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Abstract

The model checking problem for finite-state open systems (module check-
ing) has been extensively studied in the literature, both in the context of
environments with perfect and imperfect information about the system. Re-
cently, the perfect information case has been extended to infinite-state sys-
tems (pushdown module checking). In this part, we extend pushdown module
checking to the imperfect information setting; i.e., to the case where the envi-
ronment has only a partial view of the system’s control states and pushdown
store content. We study the complexity of this problem with respect to the
branching-time temporal logicsCTL,CTL∗ and the propositional µ-calculus.
We show that pushdown module checking, which is by itself harder than
pushdown model checking, becomes undecidable when the environment has
imperfect information.

We also show that undecidability relies on hiding information about the
pushdown store. Indeed, we prove that with imperfect information about the
control states, but a visible pushdown store, the problem is decidable and its
complexity is 2Exptime-complete forCTL and the propositional µ-calculus,
and 3Exptime-complete forCTL∗.
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1. Introduction

In system modeling we distinguish between closed and open systems [14].
In a closed system all the nondeterministic choices are internal, and resolved
by the system. In an open system there are also external nondeterministic
choices, which are resolved by the environment [15]. In order to check whether
a closed system satisfies a required property, we translate the system into
some formal model, specify the property with a temporal-logic formula, and
check formally that the model satisfies the formula. Hence, the name model
checking for the verification methods derived from this viewpoint ([10, 28]).

In [20, 23], Kupferman, Vardi, and Wolper studied open finite-state sys-
tems. In their framework, the open finite-state system is described by a
labeled state-transition graph called a module, whose set of states is parti-
tioned into a set of system states (where the system makes a transition) and a
set of environment states (where the environment makes a transition). Given
a moduleM describing the system to be verified, and a temporal logic for-
mula ϕ specifying the desired behavior of the system, the problem of model
checking a module, called module checking, asks whether for all possible en-
vironments M satisfies ϕ. In particular, it might be that the environment
does not enable all the external nondeterministic choices. Module checking
thus involves not only checking that the full computation tree 〈TM , VM〉 ob-
tained by unwindingM (which corresponds to the interaction ofM with a
maximal environment) satisfies the specification ϕ, but also that every tree
obtained from it by pruning children of environment nodes (this corresponds
to the different choices of different environments) satisfy ϕ.

For example, consider an ATM machine that allows customers to deposit
money, withdraw money, check balance, etc. The machine is an open system
and an environment for it is a subset of the set of all possible infinite lines
of customers, each with its own plans. Accordingly, there are many different
possible environments to consider. It is shown in [20, 23] that for formulas in
branching time temporal logics, module checking open finite-state systems is
exponentially harder than model checking closed finite-state systems.

In [19] module checking has been extended to a setting where the envi-
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ronment has imperfect information1 about the state of the system (see also
[9, 8], for related work regarding imperfect information). In this setting,
every state of the module is a composition of visible and invisible variables,
where the latter are hidden from the environment. While a composition of
a module M with an environment with perfect information corresponds to
arbitrary disabling of transitions inM, the composition ofM with an envi-
ronment with imperfect information is such that whenever two computations
of the system differ only in the values of internal variables along them, the
disabling of transitions along them coincide.

For example, in the above ATM machine, a person does not know, before
he asks for money, whether or not the ATM has run out of paper for printing
receipts. Thus, the possible behaviors of the environment are independent
of this missing information. Given an open system M with a partition of
M’s variables into visible and invisible ones, and a temporal logic formula
ϕ, the module-checking problem with imperfect information asks whether ϕ
is satisfied by all trees obtained by pruning children of environment nodes
from 〈TM , VM〉, according to environments whose nondeterministic choices
are independent of the invisible variables. One of the results shown in [19] is
thatCTL module checking with imperfect information is Exptime-complete.

In recent years, model checking of pushdown systems has received a lot of
attention (see for example [30, 31, 5, 12]), largely due to the ability of push-
down systems to capture the flow of procedure calls and returns in programs
[1]. Recently, [6] extended these techniques by introducing open pushdown
systems (with perfect information) that interact with their environment. It
is shown in [6] thatCTL pushdown module checking is 2Exptime-complete
and thus much harder than pushdown model checking.

Consider again the example of the ATM machine, where the information
regarding the presence of printing paper is invisible to the customers. Sup-
pose also that the ATM machine shows advertisements, and that it works
under the constraint that the number of advertisements the customer must
view, before the card can be taken out of the machine, is equal to the num-
ber of operations the customer performed. The described machine can be
modeled as an open pushdown system M where control states take care of
the operation performed by the ATM (interacting with customers), and the

1In the literature, the term incomplete information is sometimes used to refer to what
we call imperfect information.
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pushdown store is used to keep track of the advertisements that remain to be
shown. Now, suppose that we want to verify that in all possible environments,
it is always possible for an inserted card to be ejected. This requirement can
be modeled by the CTL formula ϕ = AG(insert-card → EFeject-card).
Since the presence of printing paper is invisible to the customers, we have
imperfect information about the control states of the module. If we allow the
ATM to push, after each operation the customer makes, an invisible num-
ber (possibly zero) of pending advertisements, then we also have invisible
information in the pushdown store.

In this work we extend pushdown module checking by considering envi-
ronments with imperfect information about the system’s control state and
pushdown store content. To this aim, we first have to define how a pushdown
system keeps part of its internal configuration invisible to the environment
and another part visible. In [27], a private pushdown store automata is de-
fined to be a Turing machine with two tapes: a read only public (visible)
one-way input tape, and a possibly private (invisible) work tape, simulat-
ing a pushdown store. Unfortunately, their definition is not suitable for our
purpose as it allows for only two levels of information hiding: either the
pushdown store and control state are completely visible, or completely in-
visible. The definition we use instead is an extension of the idea used for
finite-state systems. Like in the finite case, we assume the control states
are assignments to boolean control variables, some of which are visible and
some of which are invisible. Similarly, symbols of the pushdown store are
assignments to boolean visible and invisible pushdown store variables.

In [19], each state is partitioned into input, output, and invisible variables,
where the environment supplies the input variables, and the system supplies
the output and invisible variables. This idea works well for finite state-
systems but not when we have to deal with imperfect information about the
pushdown store. Note that a symbol pushed now, influences the computation
much later, when it becomes the top of the pushdown store. Indeed, asking
the environment to supply as input part of each symbol in the pushdown,
is asking it to intimately participate in the internals of the computation,
which is less natural. We find it more natural to think of the environment as
choosing the possible transitions at certain points of the computation. For
example, if the environment supplies the current reading of a physical sensor,
we think of it as disabling all the transitions that are irrelevant for this read-
ing. Thus, we model an open pushdown system with imperfect information
by partitioning configurations into system and environment configurations,
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and also partitioning states and pushdown store symbols into visible and
invisible variables, combining features from both [20] and [19].

We study the pushdown module-checking problem with imperfect infor-
mation, with respect to the branching-time logicsCTL,CTL∗ and the propo-
sitional µ-calculus. We show that the problem is undecidable in the general
case, and that undecidability relies on hiding information about the push-
down store. In other words, the problem becomes decidable with imperfect
information about the internal control states, but a visible pushdown store.
We derive both the undecidability and the decidability results using an au-
tomata theoretic approach. For the undecidability, we give a reduction of
the universality problem of nondeterministic pushdown automata on finite
words, which is undecidable [16], to the CTL pushdown module-checking
problem with imperfect information. In order to derive the decidability re-
sults, we reduce the pushdown module-checking problem with imperfect state
information to the emptiness problem of a new automata model that we call
semi-alternating pushdown tree automata. These are alternating pushdown
tree automata [18] (see also [24]), where the universality is not allowed on
the pushdown store content. That is, two copies of the automaton that read
the same input, from two configurations that have the same top of pushdown
store, must push the same value into the pushdown store.

We consider two types of acceptance conditions for semi-alternating push-
down tree automata, one is the Büchi condition which is suitable for handling
CTL, and the other is the parity condition which is suitable for CTL∗ and
µ-calculus. We show that, for both acceptance conditions, semi-alternating
pushdown tree automata can be translated to equivalent nondeterministic
pushdown tree automata (with the same acceptance condition), for which the
emptiness problem is decidable in exponential time [18]. It is important to
note that alternating pushdown automata, in contrast to the semi-alternating
ones, are not equivalent to nondeterministic pushdown automata. Indeed,
since the emptiness problem of the intersection of two context free languages
is undecidable [16], the emptiness problem of alternating pushdown automata
is undecidable already in the case of finite words.

Overall, based on the above translations, we are able to show that the
pushdown module checking problem with imperfect state information is de-
cidable and 2Exptime-complete forCTL and propositional µ-calculus spec-
ifications, and is 3Exptime-complete forCTL∗ specifications. Hence, in all
cases, it is not harder than perfect information pushdown module checking.
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2. Preliminaries

2.1. Trees

Let Υ be a set. An Υ-tree is a prefix closed subset T ⊆ Υ∗. The elements
of T are called nodes and the empty word ε is the root of T . For v ∈ T , the
set of children of v (in T ) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node
v = u ·x, with u ∈ Υ∗ and x ∈ Υ, we define last(v) to be x. We also say that
v corresponds to x. The complete Υ-tree is the tree Υ∗. For v ∈ T , a (full)
path π of T from v is a minimal set π ⊆ T such that v ∈ π and for each
v′ ∈ π such that child(T, v′) 6= ∅, there is exactly one node in child(T, v′)
belonging to π. Note that every infinite word w ∈ Υω can be thought of
as an infinite path in the tree Υ∗, namely the path containing all the finite
prefixes of w. For an alphabet Σ, a Σ-labeled Υ-tree is a pair 〈T, V 〉 where
T is an Υ−tree and V : T → Σ maps each node of T to a symbol in Σ.

2.2. The propositinal µ-Calculus

The µ-calculus is a propositional modal logic augmented with least and
greatest fixpoint operators. We consider a µ-calculus where formulas are con-
structed from Boolean propositions with Boolean connectives, the temporal
operators EX (”exists next”) and AX (”for all next”), as well as least (µ)
and greatest (ν) fixpoint operators. We assume that µ-calculus formulas are
written in positive normal form (negation only applied to atomic proposi-
tions).

Formally, let AP and Var be finite and pairwise disjoint sets of atomic
propositions and propositional variables. The set of µ–calculus formulas over
AP and Var is the smallest set such that

• true and false are formulas;

• p and ¬p, for p ∈ Prop, are formulas;

• x ∈ Var is a formula;

• ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are formulas if ϕ1 and ϕ2 are formulas;

• AXϕ and EXϕ are formulas if ϕ is a formula;

• µy.ϕ(y) and νy.ϕ(y) are formulas if y is a propositional variable and
ϕ(y) is a formula containing y as a free variable.
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Observe that we use positive normal form, i.e., negation is applied only
to atomic propositions.

We call µ and ν fixpoint operators and use λ to denote a fixpoint operator
µ or ν. A propositional variable y occurs free in a formula if it is not in the
scope of a fixpoint operator λy, and bounded otherwise. Note that y may
occur both bounded and free in a formula. A sentence is a formula that
contains no free variables. For a formula λy.ϕ(y), we write ϕ(λy.ϕ(y)) to
denote the formula that is obtained by one-step unfolding, i.e., replacing
each free occurrence of y in ϕ with λy.ϕ(y).

