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ABSTRACT

Aims. Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test
the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration.
Methods. We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures,
spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities
and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 106, a sharp
density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the
Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte
Carlo codes compared to those of discrete ordinate codes.
Results. For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results
indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.

Key words. radiative transfer – circumstellar matter – accretion, accretion disks – planetary systems: protoplanetary disks –
methods: numerical

1. Introduction

Dust represents an essential element in the energy balance of
a variety of astrophysical objects, from the interstellar medium
to the atmospheres and close circumstellar environments of nu-
merous classes of object; from the lower mass planets and brown
dwarfs, to massive stars. With the advent of high-angular reso-
lution and high-contrast instruments, the basic structural proper-
ties (e.g., size, inclination, and surface brightness) of the circum-
stellar environments of the nearest and/or largest objects – discs
and envelopes around young stars in nearby star-forming regions
and around more distant evolved stars – are now under close
scrutiny. With this unprecedented wealth of high-resolution data,
from optical to radio, detailed studies of the dust content be-
come possible and sophisticated radiative transfer (RT) codes
are needed to fully exploit the data.

At short wavelengths, dust grains efficiently absorb, scatter,
and polarise the starlight while at longer wavelengths dust re-
emits the absorbed radiation. How much radiation is scattered
and absorbed is a function of both the geometry of the circum-
stellar environment and the properties of the dust. In turn, the
amount of absorbed radiation sets the temperature of the dust
(and gas) and defines the amount of radiation that is re-emitted
at longer, thermal wavelengths.

To get a reliable understanding of the structure and evolution
of these “dusty” objects, be it the evolution of dust grain sizes,
the temperature dependent chemistry, or simply the density

profiles, it is highly desirable to model not only the integrated
fluxes (i.e., the spectral energy distributions, hereafter SED), but
also the resolved brightness and/or polarisation profiles when
available. This can only be done by solving the radiative trans-
fer (hereafter RT) problem in media that can have large opti-
cal depths and/or complex geometries and compositions. Recent
studies of circumstellar discs are based on detailed comparisons
of high-quality data sets, combining various kinds of observation
(SED, multiple wavelength scattered light images, polarisation
map, infrared or millimetre visibilities) to the predictions of RT
codes (e.g. Wood et al. 2002; Watson & Stapelfeldt 2004; Wolf
et al. 2003; D’Alessio et al. 2006; Steinacker et al. 2006; Doucet
et al. 2007; Fitzgerald et al. 2007; Pontoppidan et al. 2007; Pinte
et al. 2007, 2008a,b; Glauser et al. 2008; Tannirkulam et al.
2008). Such studies will become more and more common with
the advent of new instruments like VLT/SPHERE, Gemini/GPI,
JWST, Herschel and ALMA, and validating the accuracy of RT
codes is of particular importance.

Analytical solutions do not exist for wavelength-dependent
radiative transfer and sophisticated numerical methods must be
used. Testing the reliability of RT computations requires in that
case to compare the solutions to well-defined problems by in-
dependent codes. Such a work has been done by Ivezic et al.
(1997) for a 1D spherical geometry and by Pascucci et al. (2004,
hereafter P04) in a 2D disc configuration. The later work com-
pared in detail the calculations of five radiative codes and has
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been used as a reference to validate newly developed RT codes
(e.g. Harries et al. 2004; Ercolano et al. 2005; Pinte et al. 2006).
The test cases were however limited to relatively modest optical
depths (midplane opacity τ < 100 in the V band), orders of mag-
nitude smaller than the actual optical depths of protoplanetary
discs for which radiative transfer codes are generally used in the
literature. High optical depths represent challenging calculations
for radiative transfer codes, with potential convergence issues,
and additional tests are required to confidently trust the results of
radiative codes in this regime. Furthermore, calculations in P04
were done assuming isotropic scattering and restricted to SEDs.
With the advent of high-resolution observations of young stellar
objects, validating the calculations of resolved surface bright-
ness of these objects is now also crucially needed.

In this paper, we extend the work of P04 to realistic, very
optically thick discs with anisotropic scattering. We perform a
comparison of seven RT codes in a well defined 2-dimensional
disc configuration, with simple dust properties. The prediction
of four Monte Carlo codes (temperature structure in the disc,
the emergent SED as well as monochromatic scattered light im-
ages, and polarisation maps for different disc opacities and view-
ing angles) are compared in the case of anisotropic scattering
(Sects. 2 to 4). Additional comparisons with discrete ordinate
codes, in the case of isotropic scattering and without scattering,
are presented in Sect. 5.

2. Radiative transfer modelling

2.1. The radiative transfer problem

Solving the RT problem in dusty environments aims at deter-
mining the (polarised) specific intensity Iλ(−→r ,−→n ) at each point−→r and direction −→n of the volume and at each wavelength λ. This
intensity is obtained by solving the stationary transfer equation.

In the case of randomly oriented dust particles, the radiative
transfer equation can be written adopting the Stokes formalism:

dIλ
(−→r ,−→n )
ds

= −κext
λ (−→r ) Iλ

(−→r ,−→n )

+ κabs
λ

(−→r ) Bλ
(
T
(−→r )) I0

+ κsca
λ

(−→r ) 1
4π

�
Ω

Sλ
(−→r ,−→n ′,−→n ) Iλ

(−→r ,−→n ′) dΩ′(1)

where Iλ(−→r ,−→n ) = (I,Q,U,V) is the Stokes vector, with I repre-
senting the total intensity, Q and U the linearly polarised intensi-
ties, and V the circularly polarised intensity. κabs

λ (−→r ), κsca
λ (−→r ) and

κext
λ (−→r ) = κabs

λ (−→r )+ κsca
λ (−→r ) are the absorption, scattering and ex-

tinction opacities, respectively. s is the length along the direction
of propagation. Sλ(−→r ,−→n ′,−→n ) is the 4 × 4 scattering (or Mueller)
matrix describing the changes in the Stokes vector when the light
is scattered from the direction −→n ′ to the direction −→n . Bλ(T ) is the
Planck function and I0 is the unitary Stokes vector representing
unpolarised emission I0 = (1, 0, 0, 0)1.

