the 
successive peaks of dissociation are superimposed and there is no change in magnitude of the 
heat of dissociation. The amount of hydrate formed remains roughly the same during the 
three runs. In that case, the size of water droplets is not modified. On the contrary, there is a 
strong reduction of this quantity for emulsions prepared with crude B and crude C. This 
diminution reveals a decrease of the specific surface area and then an enlargement of the 
water droplets diameter between the successive runs. These results show different level of 
agglomeration depending on the crude oil. However, in the work reported in [15], hydrate 
formation occurred in the DSC (for practical reasons) at a much lower temperature than in 
field conditions. Moreover, hydrate formation occurs at rest in the DSC. Since agglomeration 
is expected to be strongly dependant on conditions enabling droplets to come into contact 
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(crude oil viscosity for example), this level of agglomeration thus may not be directly related 
to the ″anti-agglomerant″ properties of the crude under real conditions. 
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FFiigguurree  44::  DDSSCC  tthheerrmmooggrraammss  ooff  mmeetthhaannee  hhyyddrraattee  ddiissssoocciiaattiioonn  ffoorr  eemmuullssiioonnss  wwiitthh  ccrruuddee  AA,,  ccrruuddee  BB  aanndd  ccrruuddee  CC  
ffoorr  ssuucccceessssiivvee  rruunnss  ooff  ffoorrmmaattiioonn--ddiissssoocciiaattiioonn  ((aaddaapptteedd  ffrroomm  [[1155]]))..  [[TThheerrmmooggrraammmmee  ddee  ddiissssoocciiaattiioonn  ddee  ll''hhyyddrraattee  
ddee  mméétthhaannee  aavveecc  lleess  hhuuiilleess  AA,,  BB  eett  CC  ppoouurr  ddeess  eessssaaiiss  ssuucccceessssiiffss  ddee  ffoorrmmaattiioonn--ddiissssoocciiaattiioonn  ((dd''aapprrèèss  [[1155]]))]]..  

A relationship between the kinetic of hydrate formation and the level of agglomeration was 
highlighted by comparing the exothermic peaks recorded during the first run isotherm 
(Figure 5). The most significant fact is the difference in rate of formation: the higher the level 
of agglomeration, the higher the rate of formation.  
The coupling fast-crystallization / strong-agglomeration for crude C and, less significantly for 
crude B, was interpreted as the result of the propagation of the crystallization through 
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neighbouring droplets. The link between kinetics and agglomeration suggests the following 
scenario: a hydrate aggregate composed of i+1 primary hydrate particles is obtained from the 
crystallization of a droplet contacting an aggregate composed of i primary particles. If two 
droplets crystallize separately, the resulting hydrate particles cannot stick together. 
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FFiigguurree  55::  DDSSCC  tthheerrmmooggrraammss  ooff  mmeetthhaannee  hhyyddrraattee  ffoorrmmaattiioonn  wwiitthh  ccrruuddee  AA,,  BB  aanndd  CC  dduurriinngg  tthhee  ffiirrsstt  rruunn  ((aaddaapptteedd  
ffrroomm  [[1155]]))..  [[TThheerrmmooggrraammmmeess  ddee  ffoorrmmaattiioonn  ddee  ll''hhyyddrraattee  ddee  mméétthhaannee  ppoouurr  lleess  hhuuiilleess  AA,,  BB  eett  CC  ppeennddaanntt  llee  pprreemmiieerr  
ccyyccllee  ((dd''aapprrèèss  [[1155]]))]]..  

III. Evidence of the Shear-limited agglomeration mechanism 
Such a contact-induced agglomeration mechanism, as described above, was considered in two 
similar models, which attempted to describe the viscosity rise during hydrate formation [14, 
16]. In these two approaches, based on Population Balance Models, no breakage kernel was 
included and the process of agglomeration stopped once all the water droplets were 
transformed into hydrate particles. 
 
