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An improved transient algorithm for resonant tunneling

N. Ben Abdallah∗, A. Faraj†

Abstract

The simulation of the time dependent evolution of the resonant tunneling diode is done by a
multiscale algorithm exploiting the existence of resonant states. After revisiting and improving
the algorithm developed in [N. Ben Abdallah, O. Pinaud, J. Comp. Phys. 213 (2006) 288-
310] for the stationary case, the time dependent problem is dealt with. The existence of two
resonances corresponding to the initial potential and to the local time potential lead to the
decomposition of the wave function into a non resonant part and two resonant ones. The
resonant parts are dealt with by a projection method. The simulation times are shown to be
reduced by a factor two.
Keywords: Schrödinger equation; numerical scheme; resonant tunneling diode; resonant
states; time dependent.
Subject classifications: 35Q41, 35Q55, 65M99, 65P99, 65Z05, 81-08, 81V99

1 Introduction

We are interested in the simulation of open resonant systems, typically the resonant tunneling
diode. Because of the small size of these devices, quantum effects are observed and the Schrödinger
equation is required for the modeling. Classical observables like electronic and current densities
are given by integrals on the energy involving generalized eigenfunctions. The resonant tunneling
diode presents resonances and the variation of generalized eigenfunctions tends to be singular in
the vicinity of resonant energies. Therefore, to compute correctly the densities, the integral on the
energy variable needs a refined mesh next to these resonances and a big number of Schrödinger
equations needs to be solved. Adaptive refinement was developed in [16] in the stationary regime
for a resonant tunneling diode. The method does however not extend to the transient case since
the resonant energies do move as time varies. Lately, inspired by an idea for the transient case
from [17], an algorithm was proposed by [5] for the discretization of the stationary case. The
method consists in decomposing the wave function in a part living in the well between the double
barrier and a second part which is mostly localized outside this well. The latter is called the non
resonant part and the former is the resonant one. The non resonant part is smooth with respect
to the energy variable and only requires a coarse energy mesh. At variance, the resonant part has
sharp peaks at resonant energies. It is computed by a projection method after a precomputation
of resonant states. In the present work, we first present an improvement of [5], the resonance
being computed more precisely by solving the non-linear eigenvalue problem verified by the res-
onance and written in [14]. Then we present a transient algorithm inspired by the idea of [17].
More precisely, the algorithm consists in the computation of the resonance at each time step, the
resonant information is therefore captured and the frequency mesh can be chozen coarse enough
thus reducing the simulation time. The resonant part of the wave fonction has two components,
one which corresponds to the dissipation of the initial resonance and one which is proportional
to the resonant mode. Let us mention that in [5], a new finite element method using the WKB
approximation was developed to reduce the numerical cost (see also [3, 13]). Since we want to
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concentrate on the energy discretization we will use a standard finite difference method for the
space discretization.

2 The model

The considered device is assumed to occupy the domain [0, L], L > 0. The model consists in
an infinite number of Schrödinger equations coupled to the Poisson equation. The Schrödinger
equation involves the time dependent Hamiltonian

H(t) = − ~2

2m
∂2
x + U(t) + V (t),

where ~ is the reduced Planck constant, m is the effective mass of the electron and x ∈ IR is the
position variable.
The external potentiel U(t) = V0 + B(t) is given as if a data of the problem where

V0 = v01[a2,b2] +W,

the well W is given by
W = −v01[a3,b3],

and the applied bias by

B(t) = −B(t)(
x− a1
b1 − a1

1[a1,b1[ + 1[b1,+∞[),

with v0 ≥ 0 and B(t) ≥ 0 scalars representing respectively the height of the barrier and the
amplitude of the applied bias in eV , and we have:

0 < a1 < a2 < a3 < b3 < b2 < b1 < L.

The points a1 and b1 are the extremities of the diode.
Such a potential U(t) is represented in Figure 1.
The nonlinear potential V (t) is due to Coulomb interaction and satisfies the Poisson equation:
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Figure 1: External potential U(t).

{

−∂2
xV = q2

ε (n[V ]− nD), (0, L)

V (0) = V (L) = 0,
(2.1)

where q is the elementary charge of the electron, ε is the dielectric constant, nD is the doping equal
to

nD = n1
D(1[0,a1[ + 1]b1,L]) + n2

D1[a1,b1],

with n1
D > n2

D ≥ 0, and the electron density n[V ] is given by:

n[V ](x) =

∫

IR

g(k)|Φk(x)|2dk, x ∈ [0, L], (2.2)
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in the stationary regime and

n[V ](t, x) =

∫

IR

g(k)|Ψk(t, x)|2dk, x ∈ [0, L], (2.3)

in the time dependent regime. Here g is the injection profile and the Φk, resp. the Ψk(t), are the
wave functions corresponding to the Hamiltonian H(0), resp. H(t), for a wave vector k ∈ IR.
We will choose the function g to be the one dimensional Fermi-Dirac integral :

g(k) =
mkBT

2π2~2
ln

(

1 + exp

(

EF − ~
2k2

2m

kBT

))

,

where kB is the Boltzmann constant, T is the temperature of the semiconductor and EF is the
Fermi level.
In the stationary case, for a given initial bias BI = B(0), we will note UI = U(0) the corresponding
initial exterior potential and VI a corresponding solution to (2.1)(2.2), then, the wave functions
are the restriction to [0, L] of the solutions to the stationary Schrödinger equation

− ~2

2m

d2

dx2
Φk + (UI + VI)Φk = EkΦk, x ∈ IR, (2.4)

with scattering conditions

{

Φk(x) = eikx + r(k)e−ikx, x < 0

Φk(x) = t(k)ei
√

k2+2mBI/~2x, x > L,
for k ≥ 0

and
{

Φk(x) = t(k)e−i
√

k2−2mBI/~2x, x < 0

Φk(x) = eikx + r(k)e−ikx, x > L,
for k < 0 ,

where

Ek =

{

~
2k2

2m , k ≥ 0

~
2k2

2m −BI , k < 0 .
(2.5)

In the transient case, the wave functions are the restriction to [0, L] of the solutions to the time-
dependent Schrödinger equation

{

i~∂tΨk(t) = − ~
2

2m∂2
xΨk(t) + (U(t) + V (t))Ψk(t), x ∈ IR

Ψk(0) = Φk,
(2.6)

where V (0) = VI .

3 The stationary algorithm revisited

3.1 Recalling the standard algorithm

To solve the stationary non-linear Schrödinger-Poisson system (2.1)(2.2)(2.4), we will use the same
algorithm as in [16]. It is based on a Gummel iteration, see [11], which consists in the computation
of a sequence V l

I , l ≥ 0 where the potential V l+1
I at step l+ 1 is deduced form the potential V l

I at
step l by solving the following non-linear equation:

{

− d2

dx2V
l+1
I = q2

ε (n[V
l
I ] exp((V

l
I − V l+1

I )/Vref )− nD), (0, L)

V l+1
I (0) = V l+1

I (L) = 0 ,
(3.1)
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for a fixed reference potential Vref .
The repartition function g being exponentially decreasing at infinity, the integral in (2.2) can be
restricted, in computations, to a domain [−kM , kM ] where kM is chosen to be big enough. We
consider a uniform discretization x0 = 0, x1, ..., xj , ..., xJ = L of the interval (0, L) with fixed mesh
size ∆x and a (non-necessarly uniform) discretization k0 = −kM , k1, ..., kp, ..., kP = kM of the
interval [−kM , kM ]. Then, for a given initial potential V 0

I , the algorithm writes:

Algorithm 3.1 (Gummel algorithm).