Computation of the thermal emission requires to determine
the dust temperature structure T (−→r ). This temperature is deter-
mined by writing that the dust is in radiative equilibrium. If we
assume that the dust is at the local thermodynamic equilibrium
and that there is no more sources of energy than the radiation

1 Because the grains are randomly oriented, the nett dust thermal emis-
sion is not polarised.

field, the temperature is obtained by solving the implicit equa-
tion:∫ ∞

0
κabs
λ

(−→r ) Bλ (T (−→r )) dλ =
∫ ∞

0
κabs
λ

(−→r ) Jλ dλ (2)

where Jλ is the mean specific intensity (i.e. the specific intensity
averaged over all solid angles).

The system of Eqs. (1) and (2) completely defines the RT
problem when the dust optical properties (κabs

λ , κsca
λ , Sλ) and

sources of radiation (initial conditions for Eq. (1)) are given. It is
important to note that opacities can depend on the temperature,
in which case solving simultaneous Eqs. (1) and (2) requires an
iterative scheme. Most of the time however, dust opacities do not
vary much with temperature and can be assumed to be constant.
We will make this assumption in the following analysis.

Additionally, radiative transfer plays an integral role in the
physics of the disc. It alters the density structure via hydrostatic
equilibrium (e.g. Walker et al. 2004) and impacts the dust con-
tent, and hence the opacity. For instance differential dust subli-
mation at the inner edge can destroy some of the dust grains,
the temperature of a dust grain depending on its size (e.g.,
Tannirkulam et al. 2007) and composition (e.g., Woitke 2006).
Similarly the formation of ice mantles around the grains in the
cold, outer regions of the disc also affects the grain opacities.
Including any of these effects requires an iterative approach. In
this paper, we restrict ourselves to the benchmark of radiative
transfer solvers and keep the density structure and dust proper-
ties fixed.

2.2. Numerical methods

2.2.1. The Monte Carlo method

Anisotropic scattering by dust grains precludes the use of direct
methods to solve the continuum RT equation and Monte Carlo
methods are commonly used instead. They solve the RT equa-
tion by stochastically propagating “photon packets” through the
dusty environment. The transport of packets is governed by scat-
tering, absorption and re-emission events that are controlled by
the optical properties of the medium (opacity, albedo, scattering
phase function, etc) and by the temperature distribution. Upon
leaving the model boundaries, “photon packets” are used to build
an SED and/or synthetic images.

The Monte Carlo scheme estimates physical quantities by
statistical means, which potentially leads to noisy results when
the number of packets sampling some regions and/or directions
in the model becomes low. Several variance reduction tech-
niques have been developed to improve the sampling of the
Monte Carlo method: forced first scattering (Cashwell & Everett
1959), peel-off techniques (Yusef-Zadeh et al. 1984), estima-
tion of the mean specific intensity (Lucy 1999), immediate re-
emission (Bjorkman & Wood 2001), and importance weight-
ing schemes (Juvela 2005). These various techniques allowed
the Monte Carlo method to progressively become competitive
against grid-based methods, and it is now more and more com-
monly used to solve the continuum RT problem.

Despite these techniques, Monte Carlo methods can become
computationally expensive when the optical depth becomes very
large. In our disc configuration, this leads to two major difficul-
ties:

– because gradients of opacity are oriented toward the disc sur-
face, packets entering the disc tend to escape after a few in-
teractions. Very few packets penetrate the central regions of
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the disc, leading to a noisy temperature structure close to the
disc midplane;

– for edge-on configurations, the flux in the near- and mid-
infrared is dominated by packets originating from the dense
central regions of the disc. These packets will be scattered
towards the observer in the surface layers of the disc, where
the probability of interaction is very low (due the very low
density). Packets escaping the dense regions (after a large
number of interactions) almost always go through the sur-
face layers without interacting with the dust grains and large
number of packets are required to converge SEDs or images
in this regime.

In the next paragraphs, we describe two schemes that, when cou-
pled with a Monte Carlo approach, significantly improve the ef-
ficiency of the codes. They have helped to overcome the previ-
ously mentioned difficulties and to efficiently solve the test cases
presented in this paper.

2.2.2. Diffusion approximation

In the deep regions of the disc, solving the complete RT equa-
tion is not necessary. The radiation field becomes isotropic and
the source function becomes equal to the Planck function. The
behaviour of the density of energy ε(−→r ) = 4σT (−→r )4/c is in that
case properly described by the diffusion theory:

∇.
(
D
(−→r )∇ε(−→r )

)
= 0 (3)

where the diffusion coefficient is defined as D(−→r ) =
1/3ρ(−→r )κR(−→r ) with κR(−→r ) the local Rosseland opacity.

In this case, Monte Carlo methods can be efficiently coupled
to diffusion approximation methods. The model can be divided
into two regions. The first one, that corresponds the surface of
the disc represents all parts of the model volume where the op-
tical depth in any direction is smaller than a given threshold. In
this region, the temperature structure is computed with a Monte
Carlo method, eventually including acceleration schemes such
as the immediate re-emission concept and/or estimation of the
mean specific intensity.

In the rest of the model volume, i.e. in the central regions of
the disc, the temperature structure can be solved using the diffu-
sion approximation. The temperature structure at the edge of the
diffusion approximation region (initial condition for Eq. (3)) is
given by the solution of the Monte Carlo calculations.

The optical depth threshold which defines these two regions
must be set high enough to ensure that the radiation field inside
the diffusion approximation region is isotropic and dominated
by the local emission.

For an optimal efficiency, this method must avoid calculat-
ing the complete propagation of photon packets inside the dif-
fusion approximation region. This can be done by using various
methods. The propagation of the packets can be calculated in a
faster way by using a modified random walk procedure (Fleck &
Canfield 1984; Min et al. 2009). This method combines multiple
interaction steps in one computation, while still keeping track of
the energy deposited in an accurate sense. In this way, the in-
teraction between the optically thick regions and the upper lay-
ers of the disc is properly computed. In addition, the number of
steps taken can be easily adjusted to the local radiation field and
density gradient, making it a highly flexible method. A “mirror”
condition can also be used: when a packet enters the diffusion
approximation region, it is sent back with the same energy and
wavelength but with an opposite direction vector. Although not

rigorously exact, this method (used by TORUS and MCFOST)
was found to be very accurate when compared to the full Monte
Carlo solution (see Sect. 4.1).

