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CLASSIFYING TAME BLOCKS AND RELATED ALGEBRAS UP TO STABLE

EQUIVALENCES OF MORITA TYPE

GUODONG ZHOU AND ALEXANDER ZIMMERMANN

Abstract. We contribute to the classification of finite dimensional algebras under stable equiva-
lence of Morita type. More precisely we give a classification of the class of Erdmann’s algebras of
dihedral, semi-dihedral and quaternion type and obtain as byproduct the validity of the Auslander-
Reiten conjecture for these classes of algebras.

Introduction

Stable categories were introduced very early in the representation theory of algebras and played
a major rôle in the development of Auslander-Reiten theory for example. Nevertheless, already in
the 1970’s Auslander and Reiten knew that equivalences of stable categories can behave very badly.
For example there are indecomposable finite dimensional algebras which are stably equivalent to a
direct product of two algebras none of which is separable [1, Example 3.5].

Around 1990 the concept of derived categories became popular in the representation theory of
groups and algebras by mainly two developments. First Happel interpreted successfully tilting theory
in the framework of derived categories and secondly Broué formulated his famous abelian defect group
conjecture in this framework. Many homological constructions are more natural in the language of
derived categories. Work of Rickard [16] and Keller-Vossieck [8] show that an equivalence between
derived categories of self-injective algebras imply an equivalence between the stable categories of
these algebras of a very particular shape. They are induced by bimodules which are invertible
almost as for Morita equivalences. This discovery in mind Broué defined two algebras A and B to
be stably equivalent of Morita type if there is an A − B-bimodule M and a B − A-bimodule N ,
which are projective considered as module on either side only and so that there are isomorphisms
of bimodules M ⊗B N ≃ A ⊕ P for a projective A − A-bimodule P and N ⊗A M ≃ B ⊕ Q for a
projective B −B-bimodule Q.

It soon became clear that stable equivalences of Morita type are much better behaved than abstract
stable equivalences. Nevertheless, classes of algebras which are classified up to stable equivalence of
Morita type are rare. In recent joint work with Yuming Liu [13] we gave several invariants which
proved to be very sophisticated and powerful so that a classification of big classes of symmetric
algebras up to stable equivalence of Morita type becomes feasible. The additional problem mainly
is that the number of simple modules is not proven to be an invariant under stable equivalence of
Morita type. This fact is the long-standing open Auslander-Reiten conjecture.

Erdmann gave an (up to parameters) finite list [3] of algebras which are defined by properties on
their Auslander Reiten quiver and which include all blocks of finite groups of tame representation
type. Her classification is up to Morita equivalence. Holm pursued further this approach and
classified the algebras in Erdmann’s list up to derived equivalence [5]. We shall give an account of
his results in Section 2.

In the present work we classify the algebras of dihedral, semi-dihedral and quaternion type up to
stable equivalence of Morita type. Our classification is almost as complete as for derived equivalences
and the classification coincides in some sense with the derived equivalence classification. In particular
we show the Auslander-Reiten conjecture for these classes of algebras and note that the classes are
closed under stable equivalences of Morita type.

The paper is organised as follows. In Section 1 we recall some of the invariants under stable
equivalence of Morita type we use in the sequel. Section 2 explains Holm’s derived equivalence
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classification of algebras of dihedral, semi-dihedral and quaternion type. In Section 3 we present an
independent classification for the case of tame blocks of group rings. The proof is much simpler than
the general case, and hence we decided to present the arguments separately, though, of course, the
general theorem includes this case as well. Moreover, a short summary of Holm’s result on Hochschild
cohomology of tame blocks is given there. Section 4 shows that the derived equivalence classification
of dihedral type algebras coincides with the classification up to stable equivalence of Morita type.
The main tool is a result of Pogorza ly [15, Theorem 7.3]. This section is the first technical core of the
paper. Section 5 computes the centres of the algebras of semi-dihedral and of quaternion type. This
section prepares the classification result for these classes of algebras. Section 6 distinguishes then
stable equivalence classes of Morita type using basically invariants derived from the centre. This
part is the second technical core of the paper. Section 7 finally summarises large parts of what was
proved before and contains the main result Theorem 7.1 of the paper as well as some results derived
from Külshammer like invariants computed initially to distinguish derived equivalence classes.

1. Stable invariants

The stable category A − mod of a finite dimensional K-algebra A has the same objects as the
category of A-modules and morphisms, denoted by HomA(M,N) from M to N , are equivalence
classes of morphisms of A-modules modulo those factoring through a projective A-module.

In this section we shall explain and state most of the various properties of algebras invariant under
stable equivalences of Morita type used in the sequel.

The first reduction is a result of Keller-Vossieck and Rickard.

Theorem 1.1. (Keller-Vossieck [8] and Rickard [16]) Let K be a field and let A and B be two self-
injective K algebras. If the bounded derived categories of A and B are equivalent, Db(A) ≃ Db(B),
then the algebras A and B are stably equivalent of Morita type.

Hence in order to give a classification of a class of algebras up to stable equivalence of Morita
type we can start from a classification up to derived equivalence and decide for two representatives
of the derived equivalence classes whether they are stably equivalent of Morita type.

In order to do so we use several criteria, some linked to questions around the centre of the algebras.
We first recall a construction due to Broué. Let A and B be K-algebras. If A is stably equivalent of

Morita type to B, then the subcategory of the stable category generated by left and right projective
A⊗KAop-modules is equivalent to the analogous category of B⊗Bop-modules. The A⊗KAop-module
A is mapped to the B ⊗K Bop-module B under this equivalence. Therefore

EndA⊗KAop(A) ≃ EndB⊗KBop(B).

Broué denotes by
Zst(A) = EndA⊗KAop(A)

the stable centre and by

Zpr(A) := ker
(

EndA⊗KAop(A) −→ EndA⊗KAop(A)
)

the projective centre of A.

Theorem 1.2. (Broué [2, Proposition 5.4]) Let A and B be two algebras which are stably equivalent
of Morita type, then Zst(A) ≃ Zst(B).

The centre is usually not an invariant under stable equivalences of Morita type. However one of
the main results of [13] gives a partial answer.

Theorem 1.3. (Liu, Zhou, Zimmermann [13, Theorem 1.1]) Let K be an algebraically closed field
and let A and B be two indecomposable finite dimensional K-algebras which are stably equivalent of
Morita type. Then dimK(HH0(A)) = dimK(HH0(B)) if and only if the number of simple A-modules
up to isomorphism equals the number of simple B-modules up to isomorphism.

Since for symmetric algebras HomK(HH0(A),K) ≃ Z(A), we get that for symmetric indecompos-
able finite dimensional algebras over algebraically closed fields the dimension of the centres coincide
if and only if the number of simple modules coincide.



ON STABLE EQUIVALENCES 3

Moreover, a very useful criterion was given in [13] as well in order to estimate the dimension of
the projective centre.

Proposition 1.4. (Liu, Zhou, Zimmermann [13, Proposition 2.4 and Corollary 2.9]) Let K be an
algebraically closed field and let A be an indecomposable symmetric K-algebra with n simple modules
up to isomorphism. Then the dimension of the projective centre equals the rank of the Cartan matrix,
seen as linear mapping Kn −→ Kn.

A classical invariant, popularised recently by Külshammer [11], is the Reynolds ideal defined for
any K-algebra as R(A) := Z(A)∩ soc(A). For symmetric algebras A and a perfect field K of strictly
positive characteristic Külshammer constructed a descending sequence of ideals Tn(A)⊥ of the centre
of A, for n ∈ N with R(A) =

⋂

n∈N
T⊥
n (A).

Proposition 1.5. [13, Proposition 2.4 and proof of Proposition 2.5] The projective centre of an
algebra equals the Higman ideal of A and the Higman ideal of an algebra is in the socle of the
algebra.

We shall use the following fact.

Theorem 1.6. Let K be an algebraically closed field and let A and B be two finite dimensional
symmetric indecomposable K-algebras which are stably equivalent of Morita type. Then

dimK(Z(A)/R(A)) = dimK(Z(B)/R(B)).

Furthermore if K is of positive characteristic or the Cartan matrix of A is non singular, then we
have an isomorphism of algebras Z(A)/R(A) ≃ Z(B)/R(B).

Proof The first statement is the dual of [13, Corollary 5.4], as all algebras in question are symmetric.
For the second statement, the case of positive characteristic is contained in [9, Proposition 5.8]. In
case of non singular Cartan matrix, by [17, Proposition 5.1] (or see the discussions at the end of this
section), B has also non singular Cartan matrix. So the rank is the Cartan matrix is equal to the
number of simple modules, that is, the dimension of the Reynolds ideal. So we have Zpr(A) = R(A)
and Zst(A) = Z(A)/R(A). Now use Theorem 1.2.

�

Let A be an indecomposable finite dimensional algebra and let CA be its Cartan matrix. The
Cartan matrix induces in a natural way a mapping of the Grothendieck group G0(A) of abelian
groups (the Grothendieck group taken in the sense of A-modules modulo exact sequences). The
stable Grothendieck group Gst

0 (A) is defined as the cokernel of

G0(A)
CA−→ G0(A) −→ Gst

0 (A) −→ 0

Proposition 1.7. (Xi [17]) Let A and B be finite dimensional indecomposable K-algebras and
suppose that A and B are stably equivalent of Morita type. Then Gst

0 (A) ≃ Gst
0 (A).