Fix l = 0.
Do While ||V l+1

I − V l
I ||2 ≥ ε:

Computation of the density

S1. For p = 0, ..., P : computation of Φl
p wave function corresponding to the potential V l

I

and the frequency kp.

S2. Numerical integration: for j = 0, ..., J

nl
j =

P−1
∑

p=0

I lp,j , where I lp,j =

∫ kp+1

kp

g(k)
∣

∣

∣

(

Φl
k

)

j

∣

∣

∣

2

dk.

Coupling to the Poisson equation : Gummel iteration

Computation of the potential V l+1
I from the potential V l

I and the density nl by solving
equation (3.1).

Set l = l + 1.
End Do.

The equation (3.1) is nonlinear and it is solved using a Newton method where the Laplacian is
discretized with finite differences.
Because of the peaked form of the transmition near resonances, the method used to compute the
density n[V l

I ] from the potential V l
I (steps S1 and S2) is of major importance, and the Gummel

algorithm may fail to converge if a non accurate method is used.
In [16], the steps S1 and S2 are performed without particular treatment of resonances: the wave
functions are computed on [0, L] solving the Schrödinger equation with transparent boundary
conditions and the integrals I lp,j are computed with a trapezoidal rule. In that case, the convergence
is provided by the choice of the frequency mesh {kp, p = 0, ..., P}: the mesh size kp+1−kp is refined
when a resonance peak is detected. As said in the introduction, this forces to solve a big number
of Schrödinger equations and increases the numerical cost. However, this process, that we will
call Direct Resolution, gives good results and will be used to evaluate the performance of the One
Mode Approximation algorithm presented in what follows.
As proposed in [5], the One Mode Approximation consists in decomposing the wave function in
a non-resonant part and a resonant part proportional to the first resonant mode. In [5], using a
WKB interpolation to compute each part of the wave function, an adapted treatment of the step
S1 is realized and the convergence of the Gummel method is possible.
In the present work, we do not use the WKB interpolation, however the accuracy required at step
S1 is reached by an improvement of the computation of the first resonance. In particular, a precise
computation of its imaginary part is essential. A simple reconstition of the wave functions not
allowing to modify the frequency mesh, we obtain convergence with a large frequency mesh by
adapting the step S2 such that all the resonant information is taken into account. It is done by
an explicit integration of the coefficient of proportionality with the resonant mode instead of the
trapezoidal rule.
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3.2 Accurate computation of resonances

In the founder work [1], see also [12], resonances of a sel-adjoint operator are defined using analytic
transformations, and it is a common fact that it correspond to an eigenvalue in a modified L2 space
[9]. Using the second approach, it is shown in [8] and [14] that the resonances of the Hamiltonian:

− ~2

2m
∂2
x +Q,

where the potential Q verifies:

Q(x) = 0, x ≤ 0, and Q(x) = QL, x ≥ L,

are the complex values z such that ∃u ∈ H2(0, L) verifying ||u||L2(0,L) = 1 and:















[− ~
2

2m∂2
x +Q]u = zu, (0, L),

~√
2m

u′(0) + is(z)u(0) = 0,

~√
2m

u′(L)− is(z +QL)u(L) = 0.

(3.2)

Here s(z) denotes the determination of the square root which is holomorphic on C \ iIR− and

defined as follows: for z = ρeiθ, with ρ > 0 and θ ∈ (−π
2 ,

3π
2 ), s(z) =

√
ρei

θ
2 . This determination is

different from the one used in [5] and leads to a convergent Newton algorithm as will be illustrated
herebelow. In [5], the computation of the resonance is done by an iterative method which converges
slowly. The homogeneous transparent boundary conditions in the problem above give a restriction
of the eigenproblem for the resonant mode to the domain (0, L) and allows to make numerical
computations. In particular, we introduce a variational formulation for problem (3.2) including
the boundary conditions such that the discretization leads to a non-linear eigenvalue problem
solved with a Newton-like algorithm.
Multiplying the first equation in (3.2) by the conjugate of a function v ∈ H1(0, L) and integrating
by part, we get the following equation on the resonant mode:

~2

2m

∫ L

0

u′v′dx +

∫ L

0

Quvdx − i
~√
2m

[s(z)(uv)(0) + s(z +QL)(uv)(L)]

− z

∫ L

0

uvdx = 0,

where the boundary conditions were considered. The discretization is performed using a finite
element method with P 1 function basis: pj , j = 0, ..., J defined by pj(xj′ ) = δjj′ . This leads to
the following problem: find (u, z) ∈ CJ+1 × C such that:

{

M(z)u = 0

uHu = 1,
(3.3)

where M(z) is a non-linear matrix valued function of z defined by:

M(z) = M1 + s(z)M2 + s(z +QL)M3 − zM4,

and the matrices M1, ...,M4 ∈ MJ+1(C) are given in Appendix A. This kind of problem was
studied in [15] and [10]. The term uHu appearing in problem (3.3) is not differentiable with
respect to u, therefore a Newton method must be modified to be used here. Following [15], for a
given iterate (un, zn) verifying (un)Hun = 1, we are looking for a direction (δun, δzn) such that
(un + δun, zn + δzn) is solution to problem (3.3). Using (un)Hun = 1 the system:

{

M(zn + δzn)(un + δun) = 0

(un + δun)H(un + δun) = 1
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gives at order 2:
M(zn)δun + δznM ′(zn)un = −M(zn)un,

(un)Hδun + (δun)Hun = 0. (3.4)

As remarked earlier, there is a problem with the second equation, however, it is enough to impose
(un)Hδun = 0 in order to verify (3.4). Therefore, we obtain the following linear system:

[

M(zn) M ′(zn)un

(un)H 0

] [

δun

δzn

]

=

[

−rn

0

]

, where rn = M(zn)un. (3.5)

Its resolution corresponds to an iteration of our Newton-like method to compute the resonant
mode. The assumption (un)Hun = 1 that we made to obtain this system is verified at order 2 as
long as (u0)Hu0 = 1.