Details and tests on the accuracy of diffusion approximation
methods are presented in Min et al. (2009).

2.2.3. Ray-tracing

When the specific intensity is known in each point of the model,
direct ray-tracing methods using the formal solution of the RT
equation can be used to produce observables.

Ray-tracing has for instance been used in combination with
Monte Carlo methods to produce SEDs and emission maps in the
infrared and millimetre regimes, where scattering can be consid-
ered isotropic in some cases (Wolf 2003; Dullemond & Dominik
2004). When the scattering is isotropic, only the mean specific
intensity and temperature structure are required to calculate the
source function. These two quantities can be easily estimated
with a Monte Carlo method (Lucy 1999) and do not require large
amount of memory to be stored. After an initial Monte Carlo run
computing the total mean intensity and temperature structure in
the disc, SEDs and/or maps can then be produced by integrating
the source function on rays originating from the observer. Which
such a method, the Monte Carlo method is used only to estimate
the specific intensity and not the images and/or SEDs. The re-
sulting noise in the observables is much lower as it only reflects
the noise in the mean specific intensity and no longer the noise
associated to the production of the observables themselves.

This method combining Monte Carlo and ray-tracing can be
extended to any wavelength if the angular dependence of the
scattering component of the source function is preserved in the
calculations. The Monte Carlo method produces all the infor-
mation needed to perform such calculations, as it can give an
estimate of the specific intensity, with its complete angular de-
pendence, and not only of the mean specific intensity. However,
storing the full spatial, angular and wavelength dependence of
the radiation field requires large amounts of memory which is
currently beyond computational capacities.

This difficulty can be overcome by invoking successive
monochromatic Monte Carlo runs, which removes the need to
store the wavelength dependence of the specific intensity. An
initial multi-wavelength Monte Carlo run calculates the temper-
ature structure in the disc. The SED is then constructed wave-
length by wavelength with successive monochromatic Monte
Carlo runs that estimate the specific intensity at each point of
the model.

In MCFOST, the specific intensity is then saved for a set of
angular directions (method 1). At the end of each Monte Carlo
run, the scattering emissivity in any direction is calculated from
the specific intensity and resolved maps and/or integrated fluxes
for any inclinations are finally obtained by ray-tracing. This step
(monochromatic Monte Carlo run + ray-tracing run) is repeated
over all wavelengths, without storing the specific intensity at the
previous wavelength.

A slightly different method is adopted in MCMax, where the
scattering emissivity in a given set of directions is stored instead
of the specific intensity itself (method 2). The scattering emissiv-
ity is the product of the specific intensity by the scattering phase
function, i.e. the last term in Eq. (1). Each time a packet crosses
a cell, its contributions to the scattering emissivity in the cho-
sen directions are calculated by multiplying the packet energy
by the local phase function. At the end of each monochromatic
Monte Carlo run, maps and/or fluxes at the chosen inclinations
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are produced by integrating the source function via a ray-tracing
method.

Method 1 avoids the expensive calculations of the scatter-
ing emissivity each time a packet crosses a cell but requires a
larger amount of memory to store the angular dependence of the
specific intensity. If the radiation field is stored for a few specific
wavelengths, it also allows to produce scattered light images and
emission maps at any inclinations, by only running additional
ray-tracing calculations. However, with this method, the angu-
lar sampling of the radiation field must be performed with care,
especially when scattering is very anisotropic. This issue is not
encountered with method 2, which has the same, almost perfect2,
angular sampling of the radiation field as classical Monte Carlo
methods.

2.3. Codes description

2.3.1. MCFOST

MCFOST is a 3D continuum and line radiative transfer
code based on the Monte Carlo method (Pinte et al. 2006).
Temperature structures are calculated using the immediate re-
emission concept of Bjorkman & Wood (2001) but with a contin-
uous deposition of energy to estimate the mean intensity (Lucy
1999). The code uses a spherical or cylindrical grid, with an
adaptive mesh refinement at the inner edge (based on the opacity
gradient) so as to properly sample the inner radius of the disc.

Several improvements have been implemented on top of the
original algorithm presented in Pinte et al. (2006). In very opti-
cally thick parts of the model, the temperature structure is cal-
culated with a diffusion approximation method, using the Monte
Carlo calculations as limit conditions. Equation (3) is solved as
an asymptotic limit of the time dependent diffusion equation, via
an implicit scheme to ensure stability and accuracy. The transi-
tion between the Monte Carlo and diffusion approximation re-
gions is set to an optical depth of 1 000 at the wavelength where
the stellar emission peaks. To avoid calculating the propagation
of photon packets inside the diffusion approximation domain,
packets are mirrored at the boundaries of the Monte Carlo do-
main.

The temperature structure and radiation field estimated by
the Monte Carlo runs are used to produce images, polarisation
maps, and SEDs with a ray-tracing method, where the emerging
flux is obtained by calculating the formal solution of the radia-
tive equation along rays.

2.3.2. MCMax

The Monte Carlo radiative transfer code MCMax is based on the
scheme of immediate re-emission as proposed by Bjorkman &
Wood (2001). For the temperature structure the method of con-
tinuous absorption by Lucy (1999) is implemented. The photons
are traced in 3D on a spherical coordinate grid while the geom-
etry of the system is set to be cylindrically symmetric. For the
optically thick regions a modified random walk procedure is ap-
plied in order to make multiple interaction steps in a single com-
putation (see Fleck & Canfield 1984; Min et al. 2009). This has
the advantage that the computational speed is increased signifi-
cantly while the temperature structure is still computed with high
accuracy. After the Monte Carlo procedure a partial diffusion ap-
proximation is used for these regions in the disc that received too
few photons to determine a reliable temperature structure (see

2 Only limited by the numerical precision.

Min et al. 2009). All the observables are constructed by integrat-
ing the formal solution using ray-tracing. In this way noise on
the observables is reduced significantly.