More recent attempts to generalize the approach presented by [16] failed in predicting the 
final viscosity of hydrate slurries for a wider range of conditions in terms of water cut and flow 
rate. On the other hand, a good agreement has been obtained by considering an average size 
of aggregates controlled by the shear rate [17]. 
 
In case of a shear-limited agglomeration process, the final size of hydrate particles is related 
to the shear stress τ as: 

0
mR

a
τ
τ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

where R is the aggregate radius,  the primary particle radius (≈ droplet radius), a μ  the 

apparent viscosity of the suspension, 0τ  the critical shear stress below which aggregates can 

form and  an exponent which depends on the breakage mechanism. It is generally reported 
in the range 0.3-0.5 in the literature [21]. The critical shear stress is related to the force of 

adhesion  between particles as: 

m

F 0 2

F
a a

στ ∝ =  where 
F
a

σ =  is the energy of adhesion per 

area unit and depends only on the physico-chemical properties of the system. 
The effective volume fraction effφ  scales with the actual volume fraction φ  (≈ water cut) as: 

(3 )3
0

D mD

eff
R
a

τφ φ
τ

−−
⎛ ⎞⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
φ  (2) 
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where  is an exponent (fractal dimension) expected to be of the order of 2.  D
Equation (2) can be re-written as: 

( ) ( )0
XXeffφ μ

τ τ
φ

−=  with (3 )X D m= −  (3) 

Finally, the viscosity of the suspension μ  can be related to effφ  by an expression of the form: 

0 2

1

1

eff

eff

M

φ
μ μ

φ
φ

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (4) 

with 0μ  the oil viscosity and Mφ  the maximum packing: 4 / 7Mφ = . 

 
Experimental data obtained in a pilot loop were initially reported in [17] under the form of the 
pressure drop DP as a function of the velocity U (Figure 6). The pressure drop was recorded at 
the plateau value (Figure 2) under laminar liquid flow conditions in a L=140 m long and d=5 
cm diameter line.  
In order to point out the scaling dependency of effφ  with τ  according to Equation (3), the 

same data are reported here under the form of /effφ φ  as a function of τ  (Figure 7). It should 

be noted that data correspond to different water cuts (10, 20, 25, 30 wt%) and different 
velocities (from 0.25 m/s to 2 m/s).  
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FFiigguurree  66::  CCoommppaarriissoonn  bbeettwweeeenn  eexxppeerriimmeennttaall  ddaattaa  aanndd  pprreeddiiccttiioonnss  ffoorr  aa  55  ccmm  ddiiaammeetteerr  ppiippee  ((ffrroomm  [[1177]]))..  

CCoonnttiinnuuoouuss  lliinneess  ::  ccaallccuullaatteedd  aaccccoorrddiinngg  ttoo  tthhee  rreellaattiioonn  .
232 ( ) /effDP UL dμ φ= .  [[CCoommppaarraaiissoonn  eennttrree  vvaalleeuurrss  

eexxppéérriimmeennttaalleess  eett  tthhééoorriiqquueess  ppoouurr  uunnee  ccoonndduuiittee  ddee  55  ccmm  ddee  ddiiaammèèttrree  ((dd''aapprrèèss  [[1177]]))..  LLiiggnneess  ccoonnttiinnuueess  ::  ccaallccuullééeess  àà  

ppaarrttiirr  ddee  llaa  rreellaattiioonn  ]
232 ( ) /effDP UL dμ φ= ]  

The oil can therefore be well characterized with respect to the final state of hydrate 
agglomeration by the determination of the two physical parameters 0τ  and X . In the 

example reported in Figure 7, we have X  = 0.37, which is consistent with a value of the 
fractal dimension  around 2 and of the exponent  in the range 0.3-0.5. We can deduce 
the critical shear stress 

D m
0τ  = 6.91/X ≈ 170 Pa. Taking a radius of water droplets around 10 μm, 
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it corresponds to a force F of the order of 2 nN and a surface energy σ  of the order of 2 
mN/m. 