3.3 The One Mode Approximation

We start with the descritpion of the step S1, in the One Mode Approximation, of the computation
of a wave function Φk solution to the stationary Shrödinger equation (2.4) for a given frequency
k. Following the works [5] and [17], the One Mode Approximation consists in the decomposition:

Φk = Φnr
k + Φr

k ,

where the non-resonant part Φnr
k solves the stationary Schrödinger equation:

[− ~2

2m

d2

dx2
+ UI,fill + VI ]Φ

nr
k = EkΦ

nr
k , x ∈ IR , (3.6)

with filled potential UI,fill = UI+v01[a3,b3], and where we omit the indice l appearing in Algorithm
3.1 to simplify notations. The function Φnr

k is computed on [0, L] by the resolution of (3.6) with
the exact transparent boundary conditions:

{

(Φnr
k )′(0) + ikΦnr

k (0) = 2ik,

(Φnr
k )′(L)− i

√

k2 + 2mBI/~2Φ
nr
k (L) = 0,

for k ≥ 0, and:
{

(Φnr
k )′(0) + i

√

k2 − 2mBI/~2Φ
nr
k (0) = 0,

(Φnr
k )′(L) + ikΦnr

k (L) = 2ikeikL,

for k < 0. This resolution is perfomed with a RK4 method as it is done to compute Φk in the
Direct Resolution, see [16]. The statistic g being fastly decreasing at infinity, the resonant part Φr

k

is searched, on (0, L), proportional to the resonant mode uI of mimimal resonant energy Re(zI)

where [− ~
2

2m
d2

dx2 +UI + VI ]uI = zIuI and
∫ L

0
|uI(x)|2dx = 1. In other words, we look for Φr

k of the
form:

Φr
k(x) = θkuI(x), x ∈ (0, L) .

Like in [5], the condition that Φk verifies the stationary Schrödinger equation (2.4) gives the
following explicit value of the proportionality coefficient:

θk =
1

zI − Ek
v0

∫ b3

a3

Φnr
k uIdx. (3.7)

The resonance and the resonant mode are computed using the method presented in section 3.2 with
the potential Q = UI + VI . The method is initialized at the fondamental energy and fondamental
mode of the Hamiltonian

[− ~2

2m

d2

dx2
+ UI + VI ] (3.8)
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equipped with homogeneous Dirichlet boundary conditions at a2 and b2. It’s shown in [6][7] that
the real part of resonances are well approached by the eigenvalues of the Dirichlet Hamiltonian
(3.8). The imaginary part of resonances being small, such an initialization garanties that the
algorithm converges to the resonance with smaller energy. This achieves the step S1.
For the step S2, the peaked form (3.7) of the coefficient of proportionality with the resonant mode
is used in the computation of the intregral:

Ip,j =

∫ kp+1

kp

g(k)
∣

∣

∣(Φk)j

∣

∣

∣

2

dk .

Using an argument of localisation of support, see [17], the cross term in the development of
∣

∣

∣(Φnr
k + θkuI)j

∣

∣

∣

2

can be neglected, which gives the approximation:

Ip,j =

∫ kp+1

kp

g(k)
∣

∣

∣(Φnr
k )j

∣

∣

∣

2

dk +

∫ kp+1

kp

g(k) |θk|2 dk |(uI)j |2 .

The non resonant part being regular with respect to k, the first integral can be computed with a

simple trapezoidal rule. The keypoint is then the approximation of Jp :=
∫ kp+1

kp
g(k) |θk|2 dk. Using

(3.7), we have:

Jp =

∫ kp+1

kp

Rk
1

|Ek − zI |2
dk ,

where

Rk = g(k)v20

∣

∣

∣

∣

∣

∫ b3

a3

Φnr
k uIdx

∣

∣

∣

∣

∣

2

.

The wave function Φnr
k has no resonance peak and therefore, Rk is regular with respect to k. Then,

we can make the linear interpolation on [kp, kp+1]:

Rk = αpk + βp ,

where

αp =
Rp+1 −Rp

∆k
and βp =

Rpkp+1 −Rp+1kp
∆k

. (3.9)

This gives

Jp = αp

∫ kp+1

kp

k

|Ek − zI |2
dk + βp

∫ kp+1

kp

1

|Ek − zI |2
dk . (3.10)

Using (2.5) and writing zI = EI − iΓI

2 with EI , ΓI > 0, a direct computation gives:

∫ kp+1

kp

k

|Ek − zI |2
dk = γ2χ1(kp, kp+1, cI , dI) , and

∫ kp+1

kp

1

|Ek − zI |2
dk = γ2χ0(kp, kp+1, cI , dI)

(3.11)
where the function χn is given in Appendix C and

γ =
2m

~2
, cI = γ(EI +BI1{kp≤0}), dI = γ

ΓI

2
.

This approximation has the advantage to be peacked around the resonance.

Remark 3.2. In numerical applications, the computation of the resonance is done only one time
at each step of the integer l, the resonance is the same for all integer p. We note also that the
integral Jp can be computued only one time at each step of the integer p, it is the same for all
integer j.
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4 The time-dependent algorithm

4.1 The algorithm

As in the stationary regime, we first present the algorithm proposed in [16] to solve the time-
dependent non-linear Schrödinger-Poisson system (2.1)(2.3)(2.6). Then, we give the details of a
time-dependent one-mode approximation algorithm.
The space and frequency meshes are defined as in section 3.1. For a given exterior potential
U(t) and time step ∆t, the algorithm corresponds to the computation of the sequence V l of
approximations of the self-consistant potential at time tl = l∆t. The initial potential V 0 and wave
functions Ψ0

p are given by VI , and respectively Φp, discret solution to the stationary non-linear
Schrödinger-Poisson system (2.1)(2.2)(2.4) with exterior potential equal to UI . The resolution of
the Schrödinger equation (2.6) involves a Crank-Nicolson scheme which is semi-implicit and insures

stability. Therefore, the value of the intermediary potential V l+ 1
2 must be computed to perform the

algorithm. It is done by an extrapolation using the Gummel iteration (3.1). Then, the algorithm
writes:

Algorithm 4.1 (Transient algorithm).

Do For l ≥ 0:

Computation of the intermediary potential

Computation of the potential V l+ 1
2 from the potential V land the density nl by the resolution

of the non-linear equation:

{

− d2

dx2V
l+ 1

2 = q2

ε (n[V
l] exp((V l − V l+ 1

2 )/Vref )− nD), (0, L)

V l+ 1
2 (0) = V l+ 1

2 (L) = 0,
(4.1)

for a fixed reference potential Vref .

Computation of the density

S1. For p = 0, ..., P : computation of Ψl+1
p wave function at time tl+1 and frequency kp using

the potential V l+ 1
2 and the wave function Ψl

p.

S2. Numerical integration: for j = 0, ..., J

nl+1
j =

P−1
∑

p=0

I l+1
p,j , where I l+1

p,j =

∫ kp+1

kp

g(k)
∣

∣

∣

(

Ψl+1
k

)

j

∣

∣

∣

2

dk .

Coupling, Poisson equation

Computation of the potential V l+1 from the density nl+1 by solving the Poisson equation
(2.1):

{

− d2

dx2V
l+1 = q2

ε (n
l+1 − nD), (0, L)

V l+1(0) = V l+1(L) = 0 .
(4.2)

End Do.