The spatial grid at the inner edge of the disc is set in such a
way that the optical depth for both the local radiation field and
the stellar radiation are sampled logarithmically.

2.3.3. Pinball

Pinball is a Monte-Carlo code that calculates scattered-light im-
ages; it does not calculate the equilibrium temperature or include
thermal re-emission. An earlier version and a pair of simple test
cases were described by Watson & Henney (2001). The current
version includes polarisation.

2.3.4. TORUS

TORUS is a 3D continuum and line radiative transfer code
based on the Monte Carlo method (Harries 2000; Harries et al.
2004; Kurosawa et al. 2004). Radiative equilibrium is computed
using the continuous absorption algorithm from Lucy (1999).
Calculations are performed on a 2D, cylindrical adaptive-mesh
grid. Storing the opacity information on an adaptive mesh has
particular advantages for the problem considered here, since it
allows an adequate sampling of the inner edge of the disc, where
the opacity gradient is very steep. The temperature structure in
the central regions of the disc is computed with a diffusion ap-
proximation method.

For scattered light images, the enforced scattering concept
(Cashwell & Everett 1959) as well as the peel-off technique
(Yusef-Zadeh et al. 1984) are implemented to reduce the vari-
ance.

The descriptions of the codes ProDiMo, RADMC and
RADICAL, that have performed the test cases with isotropic scat-
tering and without scattering, are presented in Sect. 5.1.

3. Benchmark problem

All the codes in this paper that calculate the thermal equilibrium
have successfully reproduced the P04 benchmark, from optically
thin configurations to optical depths of 100 in the optical. The
test cases presented here are complementary to those in P04 and
are restricted to optical depths higher than 1 000. The full de-
scription of the benchmark problem, including tabulated values
for the disc density and the dust properties, as well as the re-
sults for all codes are presented on the webpage http://www.
astro.ex.ac.uk/people/cpinte/benchmark/. This should
allow additional codes to compare their results with the ones pre-
sented in this paper.

3.1. System geometry

The model consists of a dusty disc surrounding a central star and
located at a distance of 140 pc.

We consider an axisymmetric flared density structure with
a Gaussian vertical profile ρ(r, z) = ρ0(r) exp(−z2/2 h(r)2).
We use power-law distributions for the surface density Σ(r) =
Σ0 (r/r0)−1.5 and the scale height h(r) = h0 (r/r0)1.125 where r
is the radial coordinate in the equatorial plane and h0 = 10 AU
is the scale height at the radius r0 = 100 AU. The disc extends
from an inner cylindrical radius rin = 0.1 AU to an outer limit
rout = 400 AU. The edges of the disc are assumed to be sharp, i.e.

http://www.astro.ex.ac.uk/people/cpinte/benchmark/
http://www.astro.ex.ac.uk/people/cpinte/benchmark/
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Fig. 1. Dust optical properties for the 1 μm silicate grains used in the calculations. Left: dust opacity, the full line represents the extinction opacity,
the dashed line the absorption opacity and the dotted line the scattering opacity. Right: albedo (full line) and asymmetry parameter g = 〈cos θ〉
(dashed line). For wavelengths larger than 100 μm, both the albedo and asymmetry parameter have values close to 0 and the contribution from
scattered light is negligible.

vertical: there is nothing inside rin and outside rout and the den-
sity is defined by the previously mentioned power-laws between
them. The dust disc mass is the only parameter varied and takes
4 different values: 3× 10−8, 3× 10−7, 3× 10−6 and 3× 10−5 M	.

This configuration was chosen because it represents a more
difficult problem to solve than the test case presented by P04:
the disc extends much closer to the star, 0.1 AU instead of 1 AU
and the radial gradient of density is much steeper with a slope of
surface density of −1.5 instead of 0.125, leading to much higher
densities close to the inner edge of the disc, and hence much
higher disc optical depths.

The star is defined as a uniformly radiating blackbody sphere
at a temperature of 4 000 K and with a radius of 2 solar radii.

3.2. Dust properties

Dust grains are defined as homogeneous and spherical particles
with a single size of 1 μm and are composed of astronomical
silicates (Weingartner & Draine 2001). The grain mass density
is fixed to 3.5 g/cm3.

The dust optical properties: extinction and scattering opac-
ities (Fig. 1), scattering phase functions, and Mueller matrices
are calculated using the Mie theory. The resulting midplane op-
tical depth in I band (0.81μm), from the star to the observer, is
ranging from 1.22× 103 to 1.22× 106 when the disc mass varies
from 3 × 10−8 to 3 × 10−5 M	. For simplicity, in the following,
we will label the different models τ = 103, τ = 104, τ = 105 and
τ = 106.

In the simplifying case of Mie scattering, the matrix becomes
block-diagonal with only 4 non-zero elements:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
scatt

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S 11 S 12 0 0
S 12 S 11 0 0

0 0 S 33 S 34
0 0 −S 34 S 33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I

Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
incident

(4)

where the individual elements S ij only depend on the scatter-
ing angle and not on the azimuthal angle. The first element S 11,
also known as the “phase function” is plotted in Fig. 2 for the
wavelength of 1 μm used to calculate scattered light images and
polarisation maps.

0 90 180

0.001

0.01

0.1

Scattering angle (o)

S
11

Fig. 2. Mie scattering phase function (first element of the Mueller ma-
trix, full line) for the 1 μm silicate grains at a wavelength of 1 μm. The
dashed line represents the Henyey-Greenstein phase function for the
same asymmetry parameter g = 〈cos θ〉 = 0.63.

A spherical grain of 1 μm at a wavelength of 1 μm is in the
middle of a resonance region, where constructive and destructive
interference within the dust grain results in phase (and polari-
sation) functions with strong oscillations. These effects are not
observed in the case of a grain size distribution (where the os-
cillations corresponding to different grain sizes are averaged) or
in the case of more naturally shaped particles, like aggregates.
However, we choose these dust properties as they represent a
better test case for the radiative transfer codes. The oscillations
in the elements of the Mueller matrix must be seen in the syn-
thetic maps allowing a more detailed comparison between codes.
For comparison an Henyey-Greenstein phase function with the
same asymmetry parameter is over-plotted in Fig. 2.