The closure cl(ϕ) of a µ-calculus sentence ϕ is the smallest set of µ-
calculus formulas that contains ϕ and is closed under sub-formulas (that is,
if ψ is in the closure, then so do all its sub-formulas that are sentences)
and fixpoint applications (that is, if λy.ϕ(y) is in the closure, then so is
ϕ(λy.ϕ(y))). For every µ-calculus formula ϕ, the number of elements in cl(ϕ)
is linear in the length of ϕ. Accordingly, we define the size |ϕ| of ϕ to be
the number of elements in cl(ϕ). A µ-calculus formula is guarded if for every
variable y, all the occurrences of y that are in a scope of a fixpoint modality
λ are also in a scope of a modality AX or EX that is itself in the scope of λ.
Thus, a µ-calculus sentence is guarded if for all y ∈ Var , all the occurrences
of y are in the scope of a next modality. Given a µ-calculus formula, it is
always possible to construct in linear time an equivalent guarded formula
(c.f.,[22, 4]).

The semantics of the µ–calculus is defined with respect to a Kripke struc-
ture K = 〈AP ,W,R,w0, L〉, where AP is a set of atomic propositions, W
is a finite set of states, R ⊆ W ×W is a transition relation that must be
total (i.e., for every w ∈ W there exists w′ ∈ W such that (w,w′) ∈ R), w0

is an initial state, and L : W → 2AP maps each state to the set of atomic
propositions true in that state. If (w,w′) ∈ R, we say that w′ is a successor
of w. A path in K is an infinite sequence of states, π = w0, w1, . . . such that
for every i ≥ 0, (wi, wi+1) ∈ R. We denote the suffix wi, wi+1, . . . of π by πi.
We define the size |K| of K as |W |+ |R|.

Informally, a formula EXϕ holds at a state w of a Kripke structure K if ϕ
holds at least in one successor of w. Dually, the formula AXϕ holds in a state
w of a Kripke structure K if ϕ holds in all successors of w. Readers not famil-
iar with fixpoints might want to look at [17, 29, 7] for instructive examples
and explanations of the semantics of the µ-calculus. To formalize the seman-
tics, we introduce valuations that allow to associate sets of points to vari-
ables. Given a Kripke structureK = 〈AP ,W,R,w0, L〉 and a set {y1, . . . , yn}
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of propositional variables in Var, a valuation V : {y1, . . . , yn} → 2W is an as-
signment of subsets of W to the variables y1, . . . , yn. For a valuation V ,
a variable y, and a set W ′ ⊆ W , we denote by V [y ← W ′] the valuation
obtained from V by assigning W ′ to y. A formula ϕ with free variables
among y1, . . . , yn is interpreted over the structure K as a mapping ϕK from
valuations to 2W , i.e., ϕK(V) denotes the set of states that satisfy ϕ under
valuation V . The mapping ϕK is defined inductively as follows:

• trueK(V) = W and falseK(V) = ∅;

• for p ∈ AP , we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);

• for y ∈ Var, we have yK(V) = V(y);

• (ϕ1 ∧ ϕ2)
K(V) = ϕK

1 (V) ∩ ϕK
2 (V)

• (ϕ1 ∨ ϕ2)
K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

• (EXϕ)K(V) = {w ∈ W : ∃w′.(w,w′) ∈ R and w′ ∈ ϕK(V)};

• (AXϕ)K(V) = {w ∈ W : ∀w′.if(w,w′) ∈ R then w′ ∈ ϕK(V)};

• (µy.ϕ(y))K(V) = ⋂{W ′ ⊆ W : ϕK(V [y ← W ′]) ⊆ W ′};

• (νy.ϕ(y))K(V) = ⋃{W ′ ⊆ W : W ′ ⊆ ϕK(V [y ← W ′])}.

Note that no valuation is required for a sentence.
Let K = 〈AP ,W,R,w0, L〉 be a Kripke structure and ϕ a sentence. For

a state w ∈ W , we say that ϕ holds at w in K, denoted K,w |= ϕ, if
w ∈ ϕK(∅). K is a model of ϕ if there is a w ∈ W such that K,w |= ϕ.
Finally, ϕ is satisfiable if it has a model.

2.3. The Temporal LogicsCTL∗ andCTL

The logicCTL∗ combines both branching-time and linear-time operators
[11]. A path quantifier, either A (“for all paths”) or E (“for some path”), can
prefix an assertion composed of an arbitrary combination of the linear-time
operators X (“next time”), and U (“until”). A positive normal form CTL∗

formula is a CTL∗ formula in which negations are applied only to atomic
propositions. It can be obtained by pushing negations inward as far as possi-
ble, using De Morgan’s laws and dualities of quantifiers and temporal connec-
tives. For technical convenience, we use the linear-time operator Ũ as a dual
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of the U operator, and write all CTL∗ formulas in a positive normal form.
There are two types of formulas inCTL∗: state formulas, whose satisfaction
is related to a specific state, and path formulas, whose satisfaction is related
to a specific path. Formally, let AP be a set of atomic proposition names. A
CTL∗ state formula is either:

• true, false, p, or ¬p, for all p ∈ AP ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 areCTL∗ state formulas;

• Aψ or Eψ, where ψ is aCTL∗ path formula.

ACTL∗ path formula is either:

• ACTL∗ state formula;

• ψ1 ∧ ψ2, ψ1 ∨ ψ2, Xψ1, ψ1Uψ2, or ψ1Ũψ2, where ψ1 and ψ2 areCTL∗

path formulas.

CTL∗ is the set of state formulas generated by the above rules.
We use the following abbreviations in writing formulas:

• Fψ = trueUψ (“eventually”).

• Gψ = falseŨψ (“always”).

The logicCTL is a restricted subset ofCTL∗ in which the temporal oper-
ators must be immediately preceded by a path quantifier. Formally, it is the
subset ofCTL∗ obtained by restricting the path formulas to be Xϕ1, ϕ1Uϕ2,
or ϕ1Ũϕ2, where ϕ1 and ϕ2 areCTL state formulas.

The closure cl(ϕ) of aCTL∗ (CTL) formula ϕ is the set of allCTL∗ (CTL)
state sub-formulas of ϕ (including ϕ, but excluding true and false). We
define the size |ϕ| of ϕ as the number of elements in cl(ϕ). Note that, even
though the number of elements in the closure of a formula can be logarithmic
in the length of the formula if there are multiple occurrences of identical
sub-formulas, our definition of size is legitimate since it corresponds to the
number of nodes in a reduced DAG representation of the formula.

The notation K,w |= ϕ indicates that aCTL∗ state formula ϕ holds at
the state w of the Kripke structure K. Similarly, K, π |= ψ indicates that a
CTL∗ path formula ψ holds on a path π of the Kripke structure K. When
K is clear from the context, we write w |= ϕ and π |= ψ. Also, K |= ϕ iff
K,w0 |= ϕ. The relation |= is inductively defined as follows.
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• For all w, we have w |= true and w 6|= false.

• w |= p for p ∈ AP iff p ∈ L(w).

• w |= ¬p for p ∈ AP iff p 6∈ L(w).

• w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.

• w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.

• w |= Aψ iff for every path π = w0, w1, . . ., with w0 = w, we have π |= ψ.

• w |= Eψ iff there exists a path π = w0, w1, . . ., with w0 = w, such that
π |= ψ.

• π |= ϕ for a state formula ϕ, iff w0 |= ϕ where π = w0, w1, . . .

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.

• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.

• π |= Xψ iff π1 |= ψ.

• π |= ψ1Uψ2 iff there exists i ≥ 0 such that πi |= ψ2 and for all 0 ≤ j < i,
we have πj |= ψ1.

• π |= ψ1Ũψ2 iff for all i ≥ 0 such that πi 6|= ψ2, there exists 0 ≤ j < i

such that πj |= ψ1.

Note that π |= ψ1Ũψ2 if and only if π 6|= (¬ψ1)U(¬ψ2). That is, a path π

satisfies ψ1Ũψ2 if ψ2 holds everywhere along π (thus, the U does not reach
its eventuality), or if the first occurrence of ¬ψ2 is strictly preceded by an
occurrence of ψ1 (thus, ¬ψ1 is falsified before the eventuality is reached).

Another way to understand the Ũ operator is to interpret ψ1Ũψ2 by “as long
as ψ1 is false, ψ2 must be true”.

2.4. Open Systems

An open system is a system that interacts with its environment and whose
behavior depends on this interaction. We consider the case where the envi-
ronment has imperfect information about the system, i.e., when the system
has internal variables that are not visible to its environment. We describe
such a system by a module M = 〈AP,Ws,We, w0, R, L,∼=〉, where AP is a
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finite set of atomic propositions, Ws is a set of system states, and We is a set
of environment states. We assume Ws ∩We = ∅, and call W = Ws ∪We the
set ofM’s states. w0 ∈ W is the initial state, R ⊆ W ×W is a total tran-
sition relation, L : W → 2AP is a labeling function that maps each state of
M to the set of atomic propositions that hold in it, and ∼= is an equivalence
relation on W .

In order to present a unified definition that is general enough to han-
dle both finite-state and infinite-state systems, we model the fact that the
environment has imperfect information about the states of the system by
an equivalence relation ∼=. States that are indistinguishable by the environ-
ment, because the difference between them is kept invisible by the system, are
equivalent according to ∼=. We write [W ] for the set of equivalence classes of
W under ∼=. Since states in the same equivalence class are indistinguishable
by the environment, from the environment’s point of view, the states of the
system are actually the equivalence classes themselves. The equivalence class
[w] of w ∈ W , is called the visible part of w, since it is in a sense what the
environment “sees” of w. We write vis(w) instead of [w], to emphasize this.
Note that we can also do the converse. That is, given a function vis, whose
domain is W , we can define the equivalence relation ∼= by letting w ∼= w′ iff
vis(w) = vis(w′). We can then think of the range of vis as the set of the
equivalence classes [W ] and associate [w] with the value vis(w).

A moduleM is closed ifWe = ∅ (meaning thatM does not interact with
any environment) and open otherwise. Since the designation of a state as an
environment state is obviously known to the environment, we require that
for every w,w′ ∈ W such that w ∼= w′, we have that w ∈ We iff w′ ∈ We.
Also note that if w ∼= w′, from the environment’s point of view, the set
of atomic propositions that currently hold in w may just as well be L(w′).
We therefore define the labeling, as seen by the environment, as a function
visL : [W ] → 22

AP

that maps the visible part of a state to a set of possible
sets of atomic propositions: visL([u]) = {L(w) : w ∈ W ∧ w ∼= u}. If it is
always the case that w ∼= w′ =⇒ L(w) = L(w′), we say that the atomic
propositions are visible.