As in the stationary case, the equation (4.1) is solved using a Newton method. The linear
equation (4.2) is discretized with finite differences and solved by a simple matrix inversion.
Due to the presence of resonances, the steps S1 and S2 to compute density will be crucial here
also.
In the algorithm proposed in [16], which we will call equally Direct Resolution, the steps S1 and
S2 are performed without particular treatment of resonances: the wave functions are computed on
[0, L] solving the Schrödinger equation using a Crank-Nicolson Scheme with discrete transparent
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boundary conditions and the integrals I lp,j are computed with a trapezoidal rule. In that case, the
accuracy of the method is provided by the imposition of a uniform frequency mesh with a small
mesh size everywhere (an other strategy would be to choose a small frequency mesh size only in
the region where will live the resonant energy). Indeed, if the mesh size is small only near the
initial resonant energy then, because of the time evolution of the resonance, the refined mesh will
loose its relevance. Therefore, for the Direct Resolution, the number of Schrödinger equations to
solve in the time dependent regime is more important than in the stationary regime. Moreover,
the Crank-Nicolson method to solve one Schrödinger equation requires a matrix inversion of big
size (equal to J + 1) and is numerically much more expensive then the RK4 stationary method.
In this context, it is important to look for an adapted treatment of the resonance peaks to reduce
the number of frequency points.
In the following section, we propose a one-mode approximation method which extends the method
proposed in section 3.3 to the time-dependent case.

4.2 The time dependent One Mode Approximation

Recall first that in the initial work [17], the One Mode Approximation was presented in the time
dependent case with a simplified model. Then, let us start with the descritpion, in the One
Mode Approximation, of the decomposition of a wave function Ψk(t) solution to the transient
Shrödinger equation (2.6) for a given frequency k. The One Mode Approximation consists in the
decomposition:

Ψk(t) = Ψnr
k (t) + Ψr

k(t) , (4.3)

where the non-resonant part Ψnr
k (t) solves the transient Schrödinger equation:

{

i~∂tΨ
nr
k (t) = [− ~

2

2m∂2
x + Ufill(t) + V (t)]Ψnr

k (t), x ∈ IR

Ψnr
k (0) = Φnr

k ,
(4.4)

with filled potential Ufill(t) = U(t) + v01[a3,b3], where Φnr
k is solution to (3.6) with the initial

potential UI,fill + VI . In comparison with the stationary algorithm, it seems natural to look for
Ψr

k(t) proportional to the resonant mode u(t) corresponding to the first resonance z(t) of the
Hamiltonian H(t) at time t which verifies

[− ~
2

2m
∂2
x + U(t) + V (t)]u(t) = z(t)u(t) (4.5)

and
∫ L

0
|u(t, x)|2dx = 1. However, since the change of potential at time t = 0 is abrupt, the

adiabaticity hypothesis of [17] is not satisfied and one expects two peaks at both the energy of the
resonant mode at time t = 0− and the resonant energy at time t. This is what happens numerically.

Indeed, if denoting z(t) = E(t)− iΓ(t)2 , where E(t), Γ(t) > 0, in Figure 2 are plotted the logarithm
C(t, k) of the charge in the well for one wave function with respect to the frequency k:

C(t, k) = log

(

∫ b2

a2

|Ψk(t, x)|2dx
)

(4.6)

and the frequencies corresponding to the resonant energy

k−R(t) = −
√

2m

~2
(E(t) +B(t)) , k+R(t) =

√

2m

~2
E(t) , (4.7)

at different time t. The resolution is performed with the external potential U(t) corresponding
to the bias B(t) defined as follows: for the biases BI = 0 eV and B∞ = 0.1 eV , and for the time
t0 = 10−12 s, we have B(t) = BI for t ≤ 0, B(t) = B∞ for t ≥ t0 and on (0, t0), B(t) is the
polynomial of degree 3 such that B(t) is a C1 function on IR. The method used is the Direct
Resolution with the numerical parameters J = 300, P = 1500, ∆t = 10−15 s and the physical

9
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Figure 2: Logarithm C(t, k) of the charge in the well for one wave function with respect to the
frequency k and frequencies, k−R(t) and k+R(t), corresponding to the resonant energy, at different
time t, for a time dependent bias.
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parameters given in section 5.
We see that for small time the resonance peak is not localised at the resonant energy E(t) at time
t but it’s localised at the initial resonant energy EI . Then, the initial peak vanishes while a peak
grows at E(t). Therefore, we look for Ψr

k of the form:

Ψr
k(t, x) = θkv(t, x) + λk(t)u(t, x), x ∈ (0, L) , (4.8)

where v(t) is the propagation of the initial resonant mode by the Schrödinger equation:

{

i~∂tv(t) = [− ~
2

2m∂2
x + U(t) + V (t)]v(t), x ∈ IR,

v(0) = uI

(4.9)

and θk is the proportionality coefficient in the stationary regime corresponding the initial data
such that:

Φk(x) = Φnr
k (x) + θkuI(x), x ∈ (0, L) . (4.10)

Comparing (4.3)(4.8) and (4.10), the initial condition in (2.6) implies λk(0) = 0. Moreover,
injecting (4.3)(4.8) in the transient Schrödinger equation (2.6) and using equations (4.4),(4.5) and
(4.9) we get the following equation on λk(t):

[i~λ′
k(t)− z(t)λk(t)]u(t, x) + i~λk(t)∂tu(t, x) = −v01[a3,b3](x)Ψ

nr
k (t, x).

Multiplying the previous equation by u(t, x) and integrating on (0, L), it follows:

{

λ′
k(t) + [ i

~
z(t) +

∫ L

0
∂tu(t, x)u(t, x)dx]λk(t) = Sk(t)

λk(0) = 0 ,
(4.11)

where Sk(t) =
i
~
v0
∫ b3
a3

Ψnr
k (t, x)u(t, x)dx.

Remark 4.2. Equation (4.11) is an ODE which homogeneous solution oscillates at the energy
E(t) and which source term oscillates at the energy εk(t) defined by:

εk(t) =

{

~
2k2

2m , k ≥ 0

~
2k2

2m −B(t), k < 0
(4.12)

Therefore λk(t) has a peak at the frequencies k such that εk(t) = E(t).

4.2.1 Step S1

The aim here is to compute the wave function at step l + 1 making the decomposition:

Ψl+1
k = (Ψnr

k )l+1 + θkv
l+1 + λl+1

k ul+1 .