All the calculations presented in Sect. 4 are done assuming
anisotropic scattering and use the previously presented Mueller
matrix. To compare the results of the Monte Carlo codes with
those obtained from discrete ordinate codes, the temperature
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Fig. 3. Radial temperature profile in the disc midplane. The left panel corresponds to the τ = 103 case and the right panel to the τ = 106 case.
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in Fig. 9 (isotropic scattering) and Fig. 10 (no scattering).

structures and SEDs are also calculated in the isotropic case (i.e.
S 11 is constant), using the opacities calculated with the Mie the-
ory (Sect. 5).

3.3. Maps and SEDs

SEDs, images and polarisation maps are calculated at 10 incli-
nations equally spaced in cosine, i.e. for cos(i) = 0.05, 0.15,
. . . , 0.85 and 0.95. This corresponds to inclination angles rang-
ing from 18.2 to 87.1◦ from pole-on. Scattered light images and
polarisation maps are calculated at 1 μm. The pixel scale is
25.61 mas.pixel−1 (i.e. 251 pixels for a physical size of 900 AU
at a distance of 140 pc). This is roughly a factor 2 smaller than
the pixel scale of the WFPC and ACS cameras on-board the
Hubble Space Telescope.

4. Results

4.1. Temperature structures

Figures 3 and 4 show the temperature distributions calculated
by the different codes, as well as the difference between codes.
Overall, the agreement is very good with difference almost al-
ways smaller than 10%.

Figure 3 presents the temperature along the disc midplane
for the τ = 103 and τ = 106 cases. Very close to the inner
edge, where the disc is directly heated by the star, the agree-
ment between codes is excellent with maximum differences of
the order of 1%. At large radii (>100 AU), the disc becomes op-
tically thin at optical wavelengths in the vertical direction, and
the midplane is heated by the stellar light that is scattered in the
surface layers of the discs. In these regions, the peak-to-peak dif-
ferences between codes remain below 1.5 and 3% for τ = 103

and τ = 106 cases, respectively. This shows that all codes deal
smilarly with the redistribution of energy by anisotropic scatter-
ing. This is confirmed by the vertical cut at a radius of 200 AU
(Fig. 4, right panel), where the differences are of the order of
1%, except at the turnover point from optically thin to optically
thick (the place where the temperature suddenly drops) where
differences reach 5%.

Differences in the radial temperature profile are larger
between the inner edge and 1 AU, i.e. in regions were the stellar
radiation does not penetrate, even via scattering. In these re-
gions, the heating mechanism is the dust re-emission by the up-
per layers of the disc, which represent the most difficult case for
RT codes. Nevertheless, the peak-to-peak differences between
codes remain limited, smaller than 4% for the τ = 103 case. For
the τ = 106 cases, differences are most of the time smaller than
10%, except in a very small regions between rin + 10−4 AU and
rin+10−2 AU where the maximum difference is 20%. Differences
remain also very small in the vertical direction as shown in the
left panel of Fig. 4. They are below 5% from the midplane up to
the disc surface, where they become smaller than 1%.

4.2. SEDs

The emerging spectral energy distributions for the τ = 103 and
τ = 106 models are presented in Fig. 5 for different inclinations
ranging from an almost face-on (i = 18.2◦) to an almost edge-on
disc (i = 87.1◦).

The shape of the SED is strongly dependent on the inclina-
tion, moving from a stellar photosphere plus disc excess for low
inclinations to a double-bumped SED, typical of very close to
edge-on systems, when the stellar photosphere is obscured by
the disc. The disc being optically thick at short wavelengths, the
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Fig. 4. Vertical temperature profiles for the τ = 106 case. The left panel corresponds to a radius of 0.2 AU and the right panel to a radius of
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visible and near-IR stellar light is blocked and the emission in
this wavelength range is dominated by the stellar scattered light
coming from the disc. At longer wavelengths (>10–12 μm) the
dust emission dominates, resulting in a steep positive slope and
a double-bumped SED. Not surprisingly, the transition between
these two characteristic SEDs also depends on the disc opacity.
For instance, for an inclination of 75.5◦, the star is still seen di-
rectly in the τ = 103 case, whereas it is already strongly obscured
in the τ = 106 case.

It is interesting to note that for the most edge-on case, the
flux in the optical is almost independent of the disc opacity.
Similarly, in the most optically thick case, there is only small
differences in the SEDs at 81.4 and 87.1◦. Indeed, when the star
is completely obscured, the flux is dominated by stellar light that
has scattered on the upper layers of the outer disc. This scattered
light is mainly a function of the dust properties and of the scatter-
ing geometry but not of the optical depth in the line of sight. In
these cases, optical and near-infrared photometry cannot be used
to get estimates of the extinction by dust of the central object.

At low inclinations, the characteristic 9.8 μm amorphous sil-
icate feature is seen in emission. At higher inclinations, for ex-
ample i = 75.5◦ for the τ = 106 case, the feature is now ob-
served in absorption over the continuum emission of the disc. It
should be noted that, at very high inclinations, although the dip
is roughly centred on the silicate feature, it is not associated to
it as demonstrated by the exceptional breadth of the feature. The
disc is now optically thick in the silicate feature but also in the
adjacent continuum, and the absorption feature from the silicates
vanishes.

At long wavelengths (>500 μm), the disc become optically
thin in most of its parts and the emerging flux no longer depends
on the system inclination.

Overall, the differences between codes are small in all cases,
which is illustrated by the thinness of the grey envelopes around
the lines in Fig. 5, representing the range of the results obtained

by the different codes. Figure 6 gives a more detailed view of
the differences between the codes for the various inclinations
and optical depths.

The left column show the results for the results for the
τ = 103 case. When the star is seen directly (i = 18.5 and 75.5◦),
the agreement between the three codes is excellent, with peak
to peak difference smaller than 5% over the whole wavelength
range. Closer to edge-on, differences remain smaller than 10%,
except at very short wavelengths (<1 μm) where the contribution
from scattered light is dominating the SED. As the wavelength
becomes shorter, the scattering becomes more forward throwing
and calculations are very sensitive to the angular sampling of the
scattering phase function of the codes. As a result, the agreement
between codes becomes worse at short wavelengths. Differences
remain smaller than 15% down to 0.2 μm and significant differ-
ences are only observed around 0.1 μm.