For (w,w′) ∈ R, we say that w′ is a successor of w. The requirement
that R be total means that every state w has at least one successor. A
computation ofM is a sequence w0 · w1 · · · of states, such that for all i ≥ 0
we have (wi, wi+1) ∈ R. For each w ∈ W , we denote by succ(w) the (possibly
empty) set of w’s successors. When the moduleM is in a system state ws,
then all successor states are possible next states. On the other hand, when
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M is in an environment state we, the environment decides, based on the
visible parts of each successor of we, and of the history of the computation
so far, to which of the successor states the computation can proceed, and to
which it can not.

The set of all (maximal) computations ofM starting from the initial state
w0 can be described by an AP -labeledW -tree 〈TM, VM〉 called a computation
tree, which is obtained by unwinding M in the usual way. Each node v =
v1 · · · vk of 〈TM, VM〉 describes the (partial) computation w0 · v1 · · · vk ofM,
with the root ε corresponding to w0. The children of v are exactly all nodes
of the form v1 · · · vk ·w, where w ranges over all the successors of vk inM. We
extend the definition of the vis function to nodes in the natural way. Thus,
the visible part of a node v is vis(v) = vis(v1) · · · vis(vk). The labeling
VM of a node v depends on the state it corresponds to (its last state), i.e.,
VM(v) = L(last(v)). Also, if v corresponds to an environment state, we say
that v is an environment node.

The problem of deciding, for a given temporal logic formula ϕ, over the set
AP of atomic propositions, whether 〈TM, VM〉 satisfies ϕ is the usual model
checking problem (formally denoted M |= ϕ) [10, 28]. In model checking,
we only have to consider the computation tree 〈TM, VM〉, since the mod-
ule we want to check is closed and thus its behavior is not affected by the
environment. On the other hand, whenever we consider an open module,
〈TM, VM〉 corresponds to a very specific environment: a maximal environ-
ment that never restricts the set of next states. Therefore, when we examine
a branching-time specification ϕ w.r.t. an open module M, the formula ϕ
should hold not only in 〈TM, VM〉, but in all the trees obtained by pruning
from 〈TM, VM〉 subtrees whose roots are children (successors) of environment
nodes, in accordance with all possible environments. It is important to note
that in the case of perfect information (i.e., ∼= is actually the equality re-
lation), every such pruning corresponds to some environment; however, in
the case of imperfect information, only if the pruning is consistent with the
partial information available to the environment, will the tree correspond to
an actual environment. Formally, if two nodes v and v′ are indistinguishable,
i.e., if vis(v) = vis(v′), then a tree in which the subtree rooted at v is pruned,
but the one rooted at v′ is not pruned, does not correspond to any environ-
ment, and should not be considered. As noted in [19], the fact that given
a pruning of 〈TM, VM〉, a finite automaton cannot decide if that pruning
corresponds to an actual environment or not, is the main source of difficulty
in dealing with module checking with imperfect information. Also note that

12



the knowledge-based subset construction that is used to transform games
of imperfect information into ones of perfect information (see for example
[8]), is not applicable in this context, since in general there is no connection
between the satisfiability of a branching time formula on the original struc-
ture and its satisfiability on the one obtained by the knowledge-based subset
construction.

Recall that whenever M interacts with an environment ξ, its possible
moves from environment states depends on the behavior of ξ. We can think
of an environment to M as a strategy ξ : [W ]∗ → {⊤,⊥} that maps a
finite history s of a computation, as seen by the environment, to either ⊤
or ⊥, meaning that the environment respectively allows or disallows M to
trace s. We say that the tree 〈[W ]∗, ξ〉 maintains the strategy applied by ξ,
and we call it a strategy tree. We denote byM ✁ ξ the AP -labeled W -tree
induced by the composition of 〈TM, VM〉 with ξ; that is, the AP -labeled W -
tree obtained by pruning from 〈TM, VM〉 subtrees according to ξ. Note that
by the definition above, ξ may disable all the children of a node v. Since
we usually do not want the environment to completely block the system, we
require that at least one child of each node is enabled. In this case, we say
that the compositionM✁ ξ is deadlock free.

To see the interaction ofM with ξ, let v ∈ TM be an environment node,
and v′ ∈ TM be one of its children. The subtree rooted in v′ is pruned
iff ξ(vis(v′)) = ⊥. Every two nodes v1 and v2 that are indistinguishable
according to ξ’s imperfect information have vis(v1) = vis(v2). Also, recall
that the designation of a state as an environment state is based only on the
visible part of that state. Thus, if v1 is a child of an environment node then
so is v2, and either both subtrees with roots v1 and v2 are pruned, or both are
not. Note that once ξ(v) = ⊥ for some v ∈ [W ]∗, we can ignore ξ(v · t), for all
t ∈ [W ]∗. Indeed, once the environment disables the transition to a certain
node v, it actually disables the transitions to all the nodes in the subtree
with root v. We can now formally define the interaction of an open module
with an environment with imperfect information. From now on, unless stated
differently, we always refer to modules that are open, and environments with
imperfect information. Given a moduleM, and a strategy tree 〈[W ]∗, ξ〉 for
an environment ξ, an AP -labeledW -tree 〈T, V 〉 corresponds toM✁ξ iff the
following hold:

• The root of T corresponds to w0.

• For v ∈ T with last(v) ∈ Ws, we have child(T, v) = {v ·w1, . . . , v ·wn},
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where succ(last(v)) = {w1, . . . , wn}.

• For v ∈ T with last(v) ∈ We, there is a nonempty subset {w1, . . . , wk}
of succ(last(v)) such that child(T, v) = {v·w1, . . . , v·wk}. Furthermore,
for all w in {w1, . . . , wk} we have that ξ(vis(v · w)) = ⊤, while for all
w in succ(last(v)) \ {w1, . . . , wk} we have that ξ(vis(x · w)) = ⊥.

• For every node v ∈ T , we have that V (v) = L(last(v)).

For a module M and a temporal logic formula over the set AP , we say
thatM reactively satisfies ϕ, denotedM |=r ϕ, ifM✁ ξ satisfy ϕ, for every
environment ξ for which M ✁ ξ is deadlock free. The problem of deciding
whether M |=r ϕ is called module checking, and was first introduced and
studied in [20, 23] for finite-state systems with perfect information. The
problem was successively extended to imperfect information in [19]. It has
been shown that the complexity of both problems is Exptime-complete2 for
CTL, and 2Exptime-complete forCTL∗.

3. Definition of the Problem

In this section, we extend the notion of module checking with imperfect
information to infinite-state systems induced by Open Pushdown Systems
(OPD).

Definition 1. An OPD is a tuple S = 〈AP,Q, q0,Γ, ♭, δ, µ, Env〉, where AP
is a finite set of atomic propositions, Q is the set of ( control) states, and
q0 ∈ Q is an initial state. We assume that Q ⊆ 2I∪H where I and H are
disjoint finite sets of visible and invisible control variables, respectively. Γ
is a finite pushdown store alphabet, ♭ 6∈ Γ is the pushdown store bottom
symbol, and we use Γ♭ to denote Γ∪{♭}. We assume that Γ ⊆ 2IΓ∪HΓ where
I
Γ
and H

Γ
are disjoint finite sets of visible and invisible pushdown store

variables, respectively. δ ⊆ (Q×Γ♭)× (Q×Γ∗
♭ ) is a finite transition relation,

and µ : Q×Γ♭ → 2AP is a labeling function. Env ⊆ Q×Γ♭ is used to specify
the set of environment configurations. The size |S| of S is |Q| + |Γ| + |δ|,
with |δ| = ∑

((p,γ),(q,β))∈δ |β|.

2Although the complexity of the perfect and imperfect information cases coincide in
the general case, [23, 19] show that when the formula is constant the imperfect information
case is exponentially harder.
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A configuration of S is a pair (q, α), where q is a control state and α ∈ Γ∗·♭
is a pushdown store content. We write top(α) for the leftmost symbol of α
and call it the top of the pushdown store α. The OPD moves according to
the transition relation. Thus, ((p, γ), (q, β)) ∈ δ implies that if the OPD is in
state p and the top of the pushdown store is γ, it can move to state q, pop γ
and push β. We assume that if ♭ is popped it gets pushed right back, and that
it only gets pushed in such cases. Thus, ♭ is always present at the bottom of
the pushdown store, and nowhere else. Note that we make this assumption
also about the various pushdown automata we use later. Also note that the
possible moves of the system, the labeling function, and the designation of
configurations as environment configurations, are all dependent only on the
current control state and the top of the pushdown store.

For a control state q ∈ Q, the visible part of q is vis(q) = q ∩ I. For
a pushdown store symbol γ ∈ Γ, if γ ⊆ H

Γ
and γ 6= ∅ we set vis(γ) = ε,

otherwise we set vis(γ) = γ ∩ I
Γ
. By setting vis(γ) = ε whenever γ consists

entirely of invisible variables, we allow the system to completely hide a push
operation (obviously, a corresponding pop will also be invisible). When such
a push occurs, the environment does not see the symbol ∅ being pushed,
rather, it sees no push at all. This is necessary since in many applications
what is actually pushed is immaterial, and the information to be revealed
or hidden is only the depth of the pushdown store. The visible part of
a pushdown store content s = γ0 · · · γn · ♭ is defined in the natural way:
vis(s) = vis(γ0) · · · vis(γn) · ♭. The visible part of a configuration (q, α),
is thus vis((q, α)) = (vis(q), vis(α)). As for modules, the designation of a
configuration of an OPD as an environment configuration is known to the
environment. Thus, we require that for every two configurations (q, α) and
(q′, α′) such that vis(q, top(α)) = vis(q′, top(α′)), it holds that (q, top(α)) ∈
Env iff (q′, top(α′)) ∈ Env.

Definition 2. An OPD S = 〈AP,Q, q0,Γ, ♭, δ, µ, Env〉 induces an infinite-
state moduleMS = 〈AP,Ws,We, w0, R, L,∼=〉, where:

• AP is a set of atomic propositions;

• Ws ∪We = Q× Γ∗ · ♭ is the set of configurations;

• We is the set of configurations (q, α) such that (q, top(α)) ∈ Env;

• w0 = (q0, ♭) is the initial configuration;
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• R is a transition relation, where ((q, γ · α), (q′, β)) ∈ R iff there exist
((q, γ), (q′, β′)) ∈ δ such that β = β′ · α;

• L((q, α)) = µ(q, top(α)) for all (q, α) ∈ W ;

• For every w,w′ ∈ W , we have that w ∼= w′ iff vis(w) = vis(w′).

To describe the interaction of an OPD S with its environment, we consider
the interaction of the environment with the induced module MS. Indeed,
every environment ξ of S, can be represented by a strategy tree 〈[W ]∗, ξ〉,
and the compositionMS ✁ ξ of 〈[W ]∗, ξ〉 with 〈TMS

, VMS
〉 describes all the

computations of S allowed by the environment ξ. We can thus define the
following problem.

Pushdown module checking problem with imperfect information: Given
an OPD S, and a temporal logic formula3 ϕ, decide whetherMS |=r ϕ. I.e.,
whether MS ✁ ξ satisfy ϕ, for every environment ξ for which MS ✁ ξ is
deadlock free.