However, at this point of the algorithm, we do not have the value of the potential V l+1 and the
resonant mode ul+1 can not be computed. Therefore, we will make the following approximation:

Ψl+1
k = (Ψnr

k )l+1 + θkv
l+1 + λl+1

k ul+ 1
2 . (4.13)

Then the step S1 writes as follows.
Suppose that the quantities (Ψnr

k )l, vl and λl
k are known (at l = 0, it is given by the initial

decomposition (4.10)).
As it is done in the Direct Resolution for Ψl+1

k , see [16], the function (Ψnr
k )l+1 is computed on [0, L]

using (Ψnr
k )l and V l+ 1

2 by the resolution of (4.4) with the Crank-Nicolson scheme (B.2) , where
the potential Q is equal to Ufill + V . Since the initial data Φnr

k is not supported in (0, L), the

11



suitable boundary conditions are the non-homogeneous discrete transparent boundary conditions
presented in Appendix B. More precisely, if the bias is equal to

B(t) =

{

BI , t = 0

B∞, t > 0
(4.14)

then we will use the boundary conditions (B.8)(B.7) and for general biases B(t) we will use the
boundary conditions (B.8)(B.9).
The function vl+1 is computed by the Cranck Nicolson scheme (B.2) on [0, L] starting from vl and

using for V l+ 1
2 the solution to (4.1). The initial data uI is almost equal to 0 at x = 0 and x = L

and the homogeneous boundary conditions (B.3)(B.4) can be applied directly.

The resonance zl+
1
2 and resonant mode ul+ 1

2 are computed using the method presented in section
3.2 where the potential Q is equal to U l+ 1

2 + V l+ 1
2 . The initial guess for (ul+ 1

2 , zl+
1
2 ) are the first

eigenfunction and eigenenergy of the Hamiltonian

[− ~2

2m
∂2
x + U l+ 1

2 + V l+ 1
2 ]

with homogeneous Dirichlet boundary conditions at a2 and b2.
To achieve the step S1, we have to compute the coefficient λl+1

k . It is obtained from λl
k, (Ψ

nr
k )l,

(Ψnr
k )l+1, zl+

1
2 and ul+ 1

2 by the resolution of equation (4.11). The resolution is performed with a
Crank-Nicolson scheme, which leads to the following iteration:

(λl+1
k − λl

k)/∆t+ [
i

~
zl+

1
2 +

∫ L

0

∂tu
l+ 1

2ul+ 1
2 dx](λl

k + λl+1
k )/2

= (S
l+ 1

2
,l

k + S
l+ 1

2
,l+1

k )/2, (4.15)

where Sl,m
k =

i

~
v0

∫ b3

a3

(Ψnr
k )muldx.

By adequately fixing the resonant mode phase, the quantity

µl+1/2 :=

∫ L

0

∂tu
l+1/2ul+1/2dx

appearing in (4.15) is fitted to zero. Indeed, we consider ũ(t) solution to (4.5) such that ‖ũ(t)‖L2(0,L) =

1 and we look for u(t) of the form u(t) = ũ(t)eiϕ(t) where ϕ(t) ∈ IR. We note first that we have
the approximation

µl+1/2 =
1

2∆t

∫ L

0

(ul+1/2 − ul−1/2)(ul+1/2 + ul−1/2)dx ,

which becomes

µl+1/2 =
i

∆t
Im[

∫ L

0

ul+1/2ul−1/2dx] (4.16)

under the condition ‖ul−1/2‖L2(0,L) = ‖ul+1/2‖L2(0,L) = 1. Then, defining

ωl+1/2 =

∫ L

0

ũl+1/2ul−1/2dx ,

we choose

eiϕ
l+1/2

=
ωl+1/2

|ωl+1/2|
and it follows:

∫ L

0

ul+1/2ul−1/2dx = eiϕ
l+1/2

∫ L

0

ũl+1/2ul−1/2dx = ωl+1/2eiϕ
l+1/2

= |ωl+1/2| ∈ IR .

As a consequence, Im[
∫ L

0 ul+1/2ul−1/2dx] = 0 and equation (4.16) shows that ul+1/2 is such that

µl+1/2 is almost equal to 0.
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4.2.2 Step S2

In this section, we use the decomposition (4.13) to find an approximation of

nl+1
j =

∫ kM

−kM

g(k)
∣

∣

∣(Ψk)
l+1
j

∣

∣

∣

2

dk

which is adapted to the resonant peaks. Like in section 3.3, we make the approximation:

∣

∣Ψl+1
k

∣

∣

2
=
∣

∣

∣(Ψnr
k )

l+1
∣

∣

∣

2

+
∣

∣θkv
l+1
∣

∣

2
+
∣

∣

∣λl+1
k ul+ 1

2

∣

∣

∣

2

+ 2Re
(

θkv
l+1λl+1

k ul+ 1
2

)

. (4.17)

The coefficient θk has a peak at EI given by formula (3.7) and as noted in Remark 4.2 the coefficient
λk(t) has a peak at E(t). It follows that the cross term in the previous equation can be neglected
for biases of the form (4.14) with BI 6= B∞ since the initial resonance and the resonance at time
t are not in the same domaine of frequency. We write here the step S2 in the corresponding
framework (the method for general biases follows the same line). Therefore, equation (4.17) writes

∣

∣Ψl+1
k

∣

∣

2
=
∣

∣

∣
(Ψnr

k )l+1
∣

∣

∣

2

+
∣

∣θkv
l+1
∣

∣

2
+
∣

∣

∣
λl+1
k ul+ 1

2

∣

∣

∣

2

.

The wave function Ψnr
k (t) being regular with respect to the frequency k, the non resonant part

of the density can be computed with a large frequency mesh size, as it is done in the stationary
regime in [5]. Suppose that the discretisation k0 = −kM , k1, ..., kp, ..., kP = kM of the interval
[−kM , kM ] is uniform with mesh size ∆k and suppose that there exists two integers P ′ and ν such
that P

P ′
= ν. Then, the approximation for the density is

nl+1
j =

P ′−1
∑

p′=0

(

g(kνp′)
∣

∣

∣

(

Ψnr
νp′

)l+1

j

∣

∣

∣

2

+ g(kν(p′+1))

∣

∣

∣

∣

(

Ψnr
ν(p′+1)

)l+1

j

∣

∣

∣

∣

2
)

ν∆k

2

+
P−1
∑

p=0

(

g(kp) |θp|2 + g(kp+1) |θp+1|2
) ∆k

2

∣

∣vl+1
j

∣

∣

2

+

P−1
∑

p=0

(

g(kp)
∣

∣λl+1
p

∣

∣

2
+ g(kp+1)

∣

∣λl+1
p+1

∣

∣

2
) ∆k

2

∣

∣

∣u
l+ 1

2

j

∣

∣

∣

2

.

The number of Schrödinger equations to solve is reduced: P ′ equations instead of P equations for
the Direct Resolution, which induces a reduction of the numerical cost. However, this reduction

implies that we have only access to the functions
(

Ψnr
νp′

)l+1
for p′ = 0, ..., P ′ and the computation

of the coefficient λl+1
p , for p = 0, ..., P , requires an interpolation of the non resonant wave function

to evaluate the source term in (4.15). Following Remark 4.2, the picked form of the coefficent λl+1
p

is obtained numericaly only if the approximation of the source term at the frequency k osillates in
time at the energy εk(t). This implies that a polynomial interpolation is not adapted. Therefore,
we propose the suitable algorithm below: from the scheme (4.15), we have for p = 1, ..., P

λl+1
p =

1

1 + i∆tzl+1
2

2~

[(

1− i
∆tzl+

1
2

2~

)

λl
p +

∆t

2
(S

l+ 1
2
,l

p + S
l+ 1

2
,l+1

p )

]

,

where the source term is given by the interpolation:

for 0 ≤ p′ ≤ P ′ − 1 and 1 ≤ j ≤ ν − 1, Sl,m
νp′+j =

i

~
v0

∫ b3

a3

(Ψ̃nr
νp′)me−

i
~
ε∞
νp′+j

tmuldx,

with
(Ψ̃nr

p )m = (Ψnr
p )me

i
~
ε∞p tm
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and

ε∞p =







~
2k2

p

2m , kp ≥ 0

~
2k2

p

2m −B∞, kp < 0.

