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Self-organization of neural maps using a

modulated BCM rule within a multimodal

architecture

Lefort Mathieu and Boniface Yann and Girau Bernard

Abstract Human beings interact with the environment through different modalities,

i.e. perceptions and actions. Different perceptions as view, audition or propriocep-

tion for example, are picked up by different spatially separated sensors. They are

processed in the cortex by dedicated brain areas, which are self-organized, so that

spatially close neurons are sensitive to close stimuli. However, the processings of

these perceptive flows are not isolated. On the contrary, they are constantly inter-

acting, as illustrated by the McGurk effect. When the phonetic stimulus /ba/ is pre-

sented simultaneously with a lip movement corresponding to a /ga/, people perceive

a /da/, which does not correspond to any of the stimuli. Merging several stimuli into

one multimodal perception reduces the ambiguities and the noise of each percep-

tion. This is an essential mechanism of the cortex to interact with the environment.

The aim of this article is to propose a model for the assembling of modalities, in-

spired by the biological properties of the cortex. We have modified the Bienenstock

Cooper Munro (BCM) rule to include it in a model that consists of interacting maps

of multilayer cortical columns. Each map is able to self-organize thanks to a con-

tinuous decentralized and local learning modulated by a high level signal. By as-

sembling different maps corresponding to different modalities, our model creates a

multimodal context which is used as a modulating signal and thus it influences the

self-organization of each map.

1 Introduction

The cortex is divided into several areas, each one having a specific function. Some of

them are dedicated to compute a perceptive flow as visual areas V1 to V5. Each area

is made up of multilayer cortical columns. Thanks to this generic structure, areas are
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able to process other functions, depending on the type of inputs they receive, as it

can be seen in perceptive cortical areas of disabled people.

An object is defined by a set of perceptions and affordances. This term, defined in

Gibson’s theory [7], means the possible interactions between an object and a living

being. Examples of affordances of a tree are ”lie down” or ”climb on” for a human

or ”perch on” for a bird. In order to perceive an object, the cortex has to compute

this set of modalities as a single multimodal stimulus.

Although perceptions from an object reach the cortex through different sensors,

the cortex merges them in areas named associative maps to form a unified represen-

tation. Associating perceptions and actions to make a unique multimodal stimulus

is an essential mechanism to interact with the environment. This makes it possible

to recall one perception from another one. For example, an adult is able to identify

an object he only touches among a set of previously seen objects.

Perceptual flows are not only associated in the cortex but they interact with each

other. These influences are easily detectable. For example, when someone is watch-

ing a ventriloquist show, his ears perceive a sound coming from the ventriloquist

and his eyes see the lip movements of the puppet. Visual perception influences the

auditory one that appears to come from the puppet. Bonath and al. [4] have shown

that, during the ventriloquist illusion, activity in the auditory area first matches the

real sound perception and secondly, after the associative feedback, activity raises in

the zone that corresponds to the perceived sound location.

Moreover, perceptive merging is useful to increase our perception threshold.

Goldring and al. [9] show that the reaction time to a monomodal stimulus (visual

or auditory) is longer than to the multimodal one. The gain may be the consequence

of the reduction of noise in multimodal stimuli due to an increase of information

quantity.

The context of our study is the design of a multimap, multimodal and modular

architecture to process perception/action tasks. The aim is not to model the cortex

but to be inspired by its properties such as the genericity of its architecture, the

self-organization and plasticity of perceptive areas, the merging of perceptions and

their reciprocal influences to form a unified view of the environment. This paradigm

raises the question of how to associate different modalities, especially how to obtain

the self-organization of a perceptive map in a multimodal context thanks to a con-

tinuous learning? To answer this question, we propose a model of perceptive neural

map which self-organizes thanks to a continuous decentralized and local learning

modulated by a high level signal. By assembling several perceptive maps around

an associative one, we create a multimodal context which is used as a modulating

signal to influence the self-organization of each map.

We will first explain more precisely the objectives of our study and then describe

the association architecture named Bijama [11], on which our study is based. In

the third section, we will describe the Bienenstock Cooper Munro (BCM) rule that

we introduce in the Bijama model to solve some of its problems. In section 4, we

modify the BCM rule by modulating it with a multimodal high level signal. Section

5 shows results that confirm the validity of our model.
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2 Objectives

Our goal is to develop a multimap and multimodal architecture inspired by the prop-

erties of the cortex to perform perception/action tasks or missing modality recall (see

figure 1). The system consists of neural maps which may be modality maps process-

ing all kinds of perceptions or actions, or associative maps linking several modality

maps. Each map has a 2D architecture and intra and extra map connections, which

all are generic. Each modality map self-organizes in the multimodal context thanks

to a continuous decentralized and local learning.