Note that starting with an OPD S having Env = ∅ (that is, the behavior
of S is not affected by any environment) the induced module is closed. In this
case, the problem we address becomes the classical pushdown model checking
problem, and forCTL specifications it has been studied in [30, 31]. Also, if
the OPD is open (Env 6= ∅) but there is no invisible information (both H and
H

Γ
are empty), the addressed problem is called pushdown module checking

with perfect information, and for CTL and CTL∗ specifications it has been
studied in [6].

4. Undecidability of the General Case

In this section, we study the pushdown module checking problem with
imperfect information and show that it is undecidable already for the case of
CTL specifications. In the next section, we show that undecidability relies on
the system’s ability to hide information about the pushdown store. Namely,
we prove that if we start with an OPD with H

Γ
= ∅, the problem becomes

3The semantics of temporal logics such asCTL is usually defined with respect to infinite
paths, so we assume MS has no configurations without successors. However, using a
similar technique to the one used in [6] our results can be adapted to the situation where
terminal configurations are also allowed.
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decidable (even ifH 6= ∅), and its complexity is the same as that of pushdown
module checking with perfect information.

Undecidability of the pushdown module checking problem with imper-
fect information is obtained by a reduction from the universality problem of
nondeterministic pushdown automata on finite words (PDA), which is unde-
cidable [16]. That is, given a PDA P , we build an OPD S and aCTL formula
ϕ, such that the module induced by S reactively satisfies ϕ iff P is universal.

Our choice to do a reduction from the universality problem of PDA is
not at all arbitrary. It is well known that checking for the universality of a
nondeterministic automaton can be thought of as a game between a protag-
onist trying to prove that the automaton is not universal, and an antagonist
which claims that it is universal. The universality game is played as follows.
The protagonist chooses the first input letter, the antagonist responds with
the first part of the run, the protagonist chooses the next input letter, the
antagonist extends the run, and so on. The protagonist wins if the result-
ing run is rejecting, and the antagonist wins if it is accepting. Note that if
the automaton is not universal then the protagonist has a winning strategy,
namely, choosing the letters of a word not accepted by the automaton. How-
ever, since the automaton is nondeterministic, the converse is not true. That
is, even if the automaton is universal, the antagonist may not have a winning
strategy. Also note that (again due to nondeterminism) if the protagonist
can see the moves of the antagonist, it may force the run to be rejecting even
though the word it supplies can be accepted by the automaton. Hence, the
game is sound but not complete. However, if the protagonist cannot see the
moves of the antagonist the game becomes sound and complete. Deciding
if the automaton is not universal can be reduced to deciding whether the
protagonist has a winning strategy in the corresponding universality game
with imperfect information. By casting the universality game of PDA to a
special instance of the pushdown module checking problem with imperfect
information, the latter is shown to be undecidable.

Theorem 1. CTL pushdown module-checking with imperfect information is
undecidable.

Proof. Given a PDA P , we build an OPD S and a CTL formula ϕ, such
that the module induced by S reactively satisfies ϕ iff P is universal. Let
P = 〈Σ,Γ, Q, q0, ♭,∆, F 〉 be a PDA on finite words, with an input alphabet Σ,
a pushdown store alphabet Γ, a set Q of states, an initial state q0, a bottom
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of pushdown store symbol ♭, a transition function ∆ : Q× Σ× Γ♭ → 2Q×Γ∗

♭ ,
and a set of accepting states F ⊆ Q. We assume without loss of generality
that P never gets stuck on any input.

The OPD S simulates all the runs of P on all words in Σ∗. The states
of S are pairs of a state in Q and a letter in Σ. Each transition of P , that
reads a letter σ moves to a state q and does some pushdown store operation,
is simulated in S by a transition that goes to the state (q, σ) and does the
same pushdown store operation. In order to have in S infinite computations
that simulate runs of P on finite words, we allow S, at any point, to end
the simulation of a run by moving to one of two special states qacc and qrej,
depending on whether the computation corresponds to an accepting or a
rejecting run of P , respectively. Once in qacc or qrej, the computation stays
there forever. The visible part of a configuration ((q, σ), α) of S, is just σ.
Thus, looking at a computation of S that simulates a run of P on a word
σ1 · · · σn, the environment can only see the letters σ1, . . . , σn. It follows that
the environment cannot distinguish between different computations of S that
correspond to runs of P on the same word. This ensures that the environment
can not disable some, but not all, of these computations. Note that a word
w ∈ Σ∗ is accepted by P iff there is a computation in S, corresponding to
a run of P on w, that visits the state qacc. The formula ϕ will check this
condition. Formally, let P = 〈Σ,Γ, Q, q0, ♭,∆, F 〉 be a PDA on finite words.
We build an OPD S = 〈AP,Q′, q′0,Γ

′, ♭, δ, µ, Env〉 where,

• AP = Σ ∪ {♯, Acc}, where ♯ and Acc are new symbols not in Σ (nor in
Q).

• I = Σ ∪ {♯}, and H = Q ∪ {Acc}. The set of states Q′ is {{q, σ} : q ∈
Q, σ ∈ Σ}∪ {{♯}, {♯, Acc}}. For simplicity, we will identify a set {q, σ}
with the pair (q, σ), and use the aliases qacc = {♯, Acc} and qrej = {♯}.

• q′0 = (q0, σ0) where σ0 is a letter arbitrarily chosen from Σ.

• I
Γ
= ∅ and H

Γ
= Γ. The pushdown store alphabet Γ′ is formally the

subset {{γ} : γ ∈ Γ} of 2IΓ∪HΓ . However, we can obviously simplify
and set Γ′ = Γ.

• δ is defined as follows. For all (p, σ) ∈ Q × Σ and γ ∈ Γ♭, we
have that (((p, σ), γ), ((q, σ′), β)) ∈ δ iff (q, β) ∈ ∆(p, σ′, γ). Also,
(((p, σ), γ), (qacc, γ)) ∈ δ iff p ∈ F ,
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and (((p, σ), γ), (qrej, γ)) ∈ δ iff p 6∈ F . Finally, ((q, γ), (q, γ)) ∈ δ for
q ∈ {qacc, qrej}.

• µ is defined as follows. For every (q, σ) ∈ Q×Σ and γ ∈ Γ♭ we have that,
µ((q, σ), γ) = {σ}. Also, µ(qacc, γ) = {♯, Acc} and µ(qrej, γ) = {♯}.

• Env = Q× Γ♭. That is, S has only environment configurations.

LetMS = 〈AP, ∅,W,w0, R, L,∼=〉 be the module induced by S. Observe
that by our choice of visible control and pushdown store variables, the set of
equivalence classes [W ] of the configurations ofMS is {(σ, ♭) : σ ∈ Σ∪ {♯}}.
We can safely ignore the constant ♭ component of each pair, and think of
environment strategies as full {⊤,⊥}-labeled (Σ∪ {♯})-trees. We claim that
P is universal if and only ifMS |=r ϕ, where ϕ = EG¬♯∨EFAcc. It is easy
to see that the sub-formula ϕ1 = EG¬♯ is satisfied by the tree MS ⊳ ξ iff
the strategy ξ has an infinite path π = v1 ·v2 · · · such that for every i ≥ 0 we
have that vi is labeled with ⊤, and last(vi) 6= ♯. It is left to show that for all
other strategies ξ, the treeMS ⊳ ξ satisfies the sub-formula ϕ2 = EFAcc iff
P is universal.

Given a word w = σ1 · · · σk ∈ Σ∗, and a run r = (q0, ♭) · (q1, α1) · · · (qk, αk)
of P on w, let τ = (q′0, ♭) · ((q1, σ1), α1) · · · ((qk, σk), αk) be the finite com-
putation of MS corresponding to r. The visible part of τ is vis(τ) =
(σ0, ♭) · (σ1, ♭) · · · (σk, ♭). Thus, given a strategy ξ, we have that τ is as-
sociated with the node w in the strategy tree 〈[W ]∗, ξ〉 (recall that (σ0, ♭) is
associated with the root ε). It follows that all the nodes in 〈TMS

, VMS
〉 corre-

sponding to runs of P on w are associated with the same node of the strategy
tree. Hence, a strategy can either enable all computations corresponding to
runs of P on w, or disable them all. Note that given a run r of P on w, with
a corresponding finite computation τ = (q′0, ♭) · ((q1, σ1), α1) · · · ((qk, σk), αk)
ofMS as above, the configuration (qacc, αk) is a successor of ((qk, σk), αk) iff
r is an accepting run, and (qrej, αk) is a successor of ((qk, σk), αk) iff r is a
rejecting run. Thus, τ can be extended to a path witnessing the satisfaction
of ϕ2 iff r is an accepting run of P on w.

For every word w = σ1 . . . σk ∈ Σ∗ there is a special strategy ξw that
enables exactly the computations in the module corresponding to all of P ’s
runs on w. The strategy ξw has all nodes on the path σ1 · · · σk · ♯ω marked
with ⊤ and all other nodes marked with ⊥. It is easy to see thatMS ⊳ ξw
is deadlock free, that MS ⊳ ξw 6|= ϕ1, and that w is accepted by P iff
MS ⊳ ξw |= ϕ2. Hence, to complete the proof, it is sufficient to show
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that if P is universal then for every other strategy ξ, for which MS ⊳ ξ

has a node x whose label contains ♯, we have that MS ⊳ ξ |= ϕ2. Let x
be such a node of minimal depth, and let τ be the father of x. Note that
τ must be of the form τ = (q′0, ♭) · ((q1, σ1), α1) · · · ((qk, σk), αk). Consider
the word w = σ1 · · · σk. Since ξ cannot distinguish between computations
corresponding to different runs of P on w, the tree MS ⊳ ξ must contain
not only τ , but also the computations corresponding to all other runs (if
such runs exist) of P on w. Thus, if P is universal,MS ⊳ ξ contains a path
π = τ ′ · (qacc, α′

k)
ω, where τ ′ = (q′0, ♭) · ((q′1, σ′

1), α
′
1) · · · ((q′k, σ′

k), α
′
k) is a finite

computation (maybe τ) corresponding to an accepting run of P on w. Since
the configuration (qacc, α

′
k) is labeled with {♯, Acc}, the path π is a witness

for the satisfaction of ϕ2.
It is easy to see that we can replace the OPD S used in the proof of

Theorem 1 by an OPD S ′ with only one state. S ′ uses as pushdown store
alphabet pairs of a control state and a pushdown store symbol of S, and
can thus remember the current control state of S in its (invisible) top of
pushdown store. This implies the following corollary to Theorem 1:

Corollary 1. The pushdown module checking problem with imperfect infor-
mation is undecidable also when the control states are completely visible.

A somewhat more surprising result is that the pushdown module checking
problem remains undecidable even if the environment has full information,
not only about about the control states, but also about which atomic propo-
sitions hold at each and every configuration of the system.

Theorem 2. The imperfect information pushdown module checking problem
forCTL, with visible control states and atomic propositions, is undecidable.