For the i = 81.4◦ case, the disc is seen at a grazing incidence
and the optical depth from the star to the observer is varying
strongly across the stellar disc, from ≈2 at the top of the stellar
surface to ≈200 at the bottom. In this case, using a point source
for the star does not provide the correct result, and special care
must be taken to resolve the stellar photosphere. In the case of a
uniformly radiating sphere, as presented in this benchmark, the
origin of the photon packets is uniformly distributed on the stel-
lar surface, and a uniform distribution in the cosine of the angle
between the photon direction and the normal to the surface at the
point of origin is used to set the initial propagation direction of
packets.

For the τ = 106 case (right panel of Fig. 6), the results are
similar to the ones for the lower optical depth case, but with
larger differences in the near- and mid-infrared. This part of the
SED is one of the most challenging wavelength range for RT
codes, where different contributions (thermal emission from the
inner disc seen directly or through the outer disc, direct or scat-
tered stellar light, scattered thermal emission from the disc) can
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Fig. 5. Spectral energy distributions for i = 18.2, 75.5, 81.4 and 87.1◦ (full, dashed, dotted and dot-dashed lines respectively). The left panel
corresponds to the τ = 103 case and the right panel to the τ = 106 case. The lines show the average of the results of MCFOST, MCMax and
TORUS and the grey envelope around each line represents the range of results obtained by the different codes.

dominate the emerging flux depending on the system geometry
and dust opacities. Furthermore, most of the flux in this wave-
length regime is coming from the inner edge of the disc and the
output spectrum is very sensitive to the grid resolution adopted
by the different codes. MCMax and MCFOST present very good
agreement over all the wavelength range, including in the near-
and mid-infrared regime, and for all inclinations. TORUS shows
slightly larger differences, probably due to a lower spatial reso-
lution at the inner edge. We note that the spatial resolution of the
TORUS code is limited by the maximum cell depth in the AMR
grid, which is currently set to 30, correponding to a dynami-
cal range of 230 (a limit dictated by numerical precision in the
photon path integrator). These differences are maximum around
10 μm and vary from 15% in the low inclination case up to 30%
when the inclination is increasing.

4.3. Scattered light images and polarisation maps

Figure 7 presents the scattered light images of the most optically
thick disc for i = 69.5◦ and i = 87.1◦. The synthetic maps clearly
display the effects of the anisotropy of the scattering. The oscil-
lations in the phase function (Fig. 2) are directly observed in the
maps.

The three panels on the right present the flux obtained by
the various codes, and the corresponding differences, along hor-
izontal and vertical cuts in the images. The codes agree to within
10% where the flux is significant. TORUS shows slightly larger
deviations that are due to a larger Monte carlo noise in the im-
ages. All codes predict the same oscillations as a function of
the position, indicating that the implementation of the scattering
phase function is correct in all codes. At greater radii, larger dif-
ferences are observed due to the various grid geometries used by
the different codes. For instance, some codes use a spherical grid
whereas other codes use a cylindrical grid with a vertical cut-off
in density. The sampling of the density structure at the outer edge
of the model domain is then slightly different for each code. This
results in systematic differences between codes, but only in the
regions of the synthetic maps where the flux is extremely low.

The vertical cut (# 3) samples the disc “dark lane”, corre-
sponding to the optically thick midplane. In this region, the flux
is dominated by photons that have scattered several times in the
disc before reaching the observer. The very good agreement be-
tween codes in the dark lane indicates that all of them deal prop-
erly with multiple scattering.

Figure 8 presents the polarisation maps for the same con-
figurations as in the Fig. 7. The maps show complex patterns
due to the strong variations of the elements of the Mueller ma-
trix with the scattering angle. All codes produce very similar
maps (see horizontal and vertical cuts), at both inclination an-
gles, with differences smaller than 5 points of polarisation degree
in the central regions of the maps, i.e. in regions where the flux
is large enough to allow resolved polarisation measurement in
actual observations. At greater radii, differences become slightly
larger, but they remain limited to 10 points of polarisation de-
gree. TORUS shows larger deviations, due to a larger Monte
Carlo noise in the simulations, which biases the polarisation de-
gree towards larger values. In regions where the polarised flux is
large, the agreement between TORUS and the other codes is also
very good. For the highest inclination, the results from TORUS
are not shown due to a low signal-to-noise.

5. Comparison with discrete ordinate codes

All results presented thus far were obtained using Monte Carlo
codes. To further compare the predictions of radiative transfer
codes, we present, in this section, results obtained with discrete
ordinate codes and discuss their limitations compared to those
of Monte Carlo codes. Discrete ordinate codes solve the radia-
tive equation along predetermined sets of directions. This inte-
gration can be performed with “long” or “short characteristics”
and various schemes can be used to iterate between the tem-
perature structure and specific intensity (or its moments), like
the Accelerated Lambda Iteration (ALI) or Variable Eddington
Tensor (VET) methods (see Mihalas & Mihalas 1984).
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The benchmark problem presented in this section is the same
as in the previous sections but with the following modifications:

– the star is now considered as a point source, but with the
same spectrum and luminosity as previously defined;

– the scattering is assumed either to be isotropic (but with the
same opacities as before), either to be negligible (the scatter-
ing opacity is set to 0).

These tests have been defined to allow a larger number of codes
to reproduce the calculations. They correspond to an extension
of the P04 benchmark to optical depths higher than 100, but
without any further complexity. In this paper, they have been cal-
culated by at least one of the previously tested Monte Carlo code
and by two additional discrete ordinate codes and one additional
Monte Carlo code.

5.1. Code description

5.1.1. ProDiMo

ProDiMo is an acronym for Protoplanetary Disk Model (Woitke
et al. 2009) which consistently solves the chemistry, the heat-
ing/cooling balance of the gas, the dust radiative transfer and

the vertical stratification of protoplanetary discs, mainly for the
purpose of interpreting far IR to mm gas emission lines.