Fig. 1 Example of use of the

multimap architecture.

associative map
motor map

perceptive map
perceptive map

activity bump

The design of this architecture raises a lot of problems. The first one is how

to obtain the self-organization of a map with a continuous decentralized and local

learning, especially in a multimodal context. For example, the self-organizing map

model proposed by Kohonen [10] works with a centralized learning and a decreasing

learning distance. The second main problem is how to associate modality maps to

influence perceptions and to provide a recall mechanism.

This article focuses on the first point and it answers by modulating the BCM rule

by a multimodal high level signal. This modification is introduced within the Bijama

model (see section 3) which provides a solution to the second question.

3 Bijama architecture

3.1 General description

In [11], Ménard and Frezza-Buet propose Bijama: a multimap and multilayer model

for multimodal processing. Two types of maps are available: perceptive and associa-

tive. Both are round maps made up of generic multilayer cortical columns. To com-

pute its output, each layer of a cortical column has access to the previous layer out-

put and to the upper layer outputs of the columns it is connected to. Perceptive maps

self-organize thanks to a continuous decentralized local learning of input weights.

Perceptive maps are reciprocally connected with strips to an unique associative map

which represents the unified multimodal context. These strip connections influence

the sensory perceptions and continuously learn modalities correspondences.
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We first describe the role of each layer of a cortical column in a perceptive and

associative map in the two next sections respectively. Then, we present how maps

are interconnected and the learning of the system. We conclude by an analysis of

the inherent problems of the multimodal association and of the limitations of this

model.

3.2 Perceptive map

A cortical column of a perceptive map is made up of four layers (see figure 2 (A)).

The first one (at the bottom) is a perceptive layer based on Kohonen’s model, its

value depending on the difference between its input, corresponding to a perception,

and its weights. The next layer is a cortical layer integrating multimodal constraints.

Its output is the value of the strip connection to the associative map, i.e. the weighted

sum of the outputs of the cortical columns that lie in the connection (see subsec-

tion 3.4 for precisions on inter map connectivity). The third layer merges the two

previous ones to influence the perception by the multimodal context. This is done

by the product of the cortical layer activity, plus a leaking term, with the perceptive

activity. The leaking term is useful when multimodal context is not yet consistent.

Finally, the upper layer takes the previous layer as input and it computes a compe-

tition between the different cortical columns of the same map. In this upper layer,

all cortical columns are connected with a difference of gaussian shape. It is based

on Amari’s equation of continuous neural field theory (CNFT) [1], providing an

activity bump in the map as output.

3.3 Associative map

An associative cortical column has a various number of layers depending on how

many perceptive maps are connected to it (see figure 2 (B)). Each one of the first

layers, named cortical layers, reflect the activity in a strip of the corresponding per-

ceptive map by a weighted sum of the outputs of the cortical columns (see subsec-

tion 3.4 for precisions on inter map connectivity). The next layer integrates all the

perceptive information by multiplying the values of the previous layers plus a leak-

ing term. The leaking term, as in the perceptive cortical column, is useful when the

different perceptions are inconsistent. The upper layer is the same as in a percep-

tive cortical column, taking the previous layer as input and providing a competitive

activity bump, that represents the multimodal context, as map output.
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perceptive layer

cortical layer

merge layer

competitive layer

receives the perceptive inputs

computes the competition between 
cortical columns connected with 
difference of gaussian shape

1st cortical layer

nth cortical layer

competitive layer

cortical merge layer

computes the value of a 
lateral strip shape connection 
to the associative map

merges the perceptive 
and cortical influences

computes the value of a 
lateral strip shape connection 
of the 1st perceptive map

computes the value of a 
lateral strip shape connection 
of the nth perceptive map

computes the competition between 
cortical columns connected with 
difference of gaussian shape
merges the differents 
perceptives influences

(A) (B)

Fig. 2 Generic structure of a cortical column in (A) a perceptive map, (B) an associative map.