Proof. Observe that almost all the atomic propositions of the OPD S used
in the proof of Theorem 1 are visible. The only violation is that for every
α, α′ ∈ Γ∗ · ♭, we have that (qacc, α) ∼= (qrej, α

′), but {♯, Acc} = L(qacc, α) 6=
L(qrej, α

′) = {♯}. Since the formula used in the proof is ϕ = EG¬♯∨EFAcc,
keeping the environment in the dark as to whether only ♯ holds, or both
♯ and Acc hold, is crucial. Indeed, if we fully expose the atomic proposi-
tions, we would make legal the environment ξ that prunes only the com-
putations corresponding to accepting runs of P , with the consequence that
MS ⊳ ξ 6|= ϕ even in cases where P is universal. However, the environ-
ment’s ability to prune is not only limited by the information visible to it,
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but also by the requirement that it does not completely block the system.
With a slight modification to the construction of the OPD S used in the
proof of Theorem 1, we can have visible atomic propositions, but reveal the
difference between computations corresponding to accepting and rejecting
runs only when it is too late for the environment to prune based on that
difference. This is done by changing S in such a way that a simulation
τ = (q′0, ♭) · ((q1, σ1), α1) · · · ((qk, σk), αk) of an accepting run r of P is not
ended by moving directly to the sink configuration (qacc, αk). Instead, we
temporarily move to the configuration (qrej, {

√} · αk). The only possible
move from (qrej, {

√} · αk) is to the configuration (qacc, αk).
Formally, we make the following modifications to S. We make the control

variable Acc visible by setting I = Σ ∪ {♯, Acc}, and H = Q. We add a new
invisible pushdown store variable

√
, and derive from it a new pushdown

store symbol {√}. The definition of the labeling function µ remains the
same, except that it now ranges over the extended pushdown store alphabet.
Finally, we replace every transition of the form (((p, σ), γ), (qacc, γ)) with the
transitions (((p, σ), γ), (qrej, {

√} · γ)) and ((qrej, {
√}), (qacc, ε)). Let τ and

τ ′ be computations of S corresponding to a rejecting run and an accepting
run (respectively) of P on the same word w. The key observation is that
the first point of difference an environment ξ sees between the path π =
τ · (qrej, α)ω and the path π′ = τ ′ · (qrej, {

√} · α′) · (qacc, α′)ω, is at the nodes
v = τ · (qrej, α) · (qrej, α) and v′ = τ ′ · (qrej, {

√} · α′) · (qacc, α′). But by now,
it is too late for the environment to prune without creating a deadlock in
MS ⊳ ξ. This is because v is the only successor of its father, and so is v′.
Combining the above with Corollary 1 completes the proof.

Observe that the formula used in the proof of Theorems 1 and 2 is an
existential formula. Hence, the problem is already undecidable for the exis-
tential fragmentECTL ofCTL. Obviously, the problem remains undecidable
for more expressive logics such asCTL∗ and µ-calculus.

5. Semi-Alternating Pushdown Tree Automata

In this section, we introduce semi-alternating pushdown tree automata,
and prove their equivalence to nondeterministic Büchi tree automata. The
results of this section are used in subsequent sections to solve the pushdown
module checking problem with imperfect state information and visible push-
down store.

21



Alternating pushdown tree automata [24, 18], are alternating tree au-
tomata, augmented with a pushdown store. Semi-alternating pushdown tree
automata are obtained by restricting the universality with respect to the
pushdown store. The formal definition of semi-alternating pushdown tree
automata follows.

A semi-alternating pushdown tree automaton is a tuple A = 〈Σ, D,Γ, Q,
q0, ♭, δ, F 〉 where Σ is a finite input alphabet, D is a finite set of directions,
Γ is a finite pushdown store alphabet, Q is a finite set of states, q0 ∈ Q is
the initial state, ♭ 6∈ Γ is the pushdown store bottom symbol, and F is an
acceptance condition, to be defined later. δ is a finite transition function
δ : Q × Σ × Γ♭ → B+(D × Q × Γ∗

♭ ), where Γ♭ = Γ ∪ {♭} as usual, and
B+(D × Q × Γ∗

♭ ) is the set of all positive boolean combinations of triples
(d, q, β), where d is a direction, q is a state, and β is a string of pushdown store
symbols. We also allow the formulas true and false. We write S ∈ δ(p, σ, γ)
to denote that S is a set of tuples (d, q, β) that satisfy δ(p, σ, γ). What makes
the automaton semi-alternating is the requirement that for every d ∈ D,
σ ∈ Σ, p, p′ ∈ Q (possibly the same state), and γ ∈ Γ, if (d, q, β) appears
in δ(p, σ, γ), and (d, q′, β′) appears in δ(p′, σ, γ), then β = β′. That is, two
copies of the automaton that read the same input, from two configurations
that have the same top symbol of the pushdown store and proceed in the same
direction, must push the same value into the pushdown store. In particular,
it follows that in every run, two copies of the automaton that are reading
the same node of an input tree have the same pushdown store content. Note
that if we remove the semi-alternation requirement, the resulting automaton
is simply an alternating pushdown tree automaton.

For example, having δ(q, σ, γ) = ((0, q1, β1)∨(1, q2, β2))∧(1, q1, β2) means
that when a copy of the automaton that is in a configuration where the
current state is q, and the top of pushdown store is γ, reads a node in the
input tree whose label is σ, it can proceed in one of two ways. In the first
option, one copy proceeds in direction 0 to state q1, by replacing γ with β1,
and one copy proceeds in direction 1 to state q1, by replacing γ with β2. In
the second option, two copies proceed in direction 1, one to state q1 and the
other to state q2, and in both copies γ is replaced with β2. Hence, ∨ and ∧
in δ(q, σ, γ) represent, respectively, choice and concurrency. As a special case
of semi-alternating pushdown tree automata, we consider nondeterministic
pushdown tree automata where the concurrency feature is not allowed. That
is, whenever the automaton visits a node x of the input tree, it sends to
each successor (direction) of x at most one copy of itself. More formally, a
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nondeterministic pushdown tree automaton is a semi-alternating pushdown
tree automaton in which δ is in disjunctive normal form, and in each conjunct
each direction appears at most once.

A run of a semi-alternating pushdown tree automaton A on a Σ-labeled
tree 〈T, V 〉, with T = D∗, is a (D∗× Q × Γ∗ · ♭)-labeled N-tree 〈Tr, r〉 such
that the root is labeled with (ε, q0, ♭) and the labels of each node and its
successors satisfy the transition relation. Formally, a (D∗×Q×Γ∗ · ♭)-labeled
tree 〈Tr, r〉 is a run of A on 〈T, V 〉 iff

• r(ε) = (ε, q0, ♭), and

• for all x ∈ Tr such that r(x) = (y, p, γ · α), there is an n ∈ N such that
the successors of x are exactly x · 1, . . . x · n, and for all 1 ≤ i ≤ n we
have r(x · i) = (y · di, pi, βi ·α) for some {(d1, p1, β1), . . . , (dn, pn, βn)} ∈
δ(p, V (y), γ).

As for tree automata without a pushdown store, a run 〈Tr, r〉 is accepting
iff all its infinite paths satisfy the acceptance condition. Note that here we
are only interested in the Büchi and parity acceptance conditions. A parity
winning condition F maps all states of the automaton to a finite set of colors
C = {Cmin, . . . , Cmax} ⊂ N. Thus, F : W → C. For a path π, let maxC (π)
be the maximal color that appears infinitely often along π. Then, π satisfies
the parity condition F iff maxC (π) is even. The Büchi acceptance condition
is a special case of the parity condition with only two colors, i.e., C = {1, 2}.

We denote the different classes of pushdown tree automata by preced-
ing with “PD-” a three letter acronyms in {A, S,N} × {B, P} × {T}, where
the first letter stands for the branching mode of the automaton (alternat-
ing, semi-alternating, or nondeterministic); the second letter stands for the
acceptance-condition type (Büchi, or parity); and the third letter indicates
that the automaton runs on trees. Thus, for example, a semi-alternating
pushdown tree automaton with a parity acceptance condition is a PD-SPT,
and a nondeterministic pushdown tree automaton with a Büchi acceptance
condition is a PD-NBT.

Given a pushdown tree automaton A = 〈Σ, D,Γ, Q, q0, ♭, δ, F 〉, we define
the size of A as |A| = |Q| + |δ|, where |δ| is the sum of the lengths of the
satisfiable (i.e., not false) formulas that appear in δ(q, σ, γ) for some q, σ,
and γ.
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5.1. Translating PD-SPT to PD-NPT

As mentioned in Section 1, alternating pushdown automata are not equiv-
alent to nondeterministic ones. However, as we show here, the limitations
imposed on semi-alternating automata allow us to translate a PD-SPT to an
equivalent PD-NPT. A key observation is that since a pushdown store op-
eration performed by a semi-alternating automaton does not depend on the
current (or next) control states, we can split the transition function of a PD-
SPT into two functions: a state transition function δQ, and a pushdown store
update function δΓ, as follows. Given a PD-SPT A = 〈Σ, D,Γ, Q, q0, ♭, δ, F 〉,
let δQ : Q×Σ×Γ♭ → B+(D×Q) be the projection of δ on B+(D×Q). That
is, δQ(q, σ, γ) is obtained from δ(q, σ, γ) by replacing every element (d, q, β)
that appears in δ(q, σ, γ) with (d, q). The pushdown store update function
δΓ : Σ× Γ♭ ×D → Γ∗

♭ , is a partial function; for every (p, σ, γ) ∈ Q× Σ× Γ♭

and every (d, q, β) ∈ D × Q × Γ∗
♭ , such that (d, q, β) appears in δ(p, σ, γ),

we let δΓ(σ, γ, d) = β. Since A is semi-alternating, δΓ is well defined. Ob-
serve that for every (p, σ, γ) ∈ Q × Σ × Γ♭ we have that δ(p, σ, γ) can be
obtained from δQ(p, σ, γ) by replacing every (d, q) that appears in δQ(p, σ, γ)
with (d, q, δΓ(σ, γ, d)).

Consider a Σ-labeled tree 〈T, V 〉, with T = D∗. Note that for every
node x ∈ T and every run of A on 〈T, V 〉, the pushdown store content of
all the copies of A that visit x is the same, and only depends on x. We can
thus define a function ∆Γ : T → Γ∗

♭ , giving for every node x its associated
pushdown store content, as follows: (1) ∆Γ(ε) = ♭, and (2) for all x · d ∈ T
we have ∆Γ(x · d) = δΓ(V (x), γ, d) · β, where ∆Γ(x) = γ · β, and γ ∈ Γ♭.

Annotating input trees with pushdown store symbols enables us to sim-
ulate a PD-SPT by an APT running on the annotated version of an input
tree. Given a Σ-labeled tree 〈T, V 〉, we define its ΓA-annotation to be the
(Σ× Γ♭)-labeled tree 〈T, U〉, obtained by letting U(x) = (V (x), top(∆Γ(x))),
for every x ∈ T .

Lemma 1. Let A = 〈Σ, D,Γ, Q, q0, ♭, δ, F 〉 be a PD-SPT. There is an APT
Ã, such that A accepts 〈T, V 〉 iff Ã accepts the ΓA-annotation of 〈T, V 〉.