y = 6.9288x-0.3768

1

1.5

2

2.5
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Φ
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FFiigguurree  77::  RReepprreesseennttaattiioonn  ooff  /effφ φ   aass  aa  ffuunnccttiioonn  ooff  τ ..  EExxppeerriimmeennttaall  ddaattaa  aaddaapptteedd  ffrroomm  [[1177]]..  CCoommppaarriissoonn  wwiitthh  

EEqquuaattiioonn  ((33))..  [[RReepprreesseennttaattiioonn  ddee  /effφ φ   ccoommmmee  uunnee  ffoonnccttiioonn  ooff  τ ..  DDoonnnnééeess  eexxppéérriimmeennttaalleess  aaddaappttééeess  ddee  [[1177]]..  

CCoommppaarraaiissoonn  aavveecc  EEqquuaattiioonn  ((33))]]

i

  

IV. Towards a unified model of agglomeration 
The two mechanisms presented above have been shown to be involved in the hydrate 
agglomeration process. However, while the contact-induced agglomeration model is not able 
to correctly predict the final viscosity of the hydrate slurry contrary to the shear-limited 
agglomeration model, this last one does not allow us to predict the evolution of the viscosity 
during hydrate formation. 
A complete description of the agglomeration process should therefore gather these two 
mechanisms. Such an approach was recently proposed [22], based on the development of a 
Population Balance Model. It should be noted that such an approach (population balance 
including both aggregation and breakage kernels) has widely been reported in the literature to 
describe aggregated suspensions (see for example [23]). To our knowledge, it has never been 
applied to hydrate suspensions. A reason may be that the agglomeration mechanism for 
hydrate suspensions is not described as a reversible aggregation process between solid 
particles but as the result of the contact between a water droplet and a hydrate particle.  In 
this last case, the agglomeration process is stopped once all the water droplets are consumed 
and the final mean size of hydrate particles is mainly controlled by the breakage mechanism. 
For a reversible aggregation mechanism, the final mean size of aggregates is controlled by the 
balance of aggregation rate and breakage rate. 
The evolution of the system is based on the pseudo-chemical reactions : 

1

1/(0) (1)

( ) (0) ( 1)

( 1) ( ) (1)

K

A
i

F
i

K

K

i

i i

θ

+

⎧ ⎯⎯⎯→
⎪⎪ + ⎯⎯→ +⎨
⎪

+ ⎯⎯→ +⎪⎩

 (5) 

According to the contact-induced agglomeration mechanism, a water droplet (0) can 
crystallize either individually to form a hydrate particle (1) or by contacting a hydrate 
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aggregate (i) to form an aggregate (i+1). For the aggregate breakage process, two mechanisms 
can be considered:  particle erosion (erosion of one primary particle at a time) or floc erosion 
(aggregate breaking up to pieces of different size) [24]. There is no clear evidence of the 
occurrence of a mechanism against the other one. For simplicity reasons, only the particle 
erosion mechanism has been arbitrary retained. 
The evolution with time  of the system is thus given by: t

1
0 1 0 1 2 2

2

1 0 1 0 1 1

0
1

1 2

1

A F F
i i

iK

A A Fi
i i i i i i i

i
i

dN N K N N K N K N
dt

dN K N N K N N K N K N
dt

N iN

θ >

− − + +

≥

⎧ = − + +⎪
⎪
⎪ = − + −⎨
⎪
⎪ = −
⎪
⎩

∑

∑

F
i  (6) 

where  and  are the number concentrations of water droplets and of aggregates 

composed of i primary particles, respectively. 
0N iN

Kθ  is the characteristic time of crystallization, 

 the aggregation kernel and  the breakage kernel. A
iK F

iK Kθ  and  refer to the contact-

induced agglomeration mechanism while  refers to the shear-limited agglomeration 

mechanism.  