It is clear by this statement that a stable equivalence of Morita type preserves those elementary
divisors of the Cartan matrix which are different from 1, including their multiplicity. (Note that as
usual the elementary divisors are supposed to be non negative). In particular the absolute value of
the Cartan determinant is preserved.

2. Algebras of dihedral, semi-dihedral and quaternion type

Let K be an algebraically closed field. In this section we shall give Karin Erdmann’s list of algebras
of dihedral, semi-dihedral and quaternion type.

By Theorem 1.1 of Keller-Vossieck and Rickard, for two self-injective algebras A and B, an equiv-
alence Db(A) ≃ Db(B) of the bounded derived categories implies that A and B are stably equivalent
of Morita type. Hence, as basis of our discussion we shall use the list of Thorsten Holm [5] of algebras
of dihedral, semi-dihedral and quaternion type up to derived equivalences. There are three families:
the algebras of dihedral type, the algebras of semi-dihedral type, the algebras of quaternion type.
Each family is subdivided into three subclasses: algebras with one simple module, algebras with
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two simple modules and algebras with three simple modules. Each subfamily contains algebras with
quivers and relations, depending on parameters.

dihedral semidihedral quaternion

1 simple K[X,Y ]/(XY,Xm − Y n), SD(1A)k1 , k ≥ 2; Q(1A)k1 , k ≥ 2;
m ≥ n ≥ 2,m + n > 4;

D(1A)11 = K[X,Y ]/(X2, Y 2);

(charK = 2) (char(K) = 2) SD(1A)k2(c, d) (charK = 2) Q(1A)k2(c, d),
K[X,Y ]/(X2, Y X − Y 2); k ≥ 2, (c, d) 6= (0, 0); k ≥ 2, (c, d) 6= (0, 0);

D(1A)k1 , k ≥ 2;

(charK = 2) D(1A)k2(d),
k ≥ 2, d = 0 or 1;

2 simples D(2B)k,s(c), SD(2B)k,t1 (c) Q(2B)k,s1 (a, c)
k ≥ s ≥ 1, c ∈ {0, 1} k ≥ 1, t ≥ 2, c ∈ {0, 1}; k ≥ 1, s ≥ 3, a 6= 0;

SD(2B)k,t2 (c)
k ≥ 1, t ≥ 2,

k + t ≥ 4, c ∈ {0, 1};

3 simples D(3K)a,b,c, SD(3K)a,b,c Q(3K)a,b,c

a ≥ b ≥ c ≥ 1; a ≥ b ≥ c ≥ 1, a ≥ 2; a ≥ b ≥ c ≥ 1, b ≥ 2,
(a, b, c) 6= (2, 2, 1);

D(3R)k,s,t,u, Q(3A)2,21 (d)
s ≥ t ≥ u ≥ k ≥ 1, t ≥ 2 d 6∈ {0, 1}

All algebras with one simple module in the above list has the quiver of type 1A

"!
# 

"!
# 

6•6X Y

and with relations

D(1A)k1 : X2, Y 2, (XY )k − (Y X)k;

D(1A)k2(d) : X2 − (XY )k, Y 2 − d · (XY )k, (XY )k − (Y X)k, (XY )kX, (Y X)kY ;

SD(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2, X2 − (Y X)k−1Y ;

SD(1A)k2(c, d) : (XY )k − (Y X)k, (XY )kX,Y 2 − d(XY )k,

X2 − (Y X)k−1Y + c(XY )k;

Q(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2 − (XY )k−1X,X2 − (Y X)k−1Y ;

Q(1A)k2(c, d) : X2 − (Y X)k−1Y − c(XY )k, Y 2 − (XY )k−1X − d(XY )k,

(XY )k − (Y X)k, (XY )kX, (Y X)kY.

The quivers of the algebras of type 2B, 3K, 3A and 3R are respectively:
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The relations are respectively

D(2B)k,s(c) : βη, ηγ, γβ, α2 − c(αβγ)k, (αβγ)k − (βγα)k, ηs − (γαβ)k;

SD(2B)k,t1 (c) : γβ, ηγ, βη, α2 − (βγα)k−1βγ − c(αβγ)k, ηt − (γαβ)k, (αβγ)k − (βγα)k;

SD(2B)k,t2 (c) : βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα, γβ − ηt−1, α2 − c(αβγ)k, βη2, η2γ;

Q(2B)k,s1 (a, c) : γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

α2 − a(βγα)k−1βγ − c(βγα)k, α2β, γα2;

D(3K)a,b,c : βδ, δλ, λβ, γκ, κη, ηγ, (βγ)a − (κλ)b, (λκ)b − (ηδ)c, (δη)c − (γβ)a;

D(3R)k,s,t,u : αβ, βρ, ρδ, δξ, ξλ, λα, αs − (βδλ)k, ρt − (δγβ)k, ξu − (λβδ)k;

SD(3K)a,b,c : κη, ηγ, γκ, δγ − (γα)a−1γ, βδ − (κλ)b−1κ, λβ − (ηδ)c−1η;

Q(3K)a,b,c : βδ − (κλ)a−1κ, ηγ − (λκ)a−1λ, δλ− (γβ)b−1γ, κη − (βγ)b−1β, λβ − (ηδ)c−1η,

γκ− (δη)c−1δ, γβδ, δηγ, λκη;

Q(3A)2,21 (d) : βδη − βγβ, δηγ − γβγ, ηγβ − dηδη, γβδ − dδηδ, βδηδ, ηγβγ.

The following result suggests that we only need to consider internally these three classes of algebras
in order to classify them up to stable equivalences of Morita type.

Proposition 2.1. If two indecomposable algebras A and B are stably equivalent of Morita type and
A is of dihedral (resp. semi-dihedral, quaternion) type, then so is B.

Proof These classes of algebras are defined in terms of the nature of their Auslander-Reiten quiver.
Roughly, an algebra A is of one of these types if

• A is symmetric, indecomposable and tame;
• the Cartan matrix of A is non-singular.
• the stable Auslander Reiten quiver of A has the following components
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dihedral type semidihedral type quaternion type

tubes rank 1 and 3 rank at most 3 rank at most 2

at most two 3-tubes at most one 3-tube

others ZA∞
∞/Π ZA∞

∞ and ZD∞

for a certain group Π.

For more details we refer to [3].
By a result of Yuming Liu ([12, Corollary 2.4])(resp. Henning Krause ([10, last corollary of the

article])), if two algebras are stably equivalent of Morita type and one of them is symmetric (resp.
tame), so is the other. If two algebras are stably equivalent of Morita type, they are stably equivalent
and thus their stable Auslander-Reiten quiver are isomorphic. By a result of Chang-Chang Xi ([17,
Proposition 5.1]), if two algebras are stably equivalent of Morita type, the absolute values of the
determinant of their Cartan matrices are the same and thus if the Cartan matrix of one algebra is
non-singular, so is that of the other. Therefore, the defining properties are preserved by a stable
equivalence of Morita type between two indecomposable algebras.

�

3. tame blocks

3.1. Derived classification. The following is a classification of algebras up to derived equivalence,
as given by Holm [5], which could occur as blocks of group algebras. For some cases the question
if there is a block of a group with this derived equivalence type is not clear yet. We include in this
case the algebra as well. Now let K be an algebraically closed field of characteristic two. Let A be
a tame block of defect n ≥ 2. Then A is derived equivalent to one of the following algebras.

dihedral semidihedral quaternion

1 simple D(1A)2
n−2

1 , n ≥ 2; SD(1A)2
n−2

1 , n ≥ 4; Q(1A)2
n−2

1 , n ≥ 3;

2 simples D(2B)1,2
n−2

(c), SD(2B)1,2
n−2

1 (c), Q(2B)2,2
n−2

1 (a, c),
c ∈ {0, 1}, n ≥ 3; c ∈ {0, 1}, n ≥ 4; n ≥ 3, a ∈ K∗, c ∈ K;

SD(2B)2,2
n−2

2 (c),
c ∈ {0, 1}, n ≥ 4;

3 simples D(3K)2
n−2,1,1, n ≥ 2; SD(3K)2

n−2,2,1, n ≥ 4; Q(3K)2
n−2,2,2, n ≥ 3.

3.2. Hochschild cohomology of tame blocks. If A and B are two algebras which are stably
equivalent of Morita type, then Xi shows [17, Theorem 4.2] that the Hochschild cohomology groups
HHm(A) and HHm(B) are isomorphic for any m ≥ 1. Furthermore, in a recent paper of the first
author with Shengyong Pan ([14]), we proved that a stable equivalence of Morita type preserve the
algebra structure of the stable Hochschild cohomology, that is, the Hochschild cohomology modulo
the projective center.

For the sake of completeness we resume results of Holm [5] which allow to distinguish a certain
number of pairs of algebras up to stable equivalence of Morita type, although we could avoid using
these results in the sequel, mainly because they only deal with blocks of group rings with one or
three simple modules.