Proof. Consider the APT Ã = 〈Σ × Γ♭, D,Q, q0, δ̃, F 〉, where δ̃(q, (σ, γ)) =
δQ(q, σ, γ). It is not hard to see that every run r = 〈Tr, r〉 of A on 〈T, V 〉
induces a corresponding run r′ = 〈Tr, r′〉 of Ã on the ΓA-annotation of 〈T, V 〉,
and vice versa. The connection between r and r′ being that for every x ∈ Tr,
we have that r(x) = (y, p, α) iff r′(x) = (y, p) and ∆Γ(x) = α.
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By [26], every APT can be translated to an equivalent NPT. Hence,
Lemma 1 implies that if A is a PD-SPT, then there is an NPT A′ such that
A accepts 〈T, V 〉 iff A′ accepts the ΓA-annotation of 〈T, V 〉. This allows us
to translate A to an equivalent PD-NPT A′′ (running on the same input trees
as A). Given a Σ-labeled tree, A′′ generates on the fly its ΓA-annotation and
runs A′ on the annotated tree. Formally, we have the following:

Theorem 3. A PD-SPT A with n states and index k can be translated to an
equivalent PD-NPT with (nk)O(nk) states, an O(nk) index, and a transition
relation of size (nk)O(|D|nk).

Proof. Let A = 〈Σ, D,Γ, Q, q0, ♭, δ, F 〉 be a PD-SPT and Ã = 〈Σ×Γ♭, D,Q,

q0, δ̃, F 〉 be an APT derived from A by Lemma 1. By [26], Ã has an equiv-
alent NPT A′ = 〈Σ × Γ♭, D,Q

′, q′0, δ
′, F ′〉. Consider the PD-NPT A′′ =

〈Σ, D,Γ, Q′, q′0, ♭, δ
′′, F ′〉, where for every (p, σ, γ) ∈ Q′×Σ×Γ♭, we have that

δ′′(p, σ, γ) is obtained from δ′(p, (σ, γ)) by replacing every (d, q) that appears
in δ′(p, (σ, γ)), with (d, q, δΓ(σ, γ, d)). Since A′ is nondeterministic, so is A′′.
Given a Σ-labeled tree 〈T, V 〉, it is not hard to see that for every x ∈ T ,
the pushdown store of every copy of A′′ that visits x contains exactly ∆Γ(x).
Hence, A′′ accepts 〈T, V 〉 iff A′ accepts the ΓA-annotation of 〈T, V 〉, thus,
by Lemma 1, iff A accepts 〈T, V 〉.

We now analyze the blow-up involved in the above construction. Looking
at the automata transformations involved, we see that the only transforma-
tion that incurs a blow-up in the size of the automaton is the transformation
of the APT Ã to the NPT A′. By [26], if the APT Ã has n states and index
k, and it runs over D∗ trees, the resulting NPT A′ has (nk)O(nk) states, an
O(nk) index, and a transition relation of size (nk)O(|D|nk). We note that the
runtime of the algorithm in [26] is polynomial in the size of its input and
output automata. We also wish to draw the reader’s attention to the fact
that the blow-up in the number of states of this translation is independent
of the size of the transition relation of A.

By [18], the emptiness of a PD-NPT can be decided in time exponential in
the product of the number of states, the index, and the size of its transition
relation. Together with Theorem 3, this gives us the following corollary:

Corollary 2. The emptiness problem for a PD-SPT with n states and index
k, running on D∗ trees, can be solved in time double-exponential in |D|nk.
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Since the Büchi acceptance condition can be thought of as a parity condi-
tion with only two colors, Theorem 3 also yields a translation from PD-SBT
to PD-NPT, and thus we also have the following corollary:

Corollary 3. The emptiness problem for a PD-SBT with n states, running
on D∗ trees, can be solved in time double-exponential in |D|n.

5.2. Translating PD-SBT to PD-NBT

As noted above, Theorem 3 also yields a translation from PD-SBT to PD-
NPT, which, as it turns out, is good enough to obtain the required complexity
results for our intended application in the context ofCTL pushdown module-
checking. However, an alternative route is to use the much simpler and more
direct translation of PD-SBT to PD-NBT presented below. In [25] Miyano
and Hayashi describe a translation of alternating Büchi automata on words to
nondeterministic ones. In [21] the construction is adapted to the translation
of alternating Büchi automata on trees to nondeterministic ones. Here, we
further extend it to obtain a translation of PD-SBT to PD-NBT.

Theorem 4. Let A be a PD-SBT with n states. There is a PD-NBT A′

with 2O(n) states, such that L(A′) = L(A).

Proof. The automaton A′ guesses a subset construction applied to a run
of A. At a given node x of a run of A′, it keeps in its memory the set of
configurations in which the various copies of A visit node x in the guessed
run. Since A is semi-alternating, all copies of A that visit the same node
x have the same pushdown store content, and thus, can all be remembered
using one pushdown store and a set of states of A. In order to make sure that
every infinite path visits states in F infinitely often, A′ keeps track of states
that “owe” a visit to F . The details of the construction are given below.
Once we establish that indeed one pushdown store is enough to remember
the all pushdown stores, of all the copies of A that visit the same node of
the input tree, the correctness of the construction follows from the same
arguments used in [25, 21].

Let A = 〈Σ, D,Γ, Q, q0, ♭, δ, F 〉. Then A′ = 〈Σ, D,Γ, 2Q × 2Q, 〈{q0}, ∅〉, ♭,
δ′, 2Q×{∅}〉. To define δ′, we first need the following notation. For a set S ⊆
Q, a letter σ ∈ Σ, and a top of pushdown store symbol γ ∈ Γ, let sat(S, σ, γ)
be the set of subsets of D × Q × Γ∗

♭ that satisfy
∧

q∈S δ(q, σ, γ). Also, for
two sets O ⊆ S ⊆ Q, a letter σ ∈ Σ, and a top of pushdown store symbol
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γ ∈ Γ, let pair sat(S,O, σ, γ) be such that 〈S ′, O′〉 ∈ pair sat(S,O, σ, γ) iff
S ′ ∈ sat(S, σ, γ), O′ ⊆ S ′, and O′ ∈ sat(O, σ, γ). Finally, for a direction
d ∈ D, we have S ′

d = {s : (d, s, β) ∈ S ′ for some β} and O′
d = {o : (d, o, β) ∈

O′ for some β}. Thus, S ′
d and O′

d are, respectively, the collections of all
states that appear in S ′ and O′ along with the direction d. Since A is
semi-alternating, for every two triplets (d, q, β) and (d, q′, β′) in sat(S, σ, γ)
having the same direction d, we have that β = β′. Thus, we can define
store(d, σ, γ) = β.

Now, δ′ is defined, for all 〈S,O〉 ∈ 2Q × 2Q, σ ∈ Σ, and γ ∈ Γ, as follows.

• if O 6= ∅, then

δ′(〈S,O〉, σ, γ) =
∨

〈S ′, O′〉 ∈
pair sat(S,O, σ, γ)

∧

d∈D

(d, 〈S ′
d, O

′
d\F 〉, store(d, σ, γ))

Thus, when reading σ, from a configuration with a top of pushdown
store symbol γ, the automaton A′ sends to a direction d ∈ D the set S ′

d

of states that the different copies of A send to direction d in the guessed
run. Each such S ′

d is paired with a subset O′
d of S ′

d of the states that
still “owe” a visit to F . The key observation is that since A is semi-
alternating, all the copies that A sends to direction d replace γ with
exactly the same pushdown store string, namely, with store(d, σ, γ).
Hence, the pushdown stores of all the copies that A sends to direction
d are identical, and A′ can keep track of them all using the single stack
of the copy it sent to direction d.

• if O = ∅, then

δ′(〈S,O〉, σ, γ) =
∨

〈S ′, O′〉 ∈
pair sat(S,O, σ, γ)

∧

d∈D

(d, 〈S ′
d, S

′
d\F 〉, store(d, σ, γ))

Thus, when no state “owes” a visit to F we know that every path in
the guessed run of A visited F one more time, and the requirement to
visit F is reinforced.

So, we are done with the proof.
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6. Module Checking with Visible Pushdown Store

In this section, we show that pushdown module checking with full in-
formation about the pushdown store content (H

Γ
= ∅), but not about the

control states (when H 6= ∅), is decidable and 2Exptime-complete forCTL
and propositional µ-calculus specifications, and is 3Exptime-complete for
CTL∗ specifications.

The upper bounds follow by reducing this variant of the pushdown mod-
ule checking problem to the emptiness problem of PD-SBT forCTL specifica-
tions, and to the emptiness problem of PD-SPT forCTL∗ and propositional
µ-calculus specifications. The lower bounds follow from known results about
perfect information pushdown module checking. In Section 6.1 we consider
the simpler case ofCTL specifications, while the other logics are treated in
Section 6.2.

6.1. CTL Module Checking with Visible Pushdown Store

Theorem 5. For an OPD S with H
Γ
= ∅, and a CTL formula ϕ over S’s

atomic propositions. There is a PD-SBT AS,ϕ of size O(|S| · |ϕ|), such that
L(AS,ϕ) is exactly the set of strategies ξ such that MS ⊳ ξ is deadlock free
and satisfies ϕ.

Proof. Essentially, the automaton AS,ϕ we build is an extension of the
product automaton obtained in the alternating-automata theoretic approach
forCTL module checking with imperfect information [19]. The extension we
consider concerns the simulation of the pushdown store of the OPD, and its
correctness follows using the same reasoning found in [19, 22].

Let S = 〈AP,Q, q0,Γ, ♭, δ, µ, Env〉 be an OPD, let ϕ be aCTL formula in
positive normal form, and let MS = 〈AP,Ws,We, w0, R, L,∼=〉 be the mod-
ule induced by S. We build an automaton AS,ϕ that accepts {⊤,⊥}-labeled
trees corresponding to strategies ξ, whose composition withMS is deadlock
free and satisfy ϕ. Intuitively, a run of AS,ϕ on an input strategy tree ξ,
proceeds by simulating an unwinding of the module MS, pruned at each
step according to the strategy ξ. Copies of the automaton simulating nodes
in the computation tree of MS that are indistinguishable by the environ-
ment are sent to the same direction in the input tree. The resulting run
tree of AS,ϕ on ξ is basically a replica of the composition MS ⊳ ξ, and
the fact that it satisfies the formula ϕ is checked on the fly, by employing
in AS,ϕ the usual alternating-automata approach for CTL model checking.
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In the full computation tree of MS, the set of directions is G = {(q, β) :
((p, α), (q, β)) ∈ R for some p, α and β}. Since in S the pushdown store
is completely visible to the environment, the set of directions of the input
strategy trees is D = {(vis(q), β) : ((p, α), (q, β)) ∈ R for some p, α and β}.
Finally, due to the fact that all copies of the automaton sent to direction
(vis(q), β) push β into the pushdown store, the resulting automaton AS,ϕ is
semi-alternating. Before we give the formal definition of AS,ϕ we need the
following: for (p, γ · α) ∈ W , we define the set of successors of (p, γ · α) in
MS, to be s(p, γ) = {(q, β) : ((p, γ), (q, β)) ∈ δ}. We now formally define
AS,ϕ = 〈{⊤,⊥}, D,Γ, Q′, q′0, ♭, δ

′, F 〉, where

• Q′ = (Q× (cl(ϕ) ∪ {p⊤})× {∀, ∃} × {pe, ps}) ∪ {q′0}.