3.4 Connectivity

Perceptive maps are reciprocally connected to an associative map as described in

figure 3. These connections have strip shapes, inspired by the cortical column model

of Burnod [5].

(A) (B)

Fig. 3 The different perceptive maps are reciprocally connected to an unique associative map with

a strip connectivity topographically organized. (A) The associative map is connected to all per-

ceptive maps. The first layers (in grays) of an associative cortical column are each connected to a

different perceptive map with a strip connectivity depicted in corresponding gray. (B) Each percep-

tive map is connected to the associative map using the same strip connectivity. See subsection 3.2

(resp. 3.3) for precisions on the perceptive (resp. associative) cortical column architecture.

Strip connectivity introduces constraints in the multimodal integration. Indeed,

if the perceptive activity bumps are not wholly consistent, meaning that they are

not located in strips that cross in a single point (see figure 4 (B)), activity in the

associative map remains low and is badly located. In this case, the relaxation of

the strips constraints, through the dedicated layer in each cortical column, leads the

perceptive bumps to move until they reach an equilibrium point (see figure 4 (A)).

3.5 Learning

Learning in the Bijama model is continuous and decentralized. This allows the sys-

tem to adapt to any change of its environment. Learning terms are modulated by the
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associative 
map

associative 
map

(B) inconsistent activity bumps (A) consistent activity bumps

Fig. 4 (A) The activity in the associative map is high if the different perceptions in the perceptive

maps are consistent, i.e. the activities are located in strips with an unique intersection point. (B) In

other cases, integrating the perceptions provides a badly located and low level activity bump.

upper activity of the column, so that only the active columns can learn. There are

two parallel learning processes: one for the self-organization of the perceptive maps

and one for the correspondence between perceptions.

The first learning process occurs on the input weights of the perceptive layer in

the perceptive cortical columns. This layer is Kohonen-like [10] but the difference is

that the learning is decentralized. The distance function to the maximum activity is

replaced by the activity bump of the upper layer. Technically speaking, input weights

are modified towards the input value by adding the difference between the weight

and the input, modulated by the upper activity and a learning rate (see equation 1).

∆w = αA∗(w− i) (1)

with w the input weights, α the constant learning rate, A∗ the activity of the output

layer of the column and i the perceptive input.

The second learning process is performed on the lateral weights of the strips

that connect the maps. The use of Widrow and Hoff’s rule [14] makes the strips

learn presences and not values. The activity in the strip, i.e. the weighted sum of the

output activities of the cortical columns that lie in the strip, will be high only when

an activity bump is present in the strip at some learned positions. Moreover, the

number of such learned positions is not limited, so that a single cortical layer may

be active (high activity) for multiple distant perceptions. This allows the system to

learn multiple correspondences for a single perception, like for example a red box

and a blue one. Technically speaking, the cortical activity moves towards the upper

activity of the column with equation (2). This learning is modulated by the upper

activity plus a leaking term preventing weights from saturation.

∆wi j = α(A∗

i +β )(A∗

i −Ac
i )A

∗

j (2)

with wi j the weight from a column i to a distant column j in the strip, α the learning

rate, A∗

i the output activity of the column i, β a leaking term and Ac
i the activity of

the cortical layer of column i.
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3.6 Analysis

We tested Ménard and Frezza Buet’s model in several multimodal contexts and we

observed a non convergence of the perceptive layers in perceptive maps. The model

as to be parametrized as a whole because an isolated map is not able to self-organize.

This lack of convergence may be explained by inappropriate parameters but some

other reasons have been pointed out.

Firstly, the learning process that is used in the perceptive layer replaces the cen-

tralized winner-take-all with decreasing neighborhood that is used in Kohonen’s

maps by the bump activity of the upper layer of cortical columns with a constant

width. Moreover, with a constant learning rate due to a continuous learning, a con-

stant width neighborhood may cause instability.

Secondly, when a new example is presented, the system has to move from an

equilibrium point to another by relaxing strips constraints. This takes time especially

because of the spatial and temporal inertia of the competitive activity bump. This

results in an inconsistent internal state of the system. As the activity bump drives

the perceptive learning, inconsistent bumps cause unlearning and lead to instability.

We consider that these two points have a common cause which is the important

perceptive learning dependency on the activity bump location. As it drives com-

pletely the learning process, the incoherence of the bumps is transfered to the self-

organization. We propose to reduce this dependency by using a perceptive learning

that can self-organize more independently, the activity bump only influencing this

learning. This idea is consistent with Wallace’s observations [13] that show that

the neuron ability to integrate multisensory information and so the dependency to

multisensory merging, grows with age.