A
iK

F
iK

In a first attempt,  has been expressed as A
iK 1A

i
A

K
θ

=  where Aθ  is a constant characteristic 

time of agglomeration, non dependent of the size of aggregates [25, 26]. The breakage terms 
of Equation (6) correspond to a particle-erosion mechanism with  expressed as: F

iK

3

1exp

D
D

F
i

iK τγ
μγ

−⎛ ⎞
⎜= −⎜⎜ ⎟
⎝ ⎠

⎟
⎟  (7) 

where 1τ  is related to a cohesive pressure and γ  the shear rate [27]. 
Finally, the evolution of the apparent viscosity μ  of the system is calculated according to 

Equation (4) for which the effective volume fraction effφ  is determined from: 

3/
0

1

( ) ( ) ( )D
eff i

i

t N t i N tφ φ
≥

⎛ ⎞= +⎜
⎝ ⎠

∑ ⎟  (8) 

As an example, a comparison with experimental data [22] is reported Figure 8. Viscosity was 
recorded in a rheometer equipped with a “helix-type” agitator. Hydrate agglomeration was 
investigated in case of trichlorofluoromethane hydrate formation in water/oil emulsions. The 
oil phase was composed of toluene, trichlorofluoromethane and asphaltenes. In this example 
(water cut of 33.6 vol% and shear rate of 500 s-1), a high peak of viscosity followed by a 
plateau is observed. The model enables the general trend in the evolution of the viscosity to be 
correctly represented. 
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Population Balance Model
Contact-induced Aggl. / Shear-limited Aggl. 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1
Time (hours)

V
is

co
si

ty
 (P

a.
s)

.5

exp.
Model

 

FFiigguurree  88::  EEvvoolluuttiioonn  ooff  tthhee  vviissccoossiittyy  ffoorr  ttrriicchhlloorroofflluuoorroommeetthhaannee  hhyyddrraattee  ffoorrmmaattiioonn  iinn  aa  wwaatteerr//ooiill  eemmuullssiioonn  ((wwaatteerr  
ccuutt  ooff  3333..66  vvooll%%  aanndd  sshheeaarr  rraattee  ooff  550000  ss--11))..  [[EEvvoolluuttiioonn  ddee  llaa  vviissccoossiittéé  lloorrss  ddee  llaa  ffoorrmmaattiioonn  dd''hhyyddrraattee  ddee  
ttrriicchhlloorroofflluuoorroommeetthhaannee  ddaannss  uunnee  éémmuullssiioonn  eeaauu//hhuuiillee  ((ccoonncceennttrraattiioonn  eenn  eeaauu  3333..66  vvooll%%  eett  ttaauuxx  ddee  cciissaaiilllleemmeenntt  550000  

ss--11))..]]  MMooddeell  ppaarraammeetteerrss  ––  ppaarraammèèttrreess  dduu  mmooddèèllee  ::  1τ   ==  2200000000  PPaa,,    =D =  22..44,,  Aθ   ==  00..000011  hhrr,,  Kθ   ==  00..77  hhrr..  

Beyond possible improvements, the capability to make this unified model fully predictive will 
need a better understanding of the dependence of the model parameters upon flow and 
thermal conditions. Besides, as crude oils exhibit different properties in terms of kinetics and 
hydrate agglomeration tendency, a minimum of experiments should be still required.  

V. Conclusion 
Line blockage due to hydrate formation for W/O emulsions can be understood by considering 
the increase in the effective volume fraction effφ  of the hydrate slurry. This increase is the 

result of an agglomeration process that takes place during hydrate formation.  
Two mechanisms of agglomeration reported in the literature have been discussed. The first 
one is the contact-induced agglomeration mechanism for which the crystallization-
agglomeration process is described as the result of the contact between a water droplet and a 
hydrate particle. The second one is the shear-limited agglomeration mechanism for which the 
balance between hydrodynamic force and adhesive force is considered.  
It is proposed to gather these two mechanisms in a unified model in order to predict the 
evolution of the viscosity of the slurry during hydrate formation. Such a model can be based 
on a Population Balance Model in which the agglomeration kernel is related to the contact-
induced mechanism and the breakage kernel is related to the shear-limited mechanism. This 
model is not presented here as a definitive one but rather as a possible new approach to help 
us in a better understanding of hydrate agglomeration during hydrate formation. Particularly, 
improvements in the breakage kernel should be expected.  