Remark 4.3. It is numerically verified that the method presented in this section is stable in time
and allows long time simulations, see section 5.4. It is not the case of the time dependent version
of the method presented in 3.3 which corresponds to the explicitely computation of the integral
∫ kp+1

kp
g(k)|λk(t)|2dk with the Briet-Wigner formula for λk(t) of the form (3.7).

5 Results

The physical parameters used for the numerical computations are gathered in the following array:

Rel. el. mass 0.067 Rel. permitivity 11.44
Temperature 300K Fermi level EF 6, 7097× 10−21 J
Donor density n1

D 1024 m−3

Donor density n2
D 5× 1021 m−3

For all the tests, the two barriers has the same size which is equal to the size of the well. The data
concerning the external potential are gathered in the following array:

L (nm) a1 (nm) a2 (nm) a3 (nm) b3 (nm) b2 (nm) b1 (nm) v0 (eV )
135 50 60 65 70 75 85 0.3

In all the simulations, we took the number of space points to be J = 300 which is such that the

stability condition ~
2

2m∆x2 > 1 is verified. And we fixed kM =
√

2m
~2 (EF + 7kBT ).

5.1 Computation of resonances

In this section we give the numerical values of the resonance of lower energy obtained using the
algorithm presented in section 3.2 for different biases BI . The potential Q is equal to UI+VI where
UI is the external potential and VI the solution to the Schrödinger-Poisson system (2.1)(2.2)(2.4)
corresponding to BI . The number of iterations before convergence Ncv denotes the iteration n
such that ||M(zn)un||2 < 10−15. We obtain the following results:

BI(eV) Ncv E0(meV) EI(meV) ΓI/EI

0 3 126.83 127.55 2.58× 10−3

0.1 3 80.29 81.00 4.40× 10−3

where the resonance is equal to zI = EI − iΓI

2 and E0 denotes the fondamental energy of the

Dirichlet Hamiltonian (3.8). The modulus of the normalized resonant mode |uI (x)|
||uI ||2 for BI = 0.1 eV

is represented in Figure 3.

5.2 The stationary regime

We show here a comparison of the Direct Resolution and of our One Mode Approximation algorithm
presented in section 3 with respect to a Reference Resolution. The latest corresponds to the Direct
Resolution with a uniformly refined frequency mesh where P = 4000.
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Figure 3: Representation of the potential UI + VI (dashed line) and the corresponding normalized
resonant mode (full line) for BI = 0.1 eV and J = 300.

Remark 5.1. For the bias BI = 0 the Gummel method can be initialized at the potential V 0
I = 0.

Such an initialization does not converge for BI > 0, we have convergence when initializing at the
solution given by the method when BI = 0.
For the One Mode Approximation, the method to compute the resonance at the first iteration
of the Gummel algorithm is initialized at the fondamental energy and fondamental mode of the
Dirichlet Hamiltonian (3.8). For the following iteration, it can be initialized at the resonance and
resonant mode of the previous iteration to decrease the numerical cost.

The results we obtained for two different values of the bias BI are given in the array of Figure
4. The number of iterations before convergence Ncv denotes the iteration l such that

el :=
||V l − V l−1||2

||V l||2
< 10−15 . (5.1)

The integer P is the number of frequency points, CPU is the time spent by the processor to realize
the computation. The column L2 error denotes the relative error for the potential in L2 norm
given by:

100
||V Ncv − Vref ||2

||Vref ||2
,

where Vref is the potential of the Reference Resolution. In the Direct Resolution, the number of
frequency points changes from an iteration to the other, however it stays around a fixed number
which we wrote with the symbol ≈. The One Mode Approximation algorithm converges and needs
less frequency points than the Direct Resolution. Nevertheless, the first algorithm doesn’t cost
much less than the second because the computation cost of one resonance is much bigger than
the resolution of one Schrödinger equation. In the time-dependent case, it is not possible to use
an adaptative frequency mesh and the numerical cost for the computation of one resonance is
comparable to the resolution of one Schrödinger equation, therefore the One Mode Approximation
will be much more interesting.
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Ncv P CPU(s) L2 error(%)
BI = 0 eV Reference 36 4000 69.47 /

Direct 37 ≈ 916 16.47 4.59× 10−3

One Mode 37 50 5.53 1.26
BI = 0.1 eV Reference 34 4000 65.10 /

Direct 34 ≈ 896 14.80 3.03× 10−3

One Mode 34 50 4.34 2.04

Figure 4: Comparison of the Direct Resolution and One Mode Approximation algorithms for the
resolution of the stationary Schrödinger-Poisson system.
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Figure 5: Relative error with respect to the number of iterations for BI = 0 eV .

In Figure 5 is represented the error el defined by (5.1) with respect to the number of iterations l
for the Direct Resolution and the One Mode Approximation. The bias is equal to BI = 0 eV which
corresponds to the upper part of the array of Figure 4. We see that the One Mode Approximation
algorithm reaches the accuracy 10−15 in 37 iterations and converges as fast as the Direct Resolution.
In Figure 6, are represented the self-consistant potential and the density after convergence for the
part BI = 0 eV of the array of Figure 4 and for the three methods. We see that the three methods
give very similar results.

5.3 The transient regime: step S1

We present here a validation of the step S1 discribed in section 4.2. It is realized using a comparison
of the One Mode Approximation algorithm described in this section, where only the step S1 is
performed, with the Direct Resolution. For this One Mode Approximation algorithm, the integrals
I lp,j are computed with a trapezoidal rule instead of using the step S2 and the number of frequency
points has to be the same than for the Direct Resolution.
The external potential U(t) is the time dependent external potential corresponding to the bias
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Figure 6: Nonlinear potential and density for BI = 0 eV .