We focus on the problem of a too important perceptive self-organization depen-

dency on the activity bump. We suggest to change the learning rule to have a self-

organization not driven but only influenced by the activity bump. We choose the

BCM learning rule which has the property to self-organize a neural map when used

with lateral connections. We adapt this rule to our multimodal model by introducing

a modulation feedback from the activity bump.

4 BCM rule

4.1 Biological inspiration

Hebbian learning is based on the correlation between the pre-synaptic and the post-

synaptic neural activities. Moreover when the pre-synaptic activities do not succeed

in activating the post-synaptic neuron above a certain threshold, weights decrease

(LTD for long term depression), whereas long term potentiation (LTP) occurs when

the post-synaptic neuron activity is above the threshold. Bear [2] shows that this

LTD/LTP threshold is sliding in the opposite direction of the previous activity his-



8 Lefort Mathieu and Boniface Yann and Girau Bernard

tory of the neuron, meaning that if LTP recently occurred, the threshold increases to

favour LTD (see figure 5). The Bienenstock Cooper Munro (BCM) rule (see [3]) is

based on this biological fact that has the property of self regulating weights contrary

to the hebbian rule.

Fig. 5 LTP/LTD threshold θ
is sliding depending on the

recent neuron activity. If LTP

recently occurred (∆w > 0),
LTD is favored by the increase

of θ (adapted from Bear [2]).
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4.2 Equations

The output activity u of a neuron is equal to the weighted sum of its input x. The θ
value of sliding LTP/LTD threshold is equal to the expectation of u2 on a τ temporal

window:

u = w.x and θ = Eτ [u
2]

The modification of weights is defined by:

∆w = η ∗ x∗φ(u,θ) and φ(u,θ) = u∗ (u−θ) (3)

with η the learning rate and φ(u,θ) a function that defines the proportion of LTP

and LTD as an approximation of the biological observations (figure 5).

4.3 Properties

The first interesting property is that the modification rule of the weights (equation

3) leads the neuron to develop a selectivity to a specific input. Neuron weights have

converged when ∆w = 0, which corresponds to u = 0 or u = θ . In the case of in-

dependent noisy input vectors, the only stable weight vectors contain only one non

zero value (see Cooper and al. [6] for more precisions).

The second property is the plasticity of the BCM learning rule. Equation 3 uses

a constant learning rate and its stabilization is reached when the neuron is selective

to one input. If the input distribution changes, corresponding to an environmental

change, neural weights are no more stable and they develop another selectivity.
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4.4 Self-organization

Autonomous selectivity and plasticity are two sought properties for our system, but

the BCM rule only considers an independent neuron. As we want to use the BCM

rule for self-organization we may introduce lateral connectivity between neurons.

In their book, Cooper and al. present an adaptation of their rule to obtain a self-

organization of a neural map. It consists in the addition of a lateral connectivity

influence to the output. The lateral connectivity used is a difference of gaussians.

It adds excitation to close neurons to favour the learning of close inputs, by raising

their output u above θ . Similarly, inhibited neurons learn dissimilar inputs.

5 Modification of the BCM rule

5.1 Principle

We propose to use the BCM rule as the learning rule of the perceptive layer of a

cortical column (see section 3.2). The activity bump of the upper layer still has to be

introduced as an influence upon the self-organization of the perceptive layer. This

activity bump results from the relaxation and the competition between local percep-

tion and multimodal context. Girod and Alexandre [8] showed that it is possible to

influence the selectivity of a neuron using the BCM rule by modulating its output.

We propose to add a modulation to the BCM rule, depending on the activity of the

upper layer. The idea is to favour the LTP (respectively the LTD), by increasing u

above θ , when the competitive activity is positive (respectively negative).

We choose to use a multiplicative modulation mechanism. When testing the self-

organization with additive lateral connectivity (see section 4.4), we have noticed

some problems due to a possible negative output and the modification of the equilib-

rium points which prevents from high modulation. Moreover, multiplicative modu-

lation occurs in the cortex, especially for coordinate transformation (see for example

Salinas and Thier [12]). By the strip constraints, we create a multimodal common

coordinates in which each modality, initially perceived in its own coordinates, is

able to self-organize in a spatially consistent way with respect to other modalities.