3.2.1. Dihedral type. By [5, Theorem 3.2.2] the Hochschild cohomology ring of a block with dihedral
defect group of order 2n with n ≥ 2 and one simple module has dimension dim(HHi(B)) = 2n−2 +
3 + 4i.

By [5, Theorem 3.2.8] the Hochschild cohomology ring of a block with dihedral defect group of
order 2n with n ≥ 2 and three simple modules has dimension 2n−2 + 3 in degree 0, and dimension
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2n−2 + 1 in degree 1. Further, for all i ≥ 1, dim(HH3i−1(B)) = 2n−2− 1 + 4i and dim(HH3i(B)) =
dim(HH3i+1(B)) = 2n−2 + 1 + 4i.

3.2.2. Semi-dihedral type. By [5, Theorem 3.3.2] the Hochschild cohomology ring of a block with
semi-dihedral defect group of order 2n with n ≥ 4 and one simple module has dimension 2n−2 + 3 in
degree 0, dimension 2n−2 + 6 in degree 1, dimension 2n−2 + 7 in degree 2, and dimension 2n−2 + 8
in degree 3. Further, dim(HHi+4(B)) = dim(HHi(B)) + 8.

By [5, Theorem 3.3.3] the Hochschild cohomology ring of a block with semi-dihedral defect group of
order 2n with n ≥ 4 and three simple modules has dimension 2n−2 + 4 in degrees 0 and 3, dimension
2n−2 + 2 in degrees 1 and 2, and dimension 2n−2 + 5 in degree 4. Further, dim(HHi+4(B)) =
dim(HHi(B)) + 2 + x(i), where x(i) is 0 if 3 divides i, and x(i) = 1 else.

3.2.3. Quaternion type. By [5, Theorem 3.4.2] a block with one simple modules and quaternion defect
group of order 2n with n ≥ 3 has periodic Hochschild cohomology ring with period 4 and dimension
2n−2 + 3 in degrees congruent 0 or 3 mod 4 and of dimension 2n−2 + 5 in degrees congruent 1 or 2
mod 4.

By [5, Theorem 3.4.6] a block with three simple modules and quaternion defect group of order
2n with n ≥ 3 has periodic Hochschild cohomology ring with period 4 and dimension 2n−2 + 5 in
degrees congruent 0 or 3 mod 4 and of dimension 2n−2 + 3 in degrees congruent 1 or 2 mod 4.

3.3. Blocks of dihedral defect groups.

Proposition 3.1. Let K be an algebraically closed field of characteristic 2 and let A be a dihedral
block of defect n ≥ 2. Then A is stably equivalent of Morita type to one and exactly one of the

following algebras: D(1A)2
n−2

1 ; D(2B)1,2
n−2

(c) (for n ≥ 3) with c = 0 or c = 1; D(3K)2
n−2,1,1.

As a consequence, the derived classification coincides with the classification up to stable equiva-
lences of Morita type.

Remark 3.2. Before giving the proof, we remark that for a dihedral block with two simple modules,
we don’t know whether the case c = 1 really occurs. All known examples have zero as the value of
this scalar. But this doesn’t influence our result, since D(2B)k,s(0) is NOT derived equivalent to
D(2B)k,s(1). There are several proofs of this fact (cf [7, Corollary 5.3] [6, Theorem 1.1]). One can
also use a result of Pogorza ly([15, Theorem 7.3]), which says that an algebra stably equivalent to a
self-injective special biserial algebra which is not a Nakayama algebra is itself a selfinjective special
biserial algebra. Notice that D(2B)k,s(0) is a symmetric special biserial algebra, but D(2B)k,s(1) is
not. As a consequence the algebras D(2B)k,s(1) cannot be stably equivalent to any algebra of the
other classes.

Proof Since Holm’s result [5] implies that any algebra of dihedral type is derived equivalent to one
in the list we gave, we just need to show that any two algebras in the list are not stably equivalent
of Morita type.

We prove that for different parameter s 6= t, D(2B)1,s(1) is NOT stably equivalent of Morita type
to D(2B)1,t(1). To this end, one computes the dimension of the stable centre, that is, the quotient of
the centre by the projective centre. By Proposition 1.4, for a symmetric algebra, the dimension of the
projective centre is the p-rank of the Cartan matrix, where p is the characteristic of the ground field,

which is two for tame blocks. We have thus that for A = D(2B)1,2
n−2

(1), dimZst(A) = 2n−2 + 2 for
n ≥ 3. Since n ≥ 3 this dimension distinguishes two algebras with different parameters in this class.
Another way to see this is to use the absolute value of the determinant of the Cartan matrix, which
is invariant under stable equivalences of Morita type, by a result of Chang-Chang Xi([17, Proposition
5.1]). In fact, the absolute value of the determinant of the Cartan matrix of D(2B)1,s(1) is 4s.

Now consider other classes of algebras. Pogorza ly proved the Auslander-Reiten conjecture for
self-injective special biserial algebras ([15, Theorem 0.1]), that is, if two self-injective special biserial
algebras are stably equivalent, they have the same number of non projective simple modules. Thus
two indecomposable non-simple self-injective special biserial algebras with different numbers of simple
modules cannot be stably equivalent. By [13, Corollary 1.2], we know that for symmetric algebras,
this is equivalent to say that their centre have the same dimension. Now by computing the dimension
of the centre, we obtain easily that the number of simple modules and the defect n characterise
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equivalence classes under stable equivalences of Morita type of dihedral blocks which are special
biserial. On can also use the computations of Holm about Hochschild cohomology of dihedral blocks
resumed in Section 3.2 to distinguish dihedral blocks with one simple module from those with three
simple modules.

�

3.4. Blocks with semi-dihedral defect groups.

Proposition 3.3. Let K be an algebraically closed field of characteristic 2 and let A be a semi-
dihedral block of defect n ≥ 4. Then A is stably equivalent of Morita type to one of the following

algebras: SD(1A)2
n−2

with n ≥ 4; SD(2B)1,2
n−2

1 (c) with n ≥ 4, c ∈ {0, 1}; SD(2B)2,2
n−2

2 (c) with

n ≥ 4, c ∈ {0, 1}; SD(3K)2
n−2,2,1, n ≥ 4.

Remark 3.4. (1) The list of algebras occurring as blocks of group algebras is taken from [5].
(2) In the above classification we have two problems still. There is a scalar problem, that is, as

in the case of derived equivalence classification, we cannot determine whether for different

values of c, SD(2B)1,2
n−2

1 (0) (resp. SD(2B)2,2
n−2

2 (0)) is not stably equivalent of Morita type

to SD(2B)1,2
n−2

1 (1) (resp. SD(2B)2,2
n−2

2 (1)).

Moreover, we do not know whether the two algebras SD(2B)1,2
n−2

1 (c1) and SD(2B)1,2
n−2

2 (c2)
are stably equivalent of Morita type. Therefore, up to these problems, the derived classifi-
cation coincides with the classification up to stable equivalences of Morita type.

Proof Since a derived equivalence between self-injective algebras induces a stable equivalence of
Morita type, the statement of the proposition is true simply by the derived equivalence classification
of Thorsten Holm. We now prove that the classification is complete up to the problems cited above.

By the result of Thorsten Holm on Hochschild cohomology of semi-dihedral blocks, a semi-dihedral
block with one simple module can not be stably equivalent of Morita type to a semi-dihedral block

with three simple modules. The dimension of the stable centre of SD(1A)2
n−2

with n ≥ 4 is 2n−2+3,

it is 2n−2 + 2 for SD(2B)1,2
n−2

1 (c) and is 2n−2 + 4 for SD(2B)2,2
n−2

2 (c), while for SD(3K)2
n−2,2,1, it

is 2n−2 + 3. This invariant distinguishes semi-dihedral blocks with two simple modules from those

with one or three simple modules and it also distinguishes SD(2B)1,2
n−2

1 (c) from SD(2B)2,2
n−2

2 (c).

�

3.5. Blocks with quaternion defect groups.

Proposition 3.5. Let K be an algebraically closed field of characteristic 2 and let A be a block with
generalised quaternion defect groups of defect n ≥ 3. Then A is stably equivalent of Morita type to

one of the following algebras: Q(1A)2
n−2

with n ≥ 3; Q(2B)2,2
n−2

1 (a, c) with n ≥ 3, a ∈ K∗, c ∈ K;

Q(3K)2
n−2,2,2 with n ≥ 3.

Remark 3.6. The above classification is complete up to some scalar problem, that is, as in the case
of derived equivalence classification, we cannot determine whether for different values of a and c,

Q(2B)2,2
n−2

1 (a, c) is not stably equivalent of Morita type to Q(2B)2,2
n−2

1 (a′, c′). Therefore, up to these
scalar problems, the derived classification coincides with the classification up to stable equivalences
of Morita type.

Proof Since a derived equivalence between self-injective algebras induces a stable equivalence of
Morita type, the statement of the proposition is true simply by the derived equivalence classification
of Thorsten Holm. We now prove that the classification is complete up to the scalar problem.

The dimension of the stable centre is 2n−2 + 3 for Q(1A)2
n−2

, is 2n−2 + 4 for Q(2B)2,2
n−2

1 (a, c)

and is 2n−2 + 5 for Q(3K)2
n−2,2,2. This invariant thus distinguishes these algebras up to stable

equivalences of Morita type up to the scalar problem. One can also use the result of Thorsten Holm
on Hochschild cohomology of blocks with generalised quaternion defect groups to distinguish blocks
with generalised quaternion defect groups having one simple module from those having three simple
modules.