References  
[1] Sugier, A., Bourgmayer, P., Behar, E. and Freund E., (1990), "Method of Transporting a 

hydrate Forming Fluid", US Patent 4,915,176. 
 [2] Behar, E., Delion, A.S., Sugier, A. and Thomas, M. (1994) Plugging control of production 

facilities by hydrates. Annals of the New York Academy of Science, 715. 
[3] Palermo, T., Sinquin, A., Dhulesia, H. and Fourest, J.M. (1997) Pilot loop tests of new 

additives preventing hydrate plugs formation. in Multiphase’97, 7th  International 
Conference on Multiphase, Cannes, 1997, 133-147. 



Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 
 

12 

[4] Palermo, T. and Maurel, P., (1999) Investigation of hydrates formation and hydrates 
transportation with and without dispersant additives under multiphase flow conditions. 
in Multiphase’99, 9th  International Conference on Multiphase, Cannes, 1999, 567-582. 

[5] Mehta, A.P., Herbert, P.B., Cadena, E.R. and Weatherman, J.P.,(2002) Fulfilling the 
Promise of Low Dosage Hydrate Inhibitors: Journey from Academic Curiosity to 
Successful Field Implementation, OTC 14057, Houston, Texas, 6-9 May 2002. 

[6] Palermo, T., Mussumeci, A. and Leporcher, E. (2004) Could Hydrate Plugging Be 
Avoided Because of Surfactant Properties of the Crude and Appropriate Flow 
Conditions? OTC 16681, Houston, Texas, 3-6 May 2004. 

[7] Nygaard, N.F., (1989) Transportability of Hydrates in Multiphase Systems, Proceedings 
of the 4th internationalConference on Multi-Phase Flow, Nice, June, 1989. 

[8] Maurel, P., Palermo, T., Hurtevent, C.and Peytavy, J.L. (2002) Shut-down/Restart tests 
with an acidic crude under hydrate formation conditions for a deepwater development. 
In Proceedings of the 13th International Oil Field Chemistry Symposium. Geilo, 
Norway, 17-20 March 2002.  

[9] Palermo, T., Camargo, R., Maurel, P. and Peytavy, J.L. (2003) Shutdown/Restart pilot 
loop tests with an asphaltenic crude under hydrate formation conditions. in Multiphase 
03, 11th  International Conference on Multiphase 03, San Remo, 2003, 219-237. 

[10] Camargo, R. and Palermo, T. (2002) Rheological properties of hydrate suspensions in 
an asphaltenic crude oil. Proceedings of the 4th International Conference on Gas 
Hydrates. May 19-23, 2002. Yokohama Symposia, Yokohama, Japon. 

[11] Mills, P.(1989) Non-Newtonian behaviour of flocculated suspensions. Journal de 
Physique – Lettres, 46, L301-L309. 

[12] Sinquin, A., Palermo, T. and Peysson, Y. (2004) Rheological and flow properties of gas 
hydrate suspensions Oil and Gas Science and Technology - Rev. IFP, Vol. 59 (2004), N° 
1, 41-57 

[13] Yang, S., Kleehammer, D.M., Huo, Z., Sloan, E.D.and Miller, K.T. (2004) Temperature 
dependence  of particle-particle adherance forces in ice and clathrate hydrates. J. of 
Colloid and Int. Sc., 277, 335-341. 