• F = Q× Ũ(ϕ)×{∃, ∀}×{pe, ps}, where Ũ(ϕ) is the set of all formulas

of the form ∀ψ1Ũψ2 or ∃ψ1Ũψ2 in cl(ϕ).

• δ′ : Q′ × Σ× Γ♭ → B+(D ×Q′ × Γ∗
♭ ) is defined as follows:

In the rules below, for the sake of succinctness, we consider m ∈
{∃, ∀} × {pe, ps}, h ∈ AP ∪ {true, false}. Also, given a transition
from (〈p, ψ,m〉,⊤, γ), we let px = pe if (p, γ) ∈ Env, and px = ps
otherwise.

For all p ∈ Q, ψ1, ψ2 ∈ cl(ϕ), ψ ∈ cl(ϕ) ∪ {p⊤}, and γ ∈ Γ♭, we have:

– δ′(q′0,⊥, ♭) = false.

– δ′(q′0,⊤, ♭)= δ′(〈q0, p⊤, ∃, ps〉,⊤, ♭) ∧ δ′(〈q0, ϕ, ∃, ps〉,⊤, ♭).
– δ′(〈p, ψ, ∀, pe〉,⊥, γ) = true, and δ′(〈p, ψ, ∃, pe〉,⊥, γ) = false.

– δ′(〈p, ψ, ∀, ps〉,⊥, γ) = δ′(〈p, ψ, ∀, ps〉,⊤, γ), and
δ′(〈p, ψ, ∃, ps〉,⊥, γ) = δ′(〈p, ψ, ∃, ps〉,⊤, γ).

– δ′(〈p, p⊤,m〉,⊤, γ) =
∨

(q,β)∈s(p,γ)(vis(q, β), 〈q, p⊤, ∃, px〉, β)).
– δ′(〈p, h,m〉,⊤, γ) = true if h ∈ µ((p, γ)), or h = true.

– δ′(〈p, h,m〉,⊤, γ) = false if h 6∈ µ((p, γ)), or h = false.

– δ′(〈p,¬h,m〉,⊤, γ) = true if h 6∈ µ((p, γ)), or h = false.

– δ′(〈p,¬h,m〉,⊤, γ) = false if h ∈ µ((p, γ)), or h = true.

– δ′(〈p, ψ1∧ψ2,m〉,⊤, γ)= δ′(〈p, ψ1,m〉,⊤, γ)∧δ′(〈p, ψ2,m〉,⊤, γ).
– δ′(〈p, ψ1∨ψ2,m〉,⊤, γ)= δ′(〈p, ψ1,m〉,⊤, γ)∨δ′(〈p, ψ2,m〉,⊤, γ).
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– δ′(〈p, ∀Xψ1,m〉,⊤, γ) = (
∧

(q,β)∈s(p,γ)(vis(q, β), 〈q, ψ1, ∀, px〉, β)).
– δ′(〈p, ∃Xψ1,m〉,⊤, γ) = (

∨
(q,β)∈s(p,γ)(vis(q, β), 〈q, ψ1, ∃, px〉, β)).

– δ′(〈p, ∀ψ1Uψ2,m〉,⊤, γ) = δ′(〈p, ψ2,m〉,⊤, γ)∨
(δ′(〈p, ψ1,m〉,⊤, γ)∧

∧
(q,β)∈s(p,γ)(vis(q, β), 〈q, ∀ψ1Uψ2, ∀, px〉, β)).

– δ′(〈p, ∃ψ1Uψ2,m〉,⊤, γ) = δ′(〈p, ψ2,m〉,⊤, γ)∨
(δ′(〈p, ψ1,m〉,⊤, γ)∧

∨
(q,β)∈s(p,γ)(vis(q, β), 〈q, ∃ψ1Uψ2, ∃, px〉, β)).

– δ′(〈p, ∀ψ1Ũψ2,m〉,⊤, γ) = δ′(〈p, ψ2,m〉,⊤, γ)∧
(δ′(〈p, ψ1,m〉,⊤, γ)∨

∧
(q,β)∈s(p,γ)(vis(q, β), 〈q, ∀ψ1Ũψ2, ∀, px〉, β)).

– δ′(〈p, ∃ψ1Ũψ2,m〉,⊤, γ) = δ′(〈p, ψ2,m〉,⊤, γ)∧
(δ′(〈p, ψ1,m〉,⊤, γ)∨

∨
(q,β)∈s(p,γ)(vis(q, β), 〈q, ∃ψ1Ũψ2, ∃, px〉, β)).

States with the component p⊤ are used to check that the composition
of MS with the strategy is deadlock free, while states with a component
in cl(ϕ) check that this composition satisfies ϕ. The components pe and ps
are used to flag that a currently simulated node, of the computation tree of
MS, is a child of an environment or a system node, respectively. Clearly,
the simulation should respect the strategy pruning specifications only if they
correspond to children of environment nodes; that is, only if the current state
q contains pe. Every state is either in an existential or a universal mode, as
specified by the ∀ and ∃ components. When the automaton is in a universal
state (q, ϕ, ∀, pe) with a pushdown store content α, it accepts all strategies for
which (q, α) inMS is either pruned or satisfies ϕ (where p⊤ is satisfied iff the
root of the strategy is labeled ⊤). When the automaton is in an existential
state (q, ϕ, ∃, pe) with a pushdown store content α, it accepts all strategies
for which (q, α) inMS is not pruned and satisfies ϕ.

To get a feeling of the transition rules, consider, for example, a transition
from the configuration (〈p, ∀Xψ, ∃, pe〉, γ · α), where (p, γ) ∈ Env. First, if
the transition to (p, γ ·α) is disabled (that is, the automaton reads ⊥), then,
as the current mode is existential, the run is rejecting. If the transition to
(p, γ · α) is enabled, then the successors of (p, γ · α) that are enabled should
satisfy ψ. Note that all the successors of (p, γ · α) that are indistinguishable
by the environment are sent by the automaton to the same direction v. This
guarantees that either all these successors are enabled by the strategy (in
case the letter to be read in direction v is ⊤) or all are disabled (in case the
letter in direction v is ⊥). In addition, since the requirement to satisfy ψ
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concerns only successors of (p, γ · α) that are enabled, the mode of the new
states is universal. The copies of AS,ϕ that check the composition with the
strategy to be deadlock free guarantee that at least one successor of (p, γ ·α)
is enabled. As noted earlier, the enable/disable instructions of the strategy
are ignored in every configuration (p, γ · α) that is a successor of a system
configuration. Also note that since we assume that no configuration inMS

has no successors, the conjunctions and disjunctions in δ′ cannot be empty.
It is easy to see that AS,ϕ has O(|S| · |ϕ|) states, and it is left to show that

AS,ϕ is semi-alternating. It is sufficient to show that for every (t, β) ∈ D,
σ ∈ Σ, p, p′ ∈ Q′, and γ ∈ Γ, if ((t, β), p′, β′) appears in δ′(p, σ, γ) then
β = β′. To see that, notice that ((t, β), p′, β′) appears in δ′(p, σ, γ) only if
(q, β′) ∈ s(p, γ, (t, β)), for some q ∈ Q. By the definition of s(p, γ, (t, β)) we
must have that vis(q, β′) = (t, β). Since the pushdown store is completely
visible, we have that vis(q, β′) = (vis(q), β′), and we are done.

We now consider the complexity bound that follows from the above con-
struction.

Theorem 6. CTL pushdown module checking with imperfect information
about the control states, but a visible pushdown store, is 2Exptime-complete.

Proof. The lower bound follows from the known bound forCTL pushdown
module checking with perfect information [6]. For the upper bound, The-
orem 5 implies that MS |=r ϕ iff the language of the automaton AS,¬ϕ is
empty. Let MS = 〈AP,Ws,We, w0, R, L,∼=〉 be the module induced by S.
Observe that the set of directions of the strategy trees that are the input of
AS,¬ϕ is D = {(vis(q), β) : ((p, α), (q, β)) ∈ R for some p, q, α and β}, and it
is bounded from above by |S|. By applying Corollary 3 to AS,¬ϕ we get the
required result.

6.2. CTL∗ and µ-Calculus Module Checking with Visible Pushdown Store

Let us briefly recap the approach we have taken for solving the problem
in the case of CTL, and discuss the changes required to adapt it to other
specification logics. Given an OPD S, and a CTL formula ϕ, we build an
automatonAS,ϕ that accepts {⊤,⊥}-labeled trees corresponding to strategies
ξ, whose composition withMS is deadlock-free and satisfies ϕ. Intuitively, a
run of AS,ϕ on an input strategy tree ξ proceeds by simulating an unwinding
of the moduleMS, pruned at each step according to the strategy ξ; copies
of the automaton, which simulate nodes in the computation tree ofMS that

31



are indistinguishable by the environment, are sent to the same direction in
the input tree. The resulting run tree of AS,ϕ on ξ is basically a replica
of the composition MS ⊳ ξ, and the fact that it satisfies the formula ϕ is
checked on the fly, by employing in AS,ϕ the classical alternating automaton
(see [22]) for model checkingCTL.

When consideringCTL∗ or the (propositional) µ-calculus4, adapting the
construction we used forCTL basically amounts to replacing the embedded
alternating automaton that does the on-the-fly model checking: instead of
using an automaton that handlesCTL, one uses an automaton that handles
CTL∗ or µ-calculus (see [22]). Since an alternating automaton that does µ-
calculus model checking is linear in the size of the formula, while one that does
CTL∗ model checking is exponential in the size of the formula, the automaton
AS,ϕ has O(|S| · |ϕ|) states in the case of µ-calculus, and O(|S| · 2|ϕ|) states
in the case of CTL∗. It is important to note that the acceptance condition
of AS,ϕ is inherited from the embedded model checking automaton. Hence,
unlike the case of CTL where a Büchi condition was enough, for the more
expressive logics that we consider in this section we need the parity condition.

Theorem 7. Consider an OPD S with H
Γ
= ∅, and a CTL∗ or a proposi-

tional µ-calculus formula ϕ over S’s atomic propositions. There is a PD-SPT
AS,ϕ such that L(AS,ϕ) is exactly the set of strategies ξ for whichMS ⊳ ξ is
deadlock-free and satisfies ϕ. Moreover,

• If ϕ is a propositional µ-calculus formula then AS,ϕ has O(|S| · |ϕ|)
states and an index O(|ϕ|).

• If ϕ is aCTL∗ formula then AS,ϕ has O(|S| · 2|ϕ|) states and an index
3.

Proof. We give the construction of AS,ϕ for the propositional µ-calculus.
The construction forCTL∗ is obtained by replacing (in this or theCTL con-
struction) the embedded classical alternating-automata model checker with
aCTL∗ one.