�
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4. Algebras of dihedral type

We classify algebras of dihedral type up to stable equivalences of Morita type in this section.
Notice that all algebras except B1 = K[X,Y ]/(X2, Y 2 − XY ) and D(1A)k2(d) are special biserial.
By the result of Pogorza ly [15, Theorem 0.1], one only needs to consider separately dihedral algebras
with one, two or three simple modules.

4.1. One simple module. Let K be an algebraically closed field of characteristic p ≥ 0. By
the classification of Erdmann ([3]), an algebra of dihedral type with one simple module is Morita
equivalent to one of the following algebras.

A1(m,n) = K[X,Y ]/(XY,Xm − Y n) with m ≥ n ≥ 2 and m + n > 4;

C1 = K[X,Y ]/(X2, Y 2];

D(1A)k1 = K〈X,Y 〉/(X2, Y 2, (XY )k − (Y X)k with k ≥ 2;

and if p = 2,

B1 = K[X,Y ]/(X2, Y 2 −XY );

and

D(1A)k2(d) = K〈X,Y 〉/(X2 − (XY )k, Y 2 − d(XY )k, (XY )k − (Y X)k, (XY )kX, (Y X)kY ).

Proposition 4.1. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with one simple module. Then A is stably equivalent of Morita type to one
and exactly one algebra in the following list:

• A1(n,m) with m ≥ n ≥ 2 and m + n > 4;
• C1;
• D(1A)k1 with k ≥ 2;
• if p = 2, B1 and D(1A)k2(d) with k ≥ 2 and d ∈ {0, 1}, except that we don’t know whether
D(1A)k2(0) and D(1A)k2(1) are stably equivalent of Morita type or not.

The proof combines the following five claims below using some invariants of these algebras shown
in the following table.

Characteristic zero case

algebra A A1(m,n) C1 D(1A)k1
dimZ(A) n + m 4 k + 3
dimZpr(A) 1 1 1
dimZst(A) n + m− 1 3 k + 2

CA [n + m] [4] [4k]
Gst

0 Z/(n + m) Z/4 Z/4k

Characteristic two case

algebra A A1(m,n) C1 D(1Ak
1) B1 D(1A)k2(d)

dimZ(A) n + m 4 k + 3 4 k + 3
dimZpr(A) 0 or 1 0 0 0 0
dimZst(A) n + m or n + m− 1 4 k + 3 4 k + 3

CA [n + m] [4] [4k] [4] [4k]
Gst

0 Z/(n + m) Z/4 Z/4k Z/4 Z/4k

Characteristic p > 2 case

algebra A A1(m,n) C1 D(1A)k1
dimZ(A) n + m 4 k + 3
dimZpr(A) 0 or 1 1 0 or 1
dimZst(A) n + m or n + m− 1 3 k + 3 or k + 2

CA [n + m] [4] [4k]
Gst

0 Z/(n + m) Z/4 Z/4k

By the result of Pogorza ly ([15, Theorem 7.3]), we only need to compare A1(m,n), C1 with D1(k),
since they are special biserial, and compare B1 with D1(1A)k(d), since they are not special biserial.
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Claim 1. C1 cannot be stably equivalent of Morita type to A1(m,n) or D(1A)k1 .
Comparing the stable Grothendieck groups gives the result. Since m + n > 4 and k ≥ 2.
Similarly one proves

Claim 1’. B1 cannot be stably equivalent of Morita type to D(1A)k2(d).

Claim 2. A1(m,n) cannot be stably equivalent of Morita type to D(1A)k1 .
Compare their stable centres and their stable Grothendieck groups.

Claim 3. A = A1(m,n) is not stably equivalent of Morita type to A′ = A1(m′, n′) for (m,n) 6=
(m′, n′)

Now suppose that A = A1(m,n) is stably equivalent of Morita type to A′ = A(m′, n′), then by
comparing their stable Grothendieck groups, n+m = n′+m′. The Loewy length of the stable centre
of A(m,n) is max(m,n) if the characteristic p divides m+n and is max(m,n) + 1, otherwise. Thus
the stable centres are not isomorphic.

Claim 4. D(1A)k1 cannot be stably equivalent of Morita type to D(1A)l1 for k 6= l
Comparing the orders of the stable Grothendieck groups gives the result.

Claim 5. D(1A)k2(d) cannot be stably equivalent of Morita type to D(1A)l2(d) for k 6= l.
Consider the stable Grothendieck groups or the stable centres.

4.2. Two simple modules. For algebras of dihedral type with two simple modules, we have the
following result of Holm.

Proposition 4.2. ([5, Proposition 2.3.1]) Let K be an algebraically closed field of characteristic
p ≥ 0 and let A be an algebra of dihedral type with two simple module. Then A is derived equivalent
to D(2B)k,s(0) with k ≥ s ≥ 1 or (p = 2 and D(2B)k,s(1) with k ≥ s ≥ 1).

Proposition 4.3. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with two simple module. Then A is stably equivalent of Morita type to one
and exactly one of the following algebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if p = 2, D(2B)k,s(1) with
k ≥ s ≥ 1.

Proof By the result of Pogorzar ly ([15, Theorem 7.3]), in case of characteristic two, the algebras
D(2B)k,s(0) and D(2B)k,s(1) are not stably equivalent of Morita type.

Now for any characteristic p and for different parameters (k, s) 6= (k′, s′) such k ≥ s ≥ 1 and

k′ ≥ s′ ≥ 1, if D(2B)k,s(c) is stably equivalent to D(2B)k
′,s′(c), then comparing the dimension of the

centre modulo the Reynolds ideal gives k+ s = k′ + s′. Since the absolute values of the determinants
of the Cartan matrices are the same, we get ks = k′s′. This implies that k = k′ and s = s′.

�

4.3. Three simple modules.

Proposition 4.4. Let K be an algebraically closed field of characteristic p ≥ 0 and let A be an
algebra of dihedral type with two simple modules. Then A is stably equivalent of Morita type to
one and exactly one of the following algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or D(3R)k,s,t,u with
s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.

Proof Holm shows [5, page 58] that the stable Auslander-Reiten quivers of algebras of type D(3K)a,b,c

and of algebras of type D(3R)k,s,t,u is different. Hence algebras of these two types cannot be stably
equivalent of Morita type.

Again, we consider different parameters of type D(3K)a,b,c or of type D(3R)k,s,t,u. By Theo-
rem 1.6, one can use the algebra structure of the centre modulo the Reynolds ideal to distinguish
stable equivalences classes of Morita type.

Using the the explicit basis of the centres (Holm[5, Lemma 2.3.16]) allows to determine the the
quotient

Z(D(3K)a,b,c)/R(D(3K)a,b,c) ≃ K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)
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and hence two algebras of type D(3Ka,b,c) can only be stably equivalent of Morita type if the
parameters a, b, c are equal (cf Theorem 1.6).

Using (Holm[5, Lemma 2.3.17]), we also get that

Z(D(3R)k,s,t,u)/R(D(3R)k,s,t,u) ≃ K[U, V,W, T ]/(Us, V t,Wu, T k, UV, UW,UT, VW, V T,WT )

and again two algebras of type D(3R)k,s,t,u can only be stably equivalent of Morita type if the
parameters coincide.

�

Although our above result is only a complete classification up to a scalar problem in one simple
module case, we can prove nevertheless the following special case of the Auslander-Reiten conjecture.

Corollary 4.5. Let A be an indecomposable algebra which is stably equivalent of Morita type to an
algebra of dihedral type. Then this algebra has the same number of simple modules as the algebra of
dihedral type.

Proof By Proposition 2.1, A is necessarily of dihedral type. Then apply our classification results
above. Notice that although we cannot determine whether D(1A)k(0) and D(1A)k(1) are stably
equivalent of Morita type or not, they have the same number of simple modules.

�

5. Centres of semi-dihedral and quaternion type algebras

We shall study the centres and the stable centres of the involved algebras.

5.1. Semi-dihedral type. An algebra of semi-dihedral type with one simple module is Morita
equivalent to SD(1A)k1 with k ≥ 2 or to (in case of characteristic 2) SD(1A)k2(c, d) with k ≥ 2
and (c, d) 6= (0, 0). Recall from [3, Corollary III.1.3] that for each of these algebras, the centre has
dimension 4k and the dimension of the centre is k + 3. Denote by A one of the above algebras. The
centre Z(A) has a K-basis given by

{1; (XY )i + (Y X)i; (XY )k;X(Y X)k−1; (Y X)k−1Y | 1 ≤ i ≤ k − 1}

Lemma 5.1. Let K be an algebraically closed field and let A be one of the algebras SD(1A)k1 with
k ≥ 2 or (in case of characteristic 2) SD(1A)k2(c, d) with k ≥ 2 and (c, d) 6= (0, 0).

If K is of characteristic 2, then

Z(A) ≃ K[U, T, V,W ]/(Uk, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and R(A) = Z(A) ∩ Soc(A) = K · T .
If K is of characteristic different from 2, then

Z(A) ≃ K[U, V,W ]/(Uk+1, V 2,W 2, UV, UW, VW )

and R(A) = Z(A) ∩ Soc(A) = K · Uk.