5.2 Equation

We introduce a multiplicative modulation feedback within the BCM learning rule

by means of a bump activity-dependent term. The equation is the following:

u = w.x∗modα,β (A∗) and modα,β (A∗) =
α

1+(α −1)∗ e−β∗A∗
(4)
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with A∗ the activity of the upper layer and α , β the parameters of the sigmoid. The

used modulating term is a sigmoid (figure 6) which is limited by 0, to avoid negative

outputs, and modα,β (A∗) > 1 for A∗ > 0. As a consequence, when there is an activity

bump, the value of the output u increases because of the modulating term. It may

then overcome θ and thus learn the current perception (LTP).

Fig. 6 Modulating term

modα,β (A∗) of the BCM’s

rule.
0
1

A*
0

6 Experiments

6.1 Protocol

The model of perceptive map we propose is adapted from the one developed by

Ménard and Frezza-Buet (see section 3) using our modified BCM rule as the learn-

ing rule for the perceptive layer (equation 4). We first test our modified BCM rule

in an isolated perceptive map. This validates our approach and allows to separate

the parameter space. Secondly, we put our map in a multimodal context with the

Bijama assembling architecture (see section 3.4) to validate the self-organization in

a multimodal context.

The inputs used for the tests are float values within a finite range, that are coded

by a population of neurons. This may represent the orientation coding of a bar in

the visual cortex. Technically speaking, the output function of each neuron of the

population is a gaussian centered at a fixed preferred input. The preferred inputs

are homogeneously distributed on the input interval, so that the output shape of the

population is also a gaussian (see figure 7). This output gaussian shape has to be

large enough to ensure the spatial continuity of the self-organization of the map.

6.2 Results

We first test our map model in an isolated context. To do this, we use the population

coded output (see section 6.1) as the input of the perceptive layer. As learning rule of

the perceptive layer, we compare our modified rule with the usual BCM rule to see

the influence of the modulating feedback on the map organization. For the version
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Fig. 7 Inputs used to test

our map model are succes-

sive random floats limited in

an interval and coded by a

population of neurons. Each

neuron of the population has

a gaussian centered an a fixed

preferred input as output func-

tion. The preferred inputs are

homogeneously distributed on

the input interval.

0

1

preferred input 
of the neuron

output function 
of the neuron

perceptive layer

the output shape of the 
population is a gaussian

float value within 
a finite range

with feedback, as the map is isolated, we directly connect the perceptive layer as

input of the competitive layer.

Comparing the results of the discriminated input by the perceptive layer of each

column of the map, we clearly see, as expected, a self-organization of the map using

our modulated BCM rule (see figure 8). This validates our modification of the BCM

rule and provides a model of self-organizing map using a local, continuous and de-

centralized learning. Moreover, the upcoming use of this map within a multisensory

context does not require any modification of its existing parametrization.

Fig. 8 Representation in gray

scale of the discriminated

input by the perceptive layer

of each column of the map

using (A) the usual BCM rule,

(B) the modified BCM rule. (A) (B)

To test our map model in a multimodal context, we use the inter map strip con-

nectivity around an associative map as proposed in the Bijama architecture (see

section 3). We use three perceptive maps which receive a population coded input

as previously. By simplicity, the three inputs are identical. We compare the self-

organization of a map within and out of the multimodal context using the same

common parameters and receiving the same input flow (see figure 9).

Fig. 9 Representation in gray

scale of the discriminated

input by the perceptive layer

of each column of a map in

(A) an isolated context, (B) a

multimodal context. (A) (B)
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We observe that the multimodal context biased the self-organization of the per-

ceptive map by constraining the localization of the activity bumps of the system so

that bumps will be spatially consistent as in figure 4 (A).

7 Conclusion

We modify the BCM learning rule with the introduction of a high level feedback

modulation signal. This multiplicative modulation favours or unfavours the increase

of the neuron output over the LTD/LTP sliding threshold. Using this modified rule as

perceptive learning rule in the multilayer cortical columns of the multimap architec-

ture proposed in Bijama, we obtain a self-organization of the perceptive maps with

a continuous decentralized and local learning. Using the Bijama strip connectivity

as assembling paradigm around an associative map, we obtain a self-organization

influenced by the multimodal context. This architecture may enable to learn modal-

ities associations and recall missing perceptions.
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