For realistic gas models, it is essential to calculate the dust
temperature structure in the disc as well as the transport of UV
photons including scattering, which drive the photo-chemistry.
Furthermore, radiative pumping by continuum radiation changes
the non-LTE population of atoms and molecules and have an im-
portant impact on the cooling rates. These strong physical cou-
plings necessitate to solve a full 2D dust radiative transfer as one
module in a global iterative procedure. It is this radiative trans-
fer module inside ProDiMo that participates in this benchmark
test. Its basic task is to provide Td(r, z) and Jλ(r, z) for the gas
modelling – it is not meant for the interface to dust observations
(SEDs, scattered light images etc.).

ProDiMo solves the frequency-dependent 2D dust contin-
uum radiative transfer of irradiated discs by means of a sim-
ple, ray-based, long-characteristic method. From each grid point
in the disc, a limited number of rays (here 172) are traced
backwards, while solving the radiative transfer equation with
isotropic scattering. The setup of the ray directions is critical
for the optically thin parts of the disc, in particular at near IR
wavelengths where the illumination originates from small and
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Fig. 7. Scattered light images for two inclinations in the τ = 106 case. The green full line presents the results of Pinball, the blue dashed line the
results of MCFOST the black dot-dashed line the results of MCMax and the red dotted line the results of TORUS. The 3 panels on the right show
brightness profiles along the cuts plotted in the left panel. The cuts are 11 pixels large. Differences are plotted relative to the average of results of
MCFOST and MCMax, which present much lower noise.

far hot regions. This is done in a manual fashion in ProDiMo to
ensure there are more rays pointing toward the hot inner regions
than toward the cooler interstellar side. One central ray pointing
toward the star is reserved and covers the solid angle occupied
by the star.

Instead of a treatment with a large number of wavelength
grid points, ProDiMo uses a coarse wavelength grid {λk | k =
0, ...,K} (here K = 24) from 100 nm to 1000 μm, and treat the
opacities, intensities and source functions with band means, e.g.

Bk(T ) = 1
Δλk

∫ λk

λk−1
Bλ(T ) dλ where Δλk = λk −λk−1. One radiation

transfer iteration takes about 4 s for a low resolution 20×20 grid,
and about 70 s for a 70×70 grid on a single-processor 2.66 GHz
Linux machine, which is comparable to the computational ef-
forts taken to solve the disc chemistry.

In order to solve the condition of radiative equilibrium and
the scattering problem, a simple Λ-type iteration is applied.

The source functions are pre-calculated on the grid points and
fixed during one iteration. During the ray-tracing, the opaci-
ties and source functions are interpolated from the grid point
values. After having solved all rays from all points in all fre-
quency bands, the mean intensities are updated and the dust
temperatures are re-calculated. Without further accelerations,
this Λ iteration converges only for problems up to a midplane
optical depth of about 100. In order to accelerate the conver-
gence, we apply the procedure of Auer (1984) known as “Ng”-
iteration. This enables us to solve radiative transfer problems up
to τ = 103 . . . 104, depending on the geometry of the model.

For higher optical depths, we apply an approximate proce-
dure following an idea of C.P. Dullemond which consists in re-
ducing the dust density in the central midplane regions in the
following way. For every vertical column (considering the down-
ward direction) we do not increase the dust density any further
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once a certain critical optical depth at 1 μm is reached (τcrit≈10),
provided that the radial optical depth is also >τcrit. With this
“trick”, we can manage test problems up to τ = 105 with this
code.

5.1.2. RADMC

RADMC is a Monte-Carlo based continuum radiative transfer
code for 2-D axisymmetric configurations such as circumstellar
discs and envelopes. The basic algorithm is that of Bjorkman
& Wood (2001), but with a continuous deposition of energy in-
stead of the discrete deposition as described in the original pa-
per. In this way the temperature profile is also smooth in the
very optically thin regions of the model. The temperature cor-
rections are not computed every time a photon package enters
a cell and leaves some energy, but only if the energy deposited

since the last temperature update is larger than some threshold
value. In this way the not so cheap temperature update is done
only when needed. Of course, the higher this threshold, the faster
the code is but the less reliable the result. Typically a threshold
of a few percent is taken, meaning that if the energy deposited in
the cell has increased by more than a few percent of the energy
as it was during the last temperature update, then a new tempera-
ture update is done. Once the main Monte Carlo process is over,
the spectra and images from RADMC are made using a post-
processing step: the ray tracing program RAYTRACE uses the
dust temperature and isotropic scattering source function com-
puted by RADMC to calculate the formal solution of the transfer
equation along rays through the model. This yields images at ev-
ery discrete wavelength bin. By integrating over the images one
obtains a flux at each wavelength, i.e. a spectrum. Care is taken
to arrange the pixels of the images such that all the flux is
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captured, both from the very outer regions and from the very
inner regions. This is done using “circular images”, described in
detail in Dullemond & Turolla (2000). Because the spectra and
images are computed as a post-processing step, as opposed to the
more classical photon collection during the Monte Carlo process
itself, it is hard to include full non-isotropic scattering. To keep
the flexibility to view the object from every angle and at every
wavelength without having to repeat the RADMC run, one has to
store the entire scattering source function S (r, θ, μ, φ, λ), where μ
and φ are the local directional coordinates. Such a 5-dimensional
array is extremely large and requires of the order of a gigabyte
of disc space, which is not very practical. Instead one could pre-
scribe before calling RADMC at which angle you wish to view
the object, removing the need to store the source function also as
a function of μ, φ, meaning we have a 3-D array which is much
easier to store. This is done in several other codes in this paper.
This is not implemented in RADMC.

5.1.3. RADICAL-VET

The code RADICAL is a classical discrete ordinate method for
radiative transfer, i.e. it is not based on a Monte Carlo ap-
proach and is therefore completely deterministic. It is based
on methods that are routinely used in models of stellar atmo-
spheres, with some adaptions. The algorithm is that of Variable
Eddington Tensors (VET), which is a multi-dimensional version
of the method of Variable Eddington Factors (VEF) described in
the book by Mihalas & Mihalas (1984). A 1-D version of this
method, with special application to the kind of continuum radia-
tive transfer problems encountered in protoplanetary discs, was
described in Dullemond et al. (2002). For such 1-D geometries
the method is extremely accurate and efficient. It works well and

converges quickly for optical depths ranging from small (�1)
to extremely large (106). The RADICAL-VET code is a 2-D
version of this algorithm. For 2-D or 3-D geometries the method
has some numerical difficulties related to the computation of the
flux-mean opacity in regions of extremely low flux (e.g. the mid-
plane of a passive irradiated disc). In practice, however, these
difficulties are not fatal, although they could lower the reliabil-
ity of the method in such flow-flux regions. For further details
on the VET method the reader is referred to Dullemond et al.
(2002), even though this paper describes only the 1-D version of
this method.