Proof We need to identify U with XY + Y X , observe that ((XY ) + (Y X))i = (XY )i + (Y X)i,
and identify T with (XY )k and V and W with the other two remaining elements. If K is of
characteristic 2, then Uk = (XY )k + (Y X)k = 0, and if K is of characteristic different from 2, then
Uk = (XY )k + (Y X)k = 2(XY )k 6= 0.

�

The Cartan matrix of the algebra A is the matrix (4k) of size 1× 1. Recall that the dimension of
the projective centre is the p-rank of the Cartan matrix where p is the characteristic of the base field.
If the characteristic of K divides 4k, then the p-rank of the Cartan matrix is 0, and is 1 otherwise.

Remark 5.2. Using the dimension of the center modulo the Reynolds ideal, we see that different
values of k give different stable equivalent classes of Morita type for the above algebras.

Now we turn to the cases of two simple modules. An algebra of semi-dihedral type with two simple

modules is derived equivalent to SD(2B)k,s1 (c) with k ≥ 1, s ≥ 2 and c ∈ {0, 1} or to SD(2B)k,s2 (c)
with k ≥ 1, s ≥ 2, k + s ≥ 4 and c ∈ {0, 1}.
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Lemma 5.3. Let A be the algebra SD(2B)k,s1 (c) or the algebra SD(2B)k,s2 (c).
(1) If K is of characteristic 2, then

Z(A) ≃ K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and R(A) = K · uk ⊕K · w.
(2) If K is of characteristic different from 2, then

Z(A) ≃ K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

and R(A) = K · uk ⊕K · vs.

Proof By [3, IX 1.2 LEMMA], a basis of the centre of SD(2B)k,s1 (c) is given by

{1; (αβγ)i + (βγα)i + (γαβ)i; (βγα)k−1βγ; (αβγ)k; ηj | 1 ≤ i ≤ k − 1; 1 ≤ j ≤ s}

Now let
u = αβγ + βγα + γαβ, v = η, t = (βγα)k−1βγ, w = (αβγ)k.

If char(K) = 2, then ut = vs; otherwise, ut = vs + 2w. Hence, w may be eliminated from the
relations by the equation uk = vs + 2w in case char(K) 6= 2. It is easy to verify all other relations.
An argument of comparing dimensions gives the result.

As for SD(2B)k,s2 (c), by [3, IX 1.2 LEMMA], a basis of the centre of SD(2B)k,s1 (c) is given by

{1; (αβγ)i + (βγα)i + (γαβ)i; (βγα)k−1βγ; (αβγ)k; η + (αβγ)k−1α; ηj | 1 ≤ i ≤ k − 1; 2 ≤ j ≤ s}

Now let
u = αβγ + βγα + γαβ, v = η + (αβγ)k−1α, t = (βγα)k−1βγ, w = (αβγ)k.

Similar argument as above gives the result.

�

It is important to know that in this presentation the element t is not in the socle of SD(2B)k,s1 (c)
and can therefore not be in the projective centre (cf Proposition 1.5).

The Cartan matrix of SD(2B)k,s1 (c) with k ≥ 1, s ≥ 2 and c ∈ {0, 1} and of SD(2B)k,s2 (c) with
k ≥ 1, s ≥ 2, k + s ≥ 4 and c ∈ {0, 1} is

(

4k 2k
2k s + k

)

The determinant is 4ks. If the base field is of characteristic 2, then the 2-rank is 1 if and only if
k + s is odd, 0 else. If the base field is of characteristic p > 2, then the p-rank of the Cartan matrix
is 1 if and only if p divides k or p divides s but not both; the p-rank is 0 if and only if p divides k
and s; and the p-rank is 2 if and only if p divides neither k nor s. If the characteristic of the field is
0, then the rank of the Cartan matrix is 2.

Recall that Holm proved in [5, Lemma 2.4.16] that the centre of SD(3K)a,b,c with a ≥ b ≥ c ≥ 1
and a ≥ 2 has a basis given by

{1, (βγ + γβ)i1 ; (κλ + λκ)i2 ; (δη + ηδ)i3 ; (λκ)b; (βγ)b; (δη)c | 1 ≤ i1 < a, 1 ≤ i2 < b, 1 ≤ i3 ≤ c}

and so

Lemma 5.4.

Z(SD(3K)a,b,c) ≃ K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B
b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})

and R(SD(3K)a,b,c) = K · Aa ⊕K ·Bb ⊕K · Cc.

Proof Let

A = βγ + γβ,B = κλ + λκ,C = δη + ηδ, S1 = λβδ, S2 = δλβ, S3 = βδλ.

Then it is a straight forward verification that A,B,C, S1, S2, S3 satisfy the relations on the right-
handed side. Now the isomorphism follows from a dimension argument.

�
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Corollary 5.5. Let a ≥ b ≥ c ≥ 1 with a ≥ 2 and let a′ ≥ b′ ≥ c′ ≥ 1 with a′ ≥ 2. Then SD(3K)a,b,c

is stably equivalent of Morita type to SD(3K)a
′,b′,c′ if and only if a = a′, b = b′ and c = c′.

Proof As in the proof of Proposition 4.4, one can consider the centre modulo the Reynolds ideal.
The Reynolds ideal of the centre is of dimension three and is spanned by the elements S1, S2, S3.
Hence

Z(SD(3K)a,b,c)/R(SD(3K)a,b,c) ≃ K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)

so that an isomorphism of the centres modulo the Reynolds ideal implies that the parameters are
identical. The statement then follows from Theorem 1.6.

�

The Cartan matrix of SD(3K)a,b,c equals (cf [3])




a + b a b
a a + c c
b c b + c





which has determinant 4abc. Since all coefficients of the Cartan matrix are positive integers, the
rank of the Cartan matrix for fields of characteristic 0 is always 3.

Suppose that K is a base field of characteristic p > 2.
The p-rank 0 occurs if and only if all parameters a, b, c are divisible by p;
the p-rank 1 occurs if and only if exactly one parameter a, b, c is not divisible by p;
the p-rank is 2 if and only if exactly one of the parameters is divisible by p;
the p-rank is 3 if and only if p doesn’t divide abc.

Suppose that K is a base field of characteristic 2.
The 2-rank 0 occurs if and only if all parameters a, b, c are all even;
the 2-rank 1 occurs if and only if exactly one parameter a, b, c is odd;
the 2-rank is 2 if and only if at least two of a, b, c are odd.

5.2. Quaternion type. An algebra of quaternion type with one simple module is Morita equivalent
to Q(1A)ℓ1 with ℓ ≥ 2 or to Q(1B)ℓ2(c, d) with ℓ ≥ 2 and (c, d) 6= (0, 0). Again, by [3] the centre is
of dimension ℓ + 3 and the algebra is of dimension 4ℓ. Let A be one of the above algebras. In the
above presentation, the centre has a K-basis given by

{1; (XY )i + (Y X)i; (XY )ℓ;X(Y X)ℓ−1; (Y X)ℓ−1Y | 1 ≤ i ≤ ℓ− 1}.

Lemma 5.6. (1) If K is of characteristic 2, then

Z(A) ≃ K[U, T, V,W ]/(Uk, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and R(A) = Z(A) ∩ soc(A) = K · T .
(2) If K is of characteristic different from 2, then

Z(A) ≃ K[U, V,W ]/(Uk+1, V 2,W 2, UV, UW, VW )

and R(A) = Z(A) ∩ soc(A) = K · Uk.

Proof The proof is a straight forward verification.

�

An algebra of quaternion type with two simple modules is derived equivalent to Q(2B)k,s1 (a, c)

with k ≥ 1, s ≥ 3 and a 6= 0. By [3, IX 1.2 LEMMA], the centre of Q(2B)k,s1 (a, c) has a basis

{1; (αβγ)i + (βγα)i + (γαβ)i, (βγα)k−1βγ, (αβγ)k, η + (αβγ)k−1α, ηj | 1 ≤ i ≤ k − 1; 2 ≤ j ≤ s}.

By a similar proof as that of Proposition 5.3, we have

Lemma 5.7. (1) If char(K) = 2, then

Z(Q(2B)k,s1 (a, c)) ≃ K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and R(A) = Z(A) ∩ soc(A) = K · uk ⊕K · w.
(2) If char(K) 6= 2, then

Z(Q(2B)k,s1 (a, c)) ≃ K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)
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and R(A) = Z(A) ∩ soc(A) = K · uk ⊕K · vs.

The Cartan matrix of Q(2B)k,s1 (a, c) is
(

4k 2k
2k k + s

)

.

An algebra of quaternion type with three simple modules is derived equivalent to Q(3K)a,b,c with

a ≥ b ≥ c ≥ 1, b ≥ 2 and (a, b, c) 6= (2, 2, 1) or to Q(3A)2,21 (d) with d 6∈ {0, 1}.
The dimension of the centre of Q(3K)a,b,c is a + b + c + 1 and has a basis

{1, (βγ + γβ)i1 , (κλ + λκ)i2 , (δη + ηδ)i3 ; (λκ)b; (βγ)b; (δη)c | 1 ≤ i1 < a; 1 ≤ i2 < b; 1 ≤ i3 ≤ c}.