B(t) defined in (4.14) where BI = 0 eV and B∞ = 0.1 eV .
For the two methods, the number of frequency points is equal to P = 1500. In order to have
stability, we took a time step ∆t = 10−15 s and the final time of the simulation is t = 8× 10−12 s.
The time spent by the processor to complete the simulation is 66853.45 s for the Direct Resolution
and 97329.36 s for the One Mode Approximation. The decomposition of the wave function at
each frequency and time step makes the computational time more important for the One Mode
Approximation, therefore, this method is not interesting without a reduction of the number P .
The left plot of Figure 7 is the representation, for the two methods, of the evolution of the charge
in the well:

∫ b2

a2

n(t, x)dx (5.2)

with respect to time t. We see that for the One Mode Approximation and for the Direct Resolution
the charge in the well increases from the charge corresponding to BI to the one corresponding to
B∞.
On the right plot of Figure 7, is represented the relative distance in L2 norm dl between the density
nl and the density n∞ corresponding to the stationary solution with the bias B∞:

dl = 100
||nl − n∞||L2(a2,b2)

||n∞||L2(a2,b2)
(5.3)

with respect to time tl. The relevant variation of the density being in the well, the norm is con-
sidered only on the interval (a2, b2). We remark that for both methods, the density converges to a
density close to the stationary density corresponding to B∞. The difference between the asymp-
totic density and the stationary density corresponding to B∞ is due to the fact that the methods
used to perform the integration in k for the time dependent and for the stationary algorithms are
different.
In the left plot of Figure 8, are represented, at time t = 3× 10−12 s, the functions

Cθ(t, k) = log

(

∫ b2

a2

|θkv(t, x)|2dx
)

, Cλ(t, k) = log

(

∫ b2

a2

|λk(t)u(t, x)|2dx
)

, (5.4)

the function C(t, k) defined by (4.6) and the frequencies k−R(t), k
+
R(t) defined by (4.7) with respect

to the frequency k. This picture confirms that the step S1 corresponds to a decomposition of the
wave function Ψk in a function θkv peaked at the frequency related to the initial resonant energy
EI and a function λku peaked at the frequency related to the resonant energy E(t).
In the right plot of Figure 8, is represented the square of the L2 norm of v(t) in the well, defined
by:

N(t) =

∫ b2

a2

|v(t, x)|2dx ,
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Resolution and One Mode Approximation algorithms.
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3× 10−12 s (left) and time evolution of N(t) (right).

as a function of the time t. We observe that v(t) vanishes in the well for times larger than
5 × 10−12 s. This corresponds to the extinction of the resonant peak at energy EI observed in
Figure 2. Moreover, the decay of N(t) is theoritically given by the imaginary part of the resonance
following the approximation:

N(t0 + T )

N(t0)
≈ e−

1
~

∫ t0+T
t0

Γ(s)ds .

This is verified numerically since we have for t0 = 10−12 s and T = 10−12 s:

N(t0 + T )

N(t0)
= 0.578

and
e−

1
~

∫ t0+T
t0

Γ(s)ds = 0.582 .

5.4 The transient regime: reduction of the number of frequency points

We present here a comparison of the One Mode Approximation algorithm described in section 4.2,
where the steps S1 and S2 are performed, with the Direct Resolution.
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Figure 9: Evolution of the charge in the well (left) and of the L2 difference dl (right) for the Direct
Resolution and One Mode Approximation algorithms.

The external potential U(t) is the time dependent external potential corresponding to the bias B(t)
defined in (4.14) where BI = 0 eV , B∞ = 0.1 eV . The number of frequency points is P = 1500 for
the Direct Resolution. For the One Mode Approximation, the number of frequency points for the
non resonant part is P ′ = 750 and P = 1500 for the resonant part. As in the previous section, we
took a time step ∆t = 10−15 s to have stability. The final time of the simulation is t = 8× 10−12 s.
The left plot of Figure 9, is the representation, for both methods, of the charge evolution in the
well defined by (5.2). We see that for the One Mode Approximation and for the Direct Resolution
the charge in the well increases from the charge corresponding to BI to this corresponding to B∞.
On the right plot of Figure 9, is represented the L2 difference dl, defined by (5.3), as a function
of time tl. We remark that for both methods, the density converges to the stationary density
corresponding to B∞.
For the One Mode Approximation the simulation is possible with a half less Schrödinger equations
at each time step and the computational time is divided by two. The method we propose for the
step S2 presents the two following properties: first, the resolution is stable and allows long time
simulations, second, the picked form of the coefficient is reconstructed and allows at time increase
of the charge in the well. These two properties, that we set as a validity criterion for the One Mode
Approximation algorithm, are still verified after a reduction of the frequency points similar to the
stationary algorithm by taking P ′ = 50 and P = 1500. However, for such a simulation, the intial
value of the density and the long time value of the density are poorly evaluated. Nevertheless, this
lack of precision can be probably overcomed by improving the interpolation of the exterior wave

functions and replacing the trapezoidal rule to compute the initial resonant pic
∫ kp+1

kp
g(k)|θk|2dk

by its explicit value given in section 3.3.
We represented in Figure 10 the logarithm C(t, k) of the charge at frequency k, the frequencies
k−R(t) and k+R(t) defined by (4.6) and (4.7) computed with the Direct Resolution and at different
values of the time t. As noted for Figure 2, for small times the peak is localized at the initial
resonant energy EI . Then, the initial resonance peak vanishes while a resonance peak grows
around E(t). However, the two cases are different: in Figure 2 the resonant energy E(t) moves
with the bias B(t) for t ∈ (0, t0). In that case, the resonance peak corresponding to E(t) appears
at the same frequency as the initial one and the two peaks split. In the present case, the peak,
when it appears, is already far from the initial one.
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212988) funded by the French Agence Nationale de la Recherche and from the Marie Curie Project
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Figure 10: Logarithm C(t, k) of the charge in the well for one wave function with respect to the
frequency k and frequencies, k−R(t) and k+R(t), corresponding to the resonant energy at different
time t.
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A Computation of resonances: FEM matrices

The matrices appearing in section 3.2 are given as follows:

M2 =











−i ~√
2m

0 . . . 0

0
... 0
0











, M3 =











0

0
...
0

0 . . . 0 −i ~√
2m











, M4 = ∆x















1
3

1
6

1
6

2
3

1
6 0

. . .
. . .

. . .

0 1
6

2
3

1
6

1
6

1
3















M1 =
~2

2m∆x















1 −1
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
−1 1















+∆x















ξ0 ζ0
ζ0 ξ1 ζ1 0

. . .
. . .

. . .

0 ζJ−2 ξJ−1 ζJ−1

ζJ−1 ξJ















,

where

ζj =
Qj +Qj+1

12
, j = 0, ..., J − 1,

ξ0 =
Q0

4
+

Q1

12
, ξj =

Qj−1 +Qj+1

12
+

Qj

2
, j = 1, ..., J − 1, ξJ =

QJ

4
+

QJ−1

12

and Qj are the approximations of the nodal values of the potential: Q(xj).

B Resolution of the time dependent Schrödinger equation

B.1 The homogeneous case

In this section, we recall the scheme proposed in [2] to solve on the bounded domain [0, L] a time
dependent Schrödinger equation

{

i~∂tΨ = − ~
2

2m∂2
xΨ+QΨ, t > 0, x ∈ IR

Ψ(0, x) = Φ(x), x ∈ IR ,
(B.1)

with the following hypothesis:

H1. The initial condition Φ is supported in 0 < x < L.

H2. The potential Q verifies: for t > 0

Q(t, x) = 0, x ≤ 0, and Q(t, x) = QL, x ≥ L .