[14] Fidel-Dufour, A., Gruy, F. and Herri, J.M. (2005) Rheology of methane hydrate slurries 
during their crystallisation in a water in dodecane emulsion under flowing Chemical 
Eng. Sc., 61, 505-515. 

[15] Palermo, T., Borregales, M., Arla, D., Dalmazzone, C. and Rousseau, L. (2005) Study of 
the agglomeration between hydrate particles in oil using Differential Scanning 
Calorimetry (DSC) Proceedings of the Fifth International Conference on Gas Hydrates, 
June 12-16, 2005. Trondheim, Norway. 

[16] Palermo, T., Fidel-Dufour, A., Maurel, P., Peytavy, J.L., Hurtevent; C. (2005) Model of 
hydrates agglomeration - Application to hydrates formation in an acidic crude oil; BHR 
Group 2005  Multiphase Technology- Barcelone. 

[17] Pauchard, V., Darbouret, M., Palermo, T., Peytavy, J.L. (2007) Gas Hydrate Slurry Flow 
in a Black Oil. Prediction of Gas Hydrate Particles Agglomeration and Linear Pressure 
Drop, Proceeding of 13th International Conference of Multiphase Production 
Technology, Edinburgh UK, 343-355 

[18] Aske, N., Kallevik, H. and Sjöblom, J. (2002) Water-in-crude oil emulsion stability 
studied by electrical field measurements. Correlation to physico-chemical parameters 
and near-infrared spectroscopy. Journal of Petroleum Science and Engineering 36, 1-
17. 

[19] Austvik, T., Xiaoyun. L. and Gjertsen, L.H. (2000) Hydrate plug properties: Formation 
and removal of plugs. Proceedings of the 3rd International Conference on Gas 
Hydrates. Salt Lake City, Utah, USA. Annals of the New York Academy of Sciences, 
2000, Vol. 912 (G.D. Holder & P.R. Bishnoi, Ed.), pp. 294-303.  

[20] Lachance, J. W., Sloan, E. D. and Koh, C. A. (2008) Effect of hydrate 
formation/dissociation on emulsion stability using DSC and visual techniques. Chemical 
Engineering Science 63, 3942-3947. 



Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 
 

13 

[21] Potanin, A. (1991) On the mechanism of aggregation in the shear flow of suspensions, 
Journal of colloid and Interface Science, 145(1), 140-157 

[22] Colombel, E. (2008) Cristallisation et agglomération de particules d'hydrate de fréon 
dans une émulsion eau dans huile : Etude expérimentale et modélisation, Thèse de 
l'Ecole Nationale Supérieure des Mines de Saint-Etienne. 

[23] Selomulya, C., Bushell, G., Amal, R.;Waite, T.D; Understanding the role of restructuring 
in flocculation: The application of a population balance model; Chemical Engineering 
Science 58 (2003) 327 – 338. 

[24] Mühle, K. (1993). Floc stability in laminar and turbulent flow. In Coagulation and 
Flocculation: Theory and Applications (B. Dobias, Ed.). Surfactant Science Series, vol. 
47, Chap. 8. 

[25] Mumtaz, H.S., Hounslow, M.J., Seaton, N.A., Paterson W.R., Trans. I. Chem. E75, A, 
152 (1997).  

[26] Ilievski, D., White, E.T., Chem.Eng.Sci. 49, 3227 (1994). 
[27] Ayazi Shamlou, P., Stavrinides, S., Titchener-Hooker, N. and Hoare, M., Chem. Eng. 

Sci., 49, 2647 (1994) 


	Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions.
	Abstract:
	Résumé: Discussion sur les mécanismes d'agglomération entre particules d'hydrate dans les émulsions eau dans huile.
	I. Introduction 
	II. Evidence of the contact-induced agglomeration mechanism
	III. Evidence of the Shear-limited agglomeration mechanism
	IV. Towards a unified model of agglomeration
	V. Conclusion
	References 