The Cartan matrix of the algebra Q(3K)a,b,c is




a + b a b
a a + c c
b c b + c





The dimension of the centre of Q(3A)2,21 (d) is 6 and has a basis

{1, βγ + γβ + dηδ, βγ + ηδ + δη, (βγ)2, (γβ)2 = d(δη)2, (ηδ)2}.

The Cartan matrix of Q(3A)2,21 (d) is




4 2 2
2 3 1
2 1 3





Indeed, the fact that the above elements are central as is readily verified and the dimensions are as
they should be. The statement on the Cartan matrix is taken from [3].

Lemma 5.8. We have

Z(Q(3K)a,b,c) ≃ K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B
b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})

Z(Q(3A)2,21 (d)) ≃ K[A,B,C, S1, S2, S3]/(A3, B3, C2, A2 − S2 − S3, B
2 − S3 − S1,

C − S1 − S2, ASi, BSi, CSi, SiSj, AB,AC,BC; i, j ∈ {1, 2, 3})

Proof The proof for Q(3K)a,b,c is identical to the one of Lemma 5.4. For Q(3A)2,21 (d), let

A := βγ + γβ + dηδ,

B := βγ + ηδ + δη,

C := (1 − d)(δη)2 + d2(ηδ)2,

S1 := (1 − d)(δη)2,

S2 := d2(ηδ)2,

S3 := (βγ)2 + d(δη)2.

The rest is a straight forward verification.

�

Note that, in order to simplify the notation we may put Q(3K)2,2,1 = Q(3A)2,21 (d).

Corollary 5.9. Let a ≥ b ≥ c ≥ 1 with b ≥ 2 and let a′ ≥ b′ ≥ c′ ≥ 1 with b′ ≥ 2. Then Q(3K)a,b,c

is stably equivalent of Morita type to Q(3K)a
′,b′,c′ if and only if a = a′, b = b′ and c = c′.

Proof As in the proof of Proposition 4.4, one can consider the centre modulo the Reynolds ideal.
The Reynolds ideal of the centre is of dimension three and is spanned by the elements S1, S2, S3 and
as in the proof of the semi-dihedral type

Z(Q(3K)a,b,c)/R(Q(3K)a,b,c) ≃ K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)

so that as in the semi-dihedral case an isomorphism of the centres modulo the Reynolds ideal implies
that the parameters are identical. Finally apply Theorem 1.6.

�
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6. Algebras with stable centres and Cartan data as for semi-dihedral and
quaternion type; stable equivalences

For a, b, c ≥ 1, let Aa,b,c
3 be a basic indecomposable symmetric K-algebra with centre isomorphic

to

Z(Aa,b,c
3 ) ≃ K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S2 − S3, B

b − S3 − S1,

Cc − S1 − S2, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})

and Cartan matrix




a + b a b
a a + c c
b c b + c





and the Reynolds ideal R(Aa,b,c
3 ) = KAa ⊕KBb ⊕KCc.

For k, s ≥ 1, let Ak,s
2 be a basic indecomposable symmetric algebra with Cartan matrix

(

4k 2k
2k s + k

)

so that in case K is of characteristic 2, the centre

Z(Ak,s
2 ) ≃ K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

and R(Ak,s
2 ) = Kuk ⊕Kw and if if K is of characteristic different from 2, then

Z(Ak,s
2 ) ≃ K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

and R(Ak,s
2 ) = Kuk ⊕Kvs

For ℓ ≥ 2, let Aℓ
1 be a basic indecomposable symmetric algebra of dimension 4ℓ so that in case

K is of characteristic 2,

Z(Aℓ
1) ≃ K[U, T, V,W ]/(U ℓ, T 2, V 2,W 2, UT, UV, UW, TV, TW, VW )

and the Reynolds ideal R(Aℓ
1) = K · T and if K is of characteristic different from 2, then

Z(Aℓ
1) ≃ K[U, V,W ]/(U ℓ+1, V 2,W 2, UV, UW, VW )

and R(Aℓ
1) = K · U ℓ.

6.1. Two simples versus three simples; characteristic different from 2. Concerning the

relations of Z(Aa,b,c
3 ) we see that the elements S1 + S2, S2 + S3, S3 + S1 generate the same space as

S1, S2, S3, which is the whole socle of the algebra, if and only if




1 1 0
0 1 1
1 0 1





is a regular matrix. This is the case if and only if K is a field of characteristic different from 2.
Therefore if the characteristic of the base field is different from 2, we get

Z(Aa,b,c
3 ) ≃ K[A,B,C]/(Aa+1, Bb+1, Cc+1, AB,AC,BC).

Lemma 6.1. Let K be an algebraically closed field of characteristic p > 2 or of characteristic 0.

Suppose p 6 |(ks). Then Ak,s
2 and Aa,b,c

3 cannot be stably equivalent of Morita type.

Proof If K is of characteristic 0, then the rank of the Cartan matrix of Aa,b,c
3 is 3 and the rank of

the Cartan matrix of Ak,s
2 is 2. Hence

Zst(Ak,s
2 ) = K[u, v, t]/(uk, vs, t2, uv, ut, vt)

Zst(Aa,b,c
3 ) = K[A,B,C]/(Aa, Bb, Cc, AB,AC,BC)

The same holds if p 6 |(ks) because then abc = ks since the Cartan determinants coincide, and since
therefore the Cartan matrices are regular. Hence in order to get the stable centres isomorphic we
may assume c = 2, a = k, b = s, else a permutation of the letters a, b, c will do. Hence ks = abc
becomes ks = 2ks, a contradiction.
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�

Lemma 6.2. Let K be an algebraically closed field of characteristic p > 2. Suppose p|k and p|s.

Then Ak,s
2 and Aa,b,c

3 cannot be stably equivalent of Morita type.

Proof Suppose that the algebras are stably equivalent of Morita type. We know that the Cartan

determinants coincide and hence p2|abc. If p divides a and b and c, then the Cartan matrix of Aa,b,c
3

three elementary divisors divisible by p, which implies that the stable Grothendieck group of Aa,b,c
3

tensored by K has rank 3. This gives a contradiction since the stable Grothendieck group of Ak,s
2

tensored by K can only be of rank 2 at most.

Since the p-rank of the Cartan matrix of Ak,s
2 is 0, we get that

Zst(Ak,s
2 ) = K[u, v, t]/(uk+1, vs+1, t2, uv, ut, vt)

If p divides two of the parameters a, b, c, then

Zst(Aa,b,c
3 ) = K[A,B,C]/(Aa+1, Bb+1, Cc+1, AB,AC,BC, λAA

a + λBB
b + λCC

c)

for some parameters λA, λB, λC not all 0. If p divides only one of the parameters a, b, c, then

Zst(Aa,b,c
3 ) = K[A,B,C]/ (Aa+1, Bb+1, Cc+1, AB,AC,BC,

λAA
a + λBB

b + λCC
c, µAA

a + µBB
b + µCC

c)

for a matrix
(

λA λB λC

µA µB µC

)

of rank 2.
The socle of the stable centre of Ak,s

2 is three-dimensional, and so we need to assure that this is

the case of the stable centre of Aa,b,c
3 as well. But this implies that the projective centre of Aa,b,c

3 is
generated by Bb and Cc (say) if p divides only one of a, b, c and by Cc (say) if p divides two of the
parameters a, b and c.

In the first case, p divides only one of the parameters a, b, c, we get {a+ 1, b, c} = {k+ 1, s+ 1, 2},
taken with multiplicities. If c = 2 (or b = 2, case which is studied analogously), then abc = ks
becomes 2ab = ks. Moreover, a ∈ {k, s} and b ∈ {k+1, s+1} gives 2k(s+1) = ks or 2s(k+1) = ks.
Hence ks+k = 0 or ks+s = 0, a contradiction. Hence a = 1. But then b = k+1 and c = s+1. Now,
p was assumed to divide k and s, and so p divides none of the parameters a, b, c, a contradiction to
the hypothesis.

If p divides two of the parameters a, b, c, the projective centre is one-dimensional and we got that
Cc, say, generates the projective centre. Then {a + 1, b + 1, c} = {k + 1, s + 1, 2} again taken with
multiplicities. If c = 2, then k = a and b = s, say, and abc = 2ks = ks, a contradiction. Hence
by symmetry we may assume b = 1. If c = s + 1 and k = a, then abc = k(s + 1) = ks gives a
contradiction; if c = k + 1 and a = s the same contradiction holds.

�

Lemma 6.3. Let K be an algebraically closed field of characteristic p > 2. Suppose p|k and p 6 |s or

p|s and p 6 |k. Then Ak,s
2 and Aa,b,c

3 cannot be stably equivalent of Morita type.