Considering the time and space discretization defined in section 4.1, we note Ψl
j the approximation

of the solution Ψ(tl, xj). Then, equation (B.1), is solved with the Crank-Nicolson method:

− iR(Ψl+1
j −Ψl

j) = ∆xxΨ
l+1
j +∆xxΨ

l
j + wQ

l+1/2
j (Ψl+1

j +Ψl
j),

j = 1, ..., J − 1, l ≥ 0, (B.2)

where ∆xxΨj = Ψj+1 − 2Ψj +Ψj−1, R = 4m∆x2

~∆t and w = − 2m∆x2

~2 .
The equation (B.2) comes with the discrete transparent boundary conditions:

Ψl
1 − s00Ψ

l
0 =

l−1
∑

k=1

sl−k
0 Ψk

0 −Ψl−1
1 , l ≥ 1, (B.3)
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Ψl
J−1 − s0JΨ

l
J =

l−1
∑

k=1

sl−k
J Ψk

J −Ψl−1
J−1, l ≥ 1, (B.4)

where, we have for j = 0 and j = L:

slj =

[

1− i
R

2
+

σj

2

]

δ0l +

[

1 + i
R

2
+

σj

2

]

δ1l

+ αj exp

(

−ilϕj
Pl(µj)− Pl−2(µj)

2l− 1

)

, (B.5)

and

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j

, µj =
R2 + 4σj + σ2

j
√

(R2 + σ2
j )[R

2 + (σj + 4)2]

σj =
2∆x2

~2
Qj , αj =

i

2
((R2 + σ2

j )[R
2 + (σj + 4)2])1/4 exp

(

i
ϕj

2

)

.

Here Pl denotes the Legendre polynomials, with the convention P−1 = P−2 = 0, and δjl the
Kronecker symbol related to the integers j and l.
The boundary conditions above are available only for initial data supported in (0, L) and therefore
it is called homogeneous discrete transparent boundary conditions.

B.2 The non homogeneous case

For the intial potential QI such that Q(0, x) = QI(x) and

QI(x) = 0, x ≤ 0, and QI(x) = QI,L, x ≥ L ,

we consider the problem (B.1) where the initial condition Φ is solution to

− ~
2

2m

d2

dx2
Φ+QIΦ = EIΦ, x ∈ IR, (B.6)

for a given energy EI . Like in section B.1, we will use the Crank-Nicolson scheme (B.2), however,
the hypothesis H1 is not verified and we can not apply (B.3)(B.4).
Nevertheless, using equations (B.1) and (B.6), the function

ϕ = Ψ− Φe−i
EL
~

t where EL = EI + (QL −QI,L)

is solution to:

i~∂tϕ = [− ~2

2m
∂2
x +Q]ϕ, x ≥ L

and verifies ϕ(0, x) = 0. Thus, we can write the homogeneous boundary condition (B.4) for ϕ
which gives the following boundary condition at x = L for Ψ:

Ψl
J−1 − s0JΨ

l
J =

l−1
∑

k=1

sl−k
J Ψk

J −Ψl−1
J−1 − ΦJ

l
∑

k=1

sl−k
J e−i

EL
~

k∆t

+ΦJ−1e
−i

EL
~

(l−1)∆t(1 + e−i
EL
~

∆t), l ≥ 1 , (B.7)

where the coefficients slj are given by (B.5). We proceed similarly at x = 0 by setting

ϕ = Ψ− Φe−i
E0
~

t where E0 = EI .

We obtain the following boundary condition at x = 0:

Ψl
1 − s00Ψ

l
0 =

l−1
∑

k=1

sl−k
0 Ψk

0 −Ψl−1
1 − Φ0

l
∑

k=1

sl−k
0 e−i

E0
~

k∆t

+Φ1e
−i

E0
~

(l−1)∆t(1 + e−i
E0
~

∆t), l ≥ 1 . (B.8)
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B.3 Time dependent potential

In this section, we consider the same problem than in section B.2 and in addition, we suppose that
the potential verifies: for t ≥ 0

Q(t, x) = 0, x ≤ 0, and Q(t, x) = QL(t), x ≥ L ,

instead of the hypothesis H2. As we did in section B.2, we will use the Crank-Nicolson scheme
(B.2). The boundary condition (B.8) at x = 0 obtained there can also be applied in our case. At
x = L, the time dependance of the potential must be considered. To this aim, we introduce the
function:

ϕ = Ψe
i
~

∫ t
0
QL(s)ds − Φe−i

EL
~

t where EL = EI −QI,L .

Using equations (B.1) and (B.6), it is verified that ϕ(0) = 0 and

i~∂tϕ = − ~2

2m
∂2
xϕ, x ≥ L ,

where we got rid of the time dependent potential. Therefore, ϕ verifies at x = L the boundary
condition (B.4) with potential equal to 0. This gives the following boundary condition for Ψ:
∀l ≥ 1

εlΨl
J−1 − s̃0Jε

lΨl
J =

l−1
∑

k=1

s̃l−k
J εkΨk

J − εl−1Ψl−1
J−1 − ΦJ

l
∑

k=1

s̃l−k
J e−i

EL
~

k∆t

+ΦJ−1e
−i

EL
~

(l−1)∆t(1 + e−i
EL
~

∆t) , (B.9)

where
εl = e

i
~

∑l−1

k=0
(Qk

L+Qk+1

L )∆t/2

and s̃lJ is given by (B.5) when replacing σJ by 0.

C Explicit value of some useful integrals

The aim of this section is to give, for n = 0, 1, the explicit value of the integral

χn(a, b, c, d) =

∫ b

a

xn

(x2 − c)2 + d2
dx ,

where a < b, c > 0 and d > 0.

• Case n=0:
We have the decomposition

1

(x2 − c)2 + d2
=

−1

2id

(

1

x2 − c+ id
− 1

x2 − c− id

)

=
−1

d
Im

(

1

x2 − c+ id

)

and
1

x2 − c+ id
=

−1

2z0

(

1

x+ z0
− 1

x− z0

)

, (C.1)
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where z0 =
√
c− id and

√
z denotes the square root holomorphic on C \ IR−. It is defined

by z = ρeiθ and
√
z =

√
ρei

θ
2 where ρ ≥ 0, θ ∈ (−π, π].

This leads to:

χ0(a, b, c, d) =
1

2d
Im

[

1

z0

(

∫ b

a

1

x+ z0
dx−

∫ b

a

1

x− z0
dx

)]

=
1

2d
Im

[

1

z0
(ln(b + z0)− ln(a+ z0)− ln(b− z0) + ln(a− z0))

]

,

where the logarithm is defined by z = ρeiθ and ln z = ln ρ+ iθ where ρ > 0, θ ∈ (−π, π].

• Case n=1:
We have

χ1(a, b, c, d) =
1

2

∫ b2−c

a2−c

1

x2 + d2
dx

=
1

2d

(

arctan

(

b2 − c

d

)

− arctan

(

a2 − c

d

))

.
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[17] C. Presilla, J. Sjöstrand, Transport properties in resonant tunneling heterostructures, J. Math.
Phys. 37, 10 (1996).

25