5.2. Results and discussion

The midplane temperature profiles are presented in Figs. 9
and 10 for the cases with isotropic scattering and no scattering
respectively. Convergence was not properly reached for some
codes for the highest mass case with isotropic scattering and we
present the results for the τ = 105 case instead.

The agreement between Monte Carlo codes is again very
good in the isotropic case (Fig. 9), with peak-to-peak difference
smaller than a few percents in the τ = 103 case and smaller
than 15% in the τ = 105 case. Differences with discrete ordinate
codes are significantly largers.

This paper states an important verification test for the
method of reducing the dust density implemented in ProDiMo
and described in Sect. 5.1.1. It shows that the error of this proce-
dure in comparison to the results of the latest Monte Carlo codes
combined with diffusion solvers is smaller than about 20% in
the midplane regions. We note however that the relative preci-
sion in general is much better than in the midplane. The average

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811555&pdf_id=9
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Fig. 10. Radial temperature profile in the disc midplane (no scattering). The left panel corresponds to the lowest disc mass of 3 × 10−8 M	, and
the right panel to the highest disc mass 3 × 10−5 M	. The corresponding optical depths at 1 μm are lower than in the previous cases because we
fixed the scattering opacity to zero. The red full lines represent the results of ProDiMo, the blue dashed lines the results of MCFOST and the black
dot-dashed lines the results of RADICAL. The Monte Carlo code MCFOST is taken as reference.

difference3 between ProDiMo and MCFOST temperature struc-
tures, |TProDiMo−TMCFOST|/TMCFOST is smaller than 5% (1 sigma-
deviations) in all cases.

The benchmark test has revealed three major problems quite
typical for ray-based codes. First, the limited number of fixed
rays causes some small artifacts of the temperature structure
in the optically thin distant midplane – these problems can be
solved by using a larger number of rays which is, however, com-
putationally expensive. Second, the precise temperature determi-
nation in the optically thick core of the disc is hard with simple
discrete ordinate codes like ProDiMo. The numerical solution of
the radiative transfer equation has always some discretisation er-
rors superimposed, and in an optically thick situation it is the
small difference Iλ − Bλ that determines the next temperature it-
eration. This eventually limits the quality of the “forecast” by
the Ng-iteration, and disables the convergence for very optically
thick problems. Third, the results close to the midplane suffer
from the very large gradients present close to the inner bound-
ary, and the results depend on the numerical details, e.g. how to
interpolate the source function.

Comparisons with the RADICAL code illustrates some of
the difficulties of the VET method at very high optical depths.
RADICAL overestimates the midplane temperature in the cen-
tral regions of the disc by about 20% and 40% for the low and
high mass cases respectively (Fig. 10). The 2-D geometry intro-
duces a number of difficulties which make the 2-D VET algo-
rithm less stable and less reliable than its 1-D version. The main
problem is the choice of discrete angular coordinates at each grid
point. For the formal transfer RADICAL-VET uses the method of
Short Characteristics. The choice of the angular distribution of
these short characteristics is essential for the reliability of the

3 Over 500 representative points in the grid.

result. In Dullemond & Turolla (2000) a good choice was de-
scribed, but in the end no choice is perfect and the reliability
of the results may depend on this. Another difficulty is that the
VET method uses flux-mean opacities which are the generalisa-
tions of Rosseland mean opacities. By using flux-mean opacities
instead of Rosseland mean opacities we may expect to get the
true result instead of just an approximate result. But in regions
where the flux is extremely small, such as in the midplane of an
extremely optically thick disc, taking the average of the opacity
based on a quantity that is nearly zero is dangerous and may lead
to large errors. In spite of these caveats the VET algorithm gives
reasonable results for most problems.

6. Summary

We have presented solutions for the continuum radiative transfer
in high-opacity circumstellar discs. The problems have optical
depths up to 106 and include anisotropic scattering. They repre-
sent realistic configurations for discs around low mass stars and
validate the use of the codes to model current and future obser-
vations of discs.

We have compared the results of four independent Monte
Carlo codes for the temperature structure, SEDs, scattered light
images and/or polarisation maps, in the case of anisotropic scat-
tering. Overall, the agreement between codes is very good. In the
most optically thick case, SEDs agree within 20% over almost
all of the wavelength range. Differences become larger only at
wavelengths shorter than 0.2 μm for edge-on configurations, i.e.
when the flux is extremely low and not observed in practice.
Pixel-to-pixel differences in high-resolution scattered light im-
ages remain limited to 10% and the polarisation maps do not
differ by more than 5 points of polarisation degree in regions
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where the polarisation can be effectively measured by observa-
tions. Each observation (SED, image or polarisation map) was
reproduced by at least three of the codes, providing robust solu-
tions to test other RT codes.

The benchmark problems represent challenging test cases for
RT codes. The convergence of Monte Carlo methods alone be-
come extremely slow for the most optically thick cases and spe-
cific numerical schemes are required to efficiently compute the
temperature structure, emerging SEDs and images, for instance
combining a Monte Carlo approach with ray-tracing and/or dif-
fusion approximation methods.

Comparisons between Monte Carlo codes and discrete or-
dinate codes, in the cases with isotropic scattering or without
scattering, show relatively large differences, that increase with
optical depth. Ray-tracing and VET methods were successfully
compared to Monte Carlo methods up to moderate optical depths
(τV = 100, P04) but the convergence of such codes seem to be-
come delicate in the test cases presented here. They provide good
approximate solutions but must be used with care at high optical
depths, when the goal is to perform detailed comparisons with
observations.
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