Proof The hypothesis implies that the projective centre of Ak,s
2 is one-dimensional, and hence there

are parameters νu, νv not both 0 with

Zst(Ak,s
2 ) = K[u, v, t]/(uk+1, vs+1, t2, νuu

k + νvv
s, uv, ut, vt)

Again, as before, the stable Grothendieck groups need to be isomorphic and so not all parameters a,
b, c can be divisible by p. Actually, since one of the parameters k and s is not divisible by p, one of

the elementary divisors of the Cartan matrix of Ak,s
2 is not divisible by p and the other is divisible

by p. Hence one of the elementary divisors of the Cartan matrix of Aa,b,c
3 is 1, one is not divisible by

p and the third is divisible by p. If p divides two of the parameters a, b and c, then two elementary
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divisors of the Cartan matrix of Aa,b,c
3 are divisible by p, whence a contradiction. Hence p divides

exactly one of the parameters a, b, c, and the projective centre of Aa,b,c
3 is two-dimensional. We get

Zst(Aa,b,c
3 ) = K[A,B,C]/ (Aa+1, Bb+1, Cc+1, AB,AC,BC,

λAA
a + λBB

b + λCC
c, µAA

a + µBB
b + µCC

c)

for a matrix
(

λA λB λC

µA µB µC

)

of rank 2.
Suppose νu = 0 or νv = 0. By symmetry we may suppose νu = 0. Then the socle of Zst(Ak,s

2 )
is three-dimensional. Hence in order to get this we need to have that Bb and Cc, say, generate the

projective centre of Aa,b,c
3 . But then {a + 1, b, c} = {k, s + 1, 2}, taken with multiplicities. The case

a = 1 gives a contradiction to abc = ks as well as the case c = 2 (or likewise b = 2).

Hence νu 6= 0 6= νv. The socle of Ak,s
2 is two-dimensional and therefore the socle of Zst(Aa,b,c

3 )
has to be two-dimensional as well. This implies that one of the elements Aa, Bb, Cc has to be in the
projective centre, say Cc. Therefore

Zst(Aa,b,c
3 ) = K[A,B,C]/(Aa+1, Bb+1, Cc, AB,AC,BC, λAA

a + λBB
b)

This give c = 2 and {a, b} = {k, s}. Now, the equality of Cartan determinants abc = ks is not
satisfied, a contradiction.

�

6.2. Two simples versus three simples; characteristic 2. We are now dealing with the case
p = 2. Recall that

Z(Ak,s
2 ) ≃ K[u, v, w, t]/(uk − vs, w2, t2, uw, vw, tw, ut, vt)

and

Z(Aa,b,c
3 ) ≃ K[A,B,C, S1, S2, S3]/(Aa+1, Bb+1, Cc+1, Aa − S1 − S2, B

b − S2 − S3,

Cc − S1 − S3, ASi, BSi, CSi, SiSj , AB,AC,BC; i, j ∈ {1, 2, 3})

In case p = 2 the subspace of the socle of the algebra generated by S1 + S2, S2 + S3, S1 + S3 is of
codimension 1, namely given by the condition

(S1 + S2) + (S2 + S3) + (S1 + S3) = 0

and so
Aa + Bb + Cc = 0.

Hence, in characteristic 2 we get

Z(Aa,b,c
3 ) ≃ K[A,B,C, S]/(Aa+1, Bb+1, Cc+1, S2, Aa + Bb + Cc, AS,BS,CS,AB,AC,BC)

We shall show

Proposition 6.4. Let K be an algebraically closed field of characteristic 2. Aa,b,c
3 cannot be stably

equivalent of Morita type to Ak,s
2 .

The proof will consist of two technical lemmata 6.5 and 6.6 contradicting each other.

Lemma 6.5. Let K be an algebraically closed field of characteristic 2. Suppose that Aa,b,c
3 is stably

equivalent of Morita type to Ak,s
2 . Then k and s are both even, two of a, b, c are odd and the third is

even.

Proof Supposing that Aa,b,c
3 is stably equivalent of Morita type to Ak,s

2 , then abc = ks. The
dimensions of the centre modulo the Reynolds ideal gives k + s = a + b + c− 2.

If a, b and c are all even, then all elementary divisors of the Cartan matrix of the algebra Aabc
3

are divisible by 2 and hence the stable Grothendieck group tensored by K of Aabc
3 is of dimension

3. But the stable Grothendieck group (tensored by K) of Ak,s
2 is 2 at most. Therefore this cannot

happen. We get that at least one of a, b or c is odd.
If k and s are both odd, then a, b, c are all odd, but then k + s = a + b + c− 2 cannot hold.



18 GUODONG ZHOU AND ALEXANDER ZIMMERMANN

Suppose now that ks = abc is even.

The stable centre of Ak,s
2 is of dimension k + s + 2 if k + s is even and of dimension k + s + 1 if

k+ s is odd. Hence the stable centre of Ak,s
2 is of even dimension in any case. If two parameters, say

a and b are even, then the 2-rank of the Cartan matrix of Aa,b,c
3 is one, and hence the stable centre

of Aa,b,c
3 is of dimension a + b + c. Since c is odd a + b + c is odd and we get a contradiction.

We have proved that two among a, b or c are odd and the third is odd now and the equality of
the dimensions of the quotient of the centres by the Reynolds ideals k + s = a+ b+ c− 2 shows that
k and s are both even.

�

Lemma 6.6. Let K be an algebraically closed field of characteristic 2. Suppose that Aa,b,c
3 is stably

equivalent of Morita type to Ak,s
2 . Then k + s is odd.

Proof If k + s is even then

Z(Ak,s
2 ) = Zst(Ak,s

2 ) ≃ K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

is isomorphic to the quotient of

Z(Aa,b,c
3 ) ≃ K[A,B,C, S]/(Aa+1, Bb+1, Cc+1, S2, Aa + Bb + Cc, AS,BS,CS,AB,AC,BC)

by a two-dimensional subspace of < Aa, Bb, S >K since by Lemma 6.5 at most one of the parameters

a, b, c is even. The socle of Aa,b,c
3 is generated by Aa, Bb, S and the projective centre is generated by

two elements µAA
a + µBB

b + µSS and νAA
a + νBB

b + νSS.
If µS 6= 0 or νS 6= 0 then the stable centre of SD(3K) is isomorphic to

Zst(Aa,b,c
3 ) ≃ K[A,B,C]/(Aa+1, Bb+1, Cc+1, Aa + Bb + Cc, µ′

AA
a + µ′

BB
b, AB,AC,BC)

for some parameters µ′
A and µ′

B not both 0. In case min(k, s) ≥ 2 we consider the quotient modulo

the radical squared of both stable centres. The one of Ak,s
2 has a basis given by 1, u, v, w, t and the

one of Aa,b,c
3 is K-linearly generated by 1, A,B,C (knowing that in case some of the parameters a, b, c

are 1, then these 4 elements are not linearly independent). In any case this gives a contradiction and
so s = 1 or k = 1 in this case. So k and s are both odd, which is impossible by Lemma 6.5.

So we get µS = 0 = νS. But then the projective centre of Aa,b,c
3 is generated by Aa and Bb

and we get

Zst(Aa,b,c
3 ) ≃ K[A,B,C, S]/(Aa, Bb, Cc, S2, AS,BS,CS,AB,AC,BC)

which needs to be isomorphic to

Zst(Ak,s
2 ) = K[u, v, w, t]/(uk − vs, w2, t2, uv, uw, vw, tw, ut, vt)

By symmetry we may assume again a ≥ b ≥ c and k ≥ s. If c ≥ 2, the socle of Zst(Aa,b,c
3 ) is four-

dimensional, whereas the socle of Zst(Ak,s
2 ) is three-dimensional. Hence c = 1. But then, comparing

the quotient modulo the radical squared gives s = 1 and therefore a = k+1 and b = 2. The equation
abs = ks becomes 2(k + 1) = k, a contradiction.

�

6.3. One simple versus two simples. We shall deal with the possibility that an algebra of type

Aℓ
1 with one simple module is stably equivalent of Morita type to an algebra of type Ak,s

2 with 2
simple modules.

Lemma 6.7. An algebra of type Aℓ
1 with one simple module cannot be stably equivalent of Morita

type to an algebra of type Ak,s
2 .

Proof Suppose that Aℓ
1 and Ak,s

2 are stably equivalent of Morita type. Since the Cartan determinants
are equal, we have 4ℓ = 4ks. Since the centre modulo the Reynolds ideal is invariant under a stable
equivalence of Morita type in our case by Theorem 1.6, we have (ℓ + 3) − 1 = (k + s + 2) − 2. This
means that k and s are integer solutions of the equation of second order X2 − (ℓ+ 2)X + ℓ = 0. But
the discriminant of this equation is equal to (ℓ + 2)2 − 4ℓ = ℓ2 + 4 which should be a square of an
integer m. We look for pythagorean triples (2, ℓ,m). It is well known that ℓ and m have to be odd,
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whence writing down the pythagorean equation one gets m = 1 or l = 1. This contradiction proves
that such a triple does not exist.

�

6.4. One simple versus three simples.

Lemma 6.8. An algebra of type Aℓ
1 is not stably equivalent of Morita type to an algebra of type

Aa,b,c
3 .

Proof The proof follows the lines of the proof of Lemma 6.7. The equality of Cartan determinants
give 4ℓ = 4abc and the centre modulo the Reynolds ideal give (ℓ + 3)− 1 = (a + b + c + 1) − 3. This
means that we have two equalities. ℓ = abc and ℓ = a + b + c − 4. By symmetry we may suppose
a ≥ b ≥ c ≥ 1. Then c = 1, otherwise

ℓ = abc ≥ 4a > 3a ≥ a + b + c− 4.

But now l = ab and l = a + b− 3. The same argument gives b = 1 and now we have a = ℓ = a− 2,
which is a contradiction.

�

We resume the situation.

Proposition 6.9. Let K be a field of characteristic 2.

• Aa,b,c
3 cannot be stable equivalent of Morita type to Ak,s

2 (cf Proposition 6.4).

• Ak,s
2 cannot be stable equivalent of Morita type to Aℓ

1 (cf Lemma 6.7).

• Aa,b,c
3 cannot be stably equivalent of Morita type to Aℓ

1 (cf Lemma 6.8).

Let K be a field of characteristic different from 2.

• There is no stable equivalence of Morita type between Aa,b,c
3 and Ak,s

2 (cf Lemma 6.1, Lemma 6.2
and Lemma 6.3).

• There is no stable equivalence of Morita type between Aℓ
1 and Ak,s

2 (cf Lemma 6.7).

• There is no stable equivalence of Morita type between Aℓ
1 and Aa,b,c

3 (cf Lemma 6.8).

Although we cannot classify completely algebras of semi-dihedral and quaternion type up to stable
equivalences of Morita type, we can nevertheless prove the following

Corollary 6.10. Let A be an indecomposable algebra which is stably equivalent to an algebra B of
semi-dihedral type (resp. quaternion type). Then A has the same number of simple modules as B.

Proof This is an immediate consequence of the above proposition.

�

7. The main theorem and concluding remarks

We resume the results of this paper in a single theorem. We use the notations introduced above,
which coincides with the notations in [3] or [5].

Theorem 7.1. Let K be an algebraically closed field.
Suppose A and B are indecomposable algebras which are stably equivalent of Morita type.

• If A is an algebra of dihedral type, then B is of dihedral type. If A is of semi-dihedral type,
then B is of semi-dihedral type. If A is of quaternion type then B is of quaternion type.

• If A and B are of dihedral, semidihedral or quaternion type, then A and B have the same
number of simple modules.

• Let A be an algebra of dihedral type.
(1) If A is local, then A is stably equivalent of Morita type to one and exactly one algebra

in the following list:
– A1(n,m) with m ≥ n ≥ 2 and m + n > 4;
– C1;
– D(1A)k1 with k ≥ 2;
– if p = 2, B1 and D(1A)k2(d) with k ≥ 2 and d ∈ {0, 1}, except that we don’t know

whether D(1A)k(0) and D(1A)k(1) are stably equivalent of Morita type or not.
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(2) If A has two simple modules, then A is stably equivalent of Morita type to one and exactly
one of the following algebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if p = 2, D(2B)k,s(1) with
k ≥ s ≥ 1.

(3) If A has three simple modules then A is stably equivalent of Morita type to one and
exactly one of the following algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or D(3R)k,s,t,u

with s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.
• Let A be an algebra of semi-dihedral type.

(1) If A has one simple module then A is stably equivalent of Morita type to one of the
following algebras: SD(1A)k1 for k ≥ 2 or SD(1A)k2(c, d) for k ≥ 2 and (c, d) 6= (0, 0) if
the characteristic of K is 2. Different parameters k yield algebras in different equivalence
classes of Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to SD(2B)k,s1 (c)

for k ≥ 1, s ≥ 2, c ∈ {0, 1} or to SD(2B)k,s2 (c) for k ≥ 1, s ≥ 2, c ∈ {0, 1}, k + s ≥ 4.
(3) If A has three simple modules, then A is stably equivalent of Morita type to one and

only one algebra of the type SD(3K)a,b,c) for a ≥ b ≥ c ≥ 1.
• Let A be an algebra of quaternion type.

(1) If A has one simple modules, then A is stably equivalent of Morita type to one of the
algebras Q(1A)k1 for k ≥ 2 or Q(1A)k2(c, d) for k ≥ 2, (c, d) 6= (0, 0) if characteristic
if the K is 2. Different parameters k yield algebras in different equivalence classes of
Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to one of the

algebras Q(2B)k,s1 (a, c) for k ≥ 1, s ≥ 3, a 6= 0.
(3) If A has three simple modules, then A is stably equivalent of Morita type to one of the

algebras Q(3K)a,b,c for a ≥ b ≥ c ≥ 1, b ≥ 2, (a, b, c) 6= (2, 2, 1) or Q(3A)2,21 (d) for
d ∈ K \ {0, 1}. Different parameters a, b, c yield algebras in different stable equivalence
classes of Morita type.

Proof The first point is Proposition 2.1 and the second point is Corollary 4.5 and Corollary 6.10. The
third point is Proposition 4.1, Proposition 4.3 and Proposition 4.4. The fourth point is Proposition 6.9
together with Section 5.1 and the fifth point is Proposition 6.9 together with Section 5.2.

�

Remark 7.2. For algebras of dihedral type, we proved in Section 4 that the classification up to
stable equivalences of Morita type coincide with derived equivalence classification, up to a scalar
problem in D(1A)k2(d). The only piece that is missing for a complete classification is the question if
D(1A)k2(0) is stably equivalent of Morita type to D(1A)k2(1).

Derived equivalent local algebras are Morita equivalent as is shown by Roggenkamp and the
second author (cf [18]). Observe that tame local symmetric algebras are classified in [3, Chapter III].
Actually, the classification coincides with the algebras with one simple module we already dealt with
in the text. So, a complete classification of the algebras of dihedral type with one simple module
would give a classification of tame local symmetric algebras.

Corollary 7.3. The Auslander Reiten conjecture holds for tame local symmetric algebras, i.e. if A
is a tame local symmetric algebra and if B is an algebra without simple direct factor which is stably
equivalent of Morita type to A, then B is local tame symmetric as well.

Proof By Liu [12] B is indecomposable since A is indecomposable. Erdmann classified tame local
symmetric algebras [3, III.1 Theorem]. The classification coincides with the list of local algebras of
dihedral, semi-dihedral or quaternion type.

�

We cannot give any answer to the classification of algebras of dihedral, semi-dihedral or quaternion
type up to derived equivalence beyond the information that is already known. Nevertheless, one more
statement for algebras of semi-dihedral type was obtained by Holm and the second author.

Theorem 7.4. (Holm and Zimmermann [6])
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(1) Let F be an algebraically closed field of characteristic 2. For any given integers k, s ≥ 1,

consider the algebras of semi-dihedral type SD(2B)k,s1 (c) for the scalars c = 0 and c = 1. Put

Bk,s
c := SD(2B)k,s1 (c). Suppose that if k = 2 then s ≥ 3 is odd, and if s = 2 then k ≥ 3 is

odd. Then the factor rings Z(Bk,s
0 )/T1(B

k,s
0 )⊥ and Z(Bk,s

1 )/T1(Bk,s
1 )⊥ are not isomorphic.

In particular, the algebras SD(2B)k,s1 (0) and SD(2B)k,s1 (1) are not derived equivalent.
(2) Let F be an algebraically closed field of characteristic 2. For any given integers k, s ≥ 1,

consider the algebras of semi-dihedral type SD(2B)k,s2 (c) for the scalars c = 0 and c =

1. Put Ck,s
c := SD(2B)k,s2 (c). If the parameters k and s are both odd, then the factor

rings Z(Ck,s
0 )/T1(Ck,s

0 )⊥ and Z(Ck,s
1 )/T1(Ck,s

1 )⊥ are not isomorphic. Hence the algebras

SD(2B)k,s2 (0) and SD(2B)k,s2 (1) have different sequences of generalised Reynolds ideals.

In particular, for k and s odd, the algebras SD(2B)k,s2 (0) and SD(2B)k,s2 (1) are not derived
equivalent.

We get the following positive result.

Corollary 7.5. (1) Let F be an algebraically closed field of characteristic 2. For any given

integers k, s ≥ 1, consider the algebras of semi-dihedral type SD(2B)k,s1 (c) for the scalars
c = 0 and c = 1. Suppose that if k = 2 then s ≥ 3 is odd, and if s = 2 then k ≥ 3 is odd.

Then the algebras SD(2B)k,s1 (0) and SD(2B)k,s1 (1) are not stably equivalent of Morita type.
(2) Let F be an algebraically closed field of characteristic 2. For any given integers k, s ≥ 1,

consider the algebras of semi-dihedral type SD(2B)k,s2 (c) for the scalars c = 0 and c = 1. If

the parameters k and s are both odd, then the algebras SD(2B)k,s2 (0) and SD(2B)k,s2 (1) are
not stably equivalent of Morita type.

Proof Since the quotients Zst(A) := Z(A)/Zpr(A) and T⊥
n (A)st := Tn(A)⊥/Zpr(A) are invariants

under stable equivalences of Morita type, so are the quotients Zst(A)/T⊥
n (A)st = Z(A)/T⊥

n (A).
Hence the parameters in the theorem yield not only algebras in different derived equivalence

classes, but also algebras in different equivalence classes up to stable equivalences of Morita type.

�

References

[1] Maurice Auslander and Idun Reiten, Stable equivalence of Artin algebras. Proceedings of the Conference on
Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972), 8-71. Springer Lecture Notes
in Mathematics 353 (1973).
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