4Our construction can be extended in much the same way to the graded µ-calculus.
The only subtle point involves handling the binary-encoded graded modalities without
increasing the complexity with respect to the propositional µ-calculus. For more details
see [3].
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Let S = 〈AP,Q, q0,Γ, ♭, δ, η, Env〉 be an OPD, let ϕ be a µ-calculus for-
mula (guarded5, without free variables, and in positive normal form), and let
MS = 〈AP,Ws,We, w0, R, L,∼=〉 be the module induced by S. We build an
automatonAS,ϕ that accepts {⊤,⊥}-labeled trees corresponding to strategies
ξ, whose composition withMS is deadlock-free and satisfy ϕ. Intuitively, a
run of AS,ϕ on an input strategy tree ξ, proceeds by simulating an unwinding
of the moduleMS, pruned at each step according to the strategy ξ; copies
of the automaton simulating nodes in the computation tree ofMS that are
indistinguishable by the environment are sent to the same direction in the
input tree. The resulting run tree of AS,ϕ on ξ is essentially a replica of the
compositionMS ⊳ ξ, and the fact that it satisfies the formula ϕ is checked
on the fly by employing in AS,ϕ the usual alternating-automata approach for
µ-calculus model checking. In the full computation tree of MS, the set of
directions is G = {(q, β) : ((p, α), (q, β)) ∈ R for some p, α and β}. Since in
S the pushdown store is completely visible to the environment, the set of
directions of the input strategy trees is D = {(vis(q), β) : ((p, α), (q, β)) ∈
R for some p, q, α and β}.

Finally, due to the fact that all copies of the automaton sent to direction
(vis(q), β) push β into the pushdown store, the resulting automaton AS,ϕ is
semi-alternating. As in [22], we are going to use a function split to avoid the
problem of having states with a component in cl(ϕ) that is a disjunction or
a conjunction. Without the use of split, a run of the automaton may have
no states that correspond to a fixpoint sub-formula of ϕ that is part of a
conjunction or a disjunction, which makes it impossible to correctly define
the acceptance condition.

We now formally define AS,ϕ = 〈{⊤,⊥}, D,Γ, Q′, q′0, ♭, δ
′, F 〉, where

• Q′ = (Q × (cl(ϕ) ∪ {p⊤}) × {∀, ∃} × {pe, ps}) ∪ {q′0}. States with the
component p⊤ are used to check that the composition ofMS with the
strategy is deadlock-free, while states with a component in cl(ϕ) check
that this composition satisfies ϕ. The components pe and ps are used to
flag that the currently simulated node, of the computation tree ofMS,
is a child of an environment or a system node, respectively. Clearly,
the simulation should respect the strategy pruning specifications only

5The embedded µ-calculus model checking automaton requires that formulas be
guarded. This guarantees that transitions involving fixpoint formulas are well defined
(see [22]).
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if they correspond to children of environment nodes; that is, only if the
current state q contains pe. Every state is either in an existential or
a universal mode, as specified by the ∀ and ∃ components. When the
automaton is in a universal state (q, ϕ, ∀, pe) with a pushdown store
content α, it accepts all strategies for which (q, α) in MS is either
pruned or satisfies ϕ (where p⊤ is satisfied iff the root of the strategy is
labeled ⊤). When the automaton is in an existential state (q, ϕ, ∃, pe)
with a pushdown store content α, it accepts all strategies for which
(q, α) inMS is not pruned and satisfies ϕ.

• δ′ is a function δ′ : Q′ × Σ × Γ♭ → B+(D × Q′ × Γ∗
♭ ). Before giving

the formal definition, we show an example. Consider, a transition from
the configuration (〈p, ∀Xψ, ∃, pe〉, γ · α), where (p, γ) ∈ Env. First,
if the transition to (p, γ · α) is disabled (that is, the automaton reads
⊥), then, as the current mode is existential, the run is rejecting. If
the transition to (p, γ · α) is enabled, then the successors of (p, γ ·
α) that are enabled should satisfy ψ. Note that all the successors of
(p, γ · α) that are indistinguishable by the environment are sent by the
automaton to the same direction v. This guarantees that either all
these successors are enabled by the strategy (in case the letter to be
read in direction v is⊤) or all are disabled (in case the letter in direction
v is ⊥). In addition, since the requirement to satisfy ψ concerns only
successors of (p, γ · α) that are enabled, the mode of the new states
is universal. The copies of AS,ϕ that check the composition with the
strategy to be deadlock-free guarantee that at least one successor of
(p, γ · α) is enabled. As noted earlier, the enable/disable instructions
of the strategy are ignored in every configuration (p, γ · α) that is a
successor of a system configuration. Also note that since we assume
that no configuration in MS has no successors, the conjunctions and
disjunctions in δ′ cannot be empty.
We now formally define the transition function δ′.

For (p, γ · α) ∈ W , we define the set of successors of (p, γ · α) inMS,
to be s(p, γ) = {(q, β) : ((p, γ), (q, β)) ∈ δ}. The transition function
δ′ : Q′ × Σ× Γ♭ → B+(D ×Q′ × Γ∗

♭ ) is defined as follows. In the rules
below, for the sake of succinctness, we consider m ∈ {∃, ∀} × {pe, ps},
h ∈ AP ∪{true, false}. Also, given a transition from (〈p, ψ,m〉,⊤, γ),
we let px = pe if (p, γ) ∈ Env, and px = ps otherwise.
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For all p ∈ Q, ψ1, ψ2 ∈ cl(ϕ), ψ ∈ cl(ϕ) ∪ {p⊤}, and γ ∈ Γ♭, we have:

– δ′(q′0,⊥, ♭) = false

– δ′(q′0,⊤, ♭)= δ′(〈q0, p⊤, ∃, ps〉,⊤, ♭) ∧ δ′(〈q0, ϕ, ∃, ps〉,⊤, ♭)
– δ′(〈p, ψ, ∀, pe〉,⊥, γ) = true, and δ′(〈p, ψ, ∃, pe〉,⊥, γ) = false

– δ′(〈p, ψ, ∀, ps〉,⊥, γ) = δ′(〈p, ψ, ∀, ps〉,⊤, γ), and
δ′(〈p, ψ, ∃, ps〉,⊥, γ) = δ′(〈p, ψ, ∃, ps〉,⊤, γ)

– δ′(〈p, p⊤,m〉,⊤, γ) = (
∨

(q,β)∈s(p,γ)(vis(q, β), 〈q, p⊤, ∃, px〉, β))
– δ′(〈p, h,m〉,⊤, γ) = true if h ∈ η((p, γ)), or h = true

– δ′(〈p, h,m〉,⊤, γ) = false if h 6∈ η((p, γ)), or h = false

– δ′(〈p,¬h,m〉,⊤, γ) = true if h 6∈ η((p, γ)), or h = false

– δ′(〈p,¬h,m〉,⊤, γ) = false if h ∈ η((p, γ)), or h = true

– δ′(〈p, ψ1∧ψ2,m〉,⊤, γ)=split(δ′(〈p, ψ1,m〉,⊤, γ)∧δ′(〈p, ψ2,m〉,⊤, γ))
– δ′(〈p, ψ1∨ψ2,m〉,⊤, γ)=split(δ′(〈p, ψ1,m〉,⊤, γ)∨δ′(〈p, ψ2,m〉,⊤, γ))
– δ′(〈p, AXψ1,m〉,⊤, γ)=split(

∧
(q,β)∈s(p,γ)(vis(q, β), 〈q, ψ1, ∀, px〉, β))

– δ′(〈p, EXψ1,m〉,⊤, γ)=split(
∨

(q,β)∈s(p,γ)(vis(q, β), 〈q, ψ1, ∃, px〉, β))
– δ′(〈p, µy.ψ1(y),m〉,⊤, γ)=split(δ′(〈p, ψ1(µy.ψ1(y)),m〉,⊤, γ))
– δ′(〈p, νy.ψ1(y),m〉,⊤, γ)=split(δ′(〈p, ψ1(νy.ψ1(y)),m〉,⊤, γ))

The definition of the function split : B+(D×Q′×Γ∗
♭ )→ B+(D×Q′×Γ∗

♭ )
is a simple adaptation of the definition found in [22]. For every d ∈
D, q ∈ Q,m ∈ {∃, ∀} × {pe, ps} and β ∈ Γ∗

♭ we have the following:

– split(true) = true

– split(false) = false

– split(θ1 ∨ θ2) = split(θ1) ∨ split(θ2)

– split(θ1 ∧ θ2) = split(θ1) ∧ split(θ2)

– If ψ ∈ cl(ϕ) is of the form p,¬p, AXψ′, EXψ′, µy.ψ′(y) or νy.ψ′(y),
then split(d, 〈p, ψ,m〉, β) = (d, 〈p, ψ,m〉, β)

– split(d, 〈p, ψ1∨ψ2,m〉, β)=split(d, 〈p, ψ1,m〉, β)∨split(d, 〈p, ψ2,m〉, β)
– split(d, 〈p, ψ1∧ψ2,m〉, β)=split(d, 〈p, ψ1,m〉, β)∧split(d, 〈p, ψ2,m〉, β)
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• It remains to define the acceptance condition F . Let d be the maximal
alternation level of (greatest and lowest fixpoint) sub-formulas of ϕ.
For every 0 ≤ i ≤ d, denote by Gi the set of all ν-formulas in cl(ϕ)
of alternation depth i, and by Bi the set of all µ-formulas in cl(ϕ) of
alternation depth i. Now, F : Q′ → {0..2d+ 1}, where:

– For every u ∈ (Q×{p⊤}×{∀, ∃}×{pe, ps})∪{q′0} we have F (u) =
0.

– For every u ∈ (Q× Bi × {∀, ∃} × {pe, ps}) we have F (u) = 2(d−
i) + 1.

– For every u ∈ (Q×Gi×{∀, ∃}×{pe, ps}) we have F (u) = 2(d− i).

Recall that, by the definition of PD-SPT, a path π of a run r is accept-
ing iff the maximal color encountered infinitely many times along π is
even. Hence, by our definition of F , such a color corresponds to the
outermost fixpoint sub-formula that was visited infinitely often. Thus,
the acceptance condition makes sure that the outermost fixpoint sub-
formula that is visited infinitely often is a greatest fixpoint formula,
and that all of its least fixpoint super-formulas are visited only finitely
many times.

We now show that AS,ϕ is semi-alternating. It is sufficient to show that
for every (t, β) ∈ D, σ ∈ Σ, p, p′ ∈ Q′, and γ ∈ Γ, if ((t, β), p′, β′) appears
in δ′(p, σ, γ) then β = β′. To see that, notice that ((t, β), p′, β′) appears in
δ′(p, σ, γ) only if vis(q, β′) = (t, β), for some q ∈ Q. Since by definition
(because the pushdown store is completely visible) we have that vis(q, β′) =
(vis(q), β′) we are done.

It is easy to see that in the construction above AS,ϕ has O(|S| · |ϕ|) states
and an index O(|ϕ|). ForCTL∗, the embeddedCTL∗ model checker is of size
2O(|ϕ|) and its index is 3 [22]. Hence, forCTL∗, AS,ϕ has O(|S| · 2|ϕ|) states
and its index is 3.

We now consider the complexity bounds that follow from the above con-
struction.

Theorem 8. The pushdown module checking problem with imperfect infor-
mation about the control states, but a visible pushdown store, is 2Exptime-
complete for propositional µ-calculus specifications, and 3Exptime-complete
forCTL∗ specifications.
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Proof. The lower bounds follows from the known bounds for pushdown mod-
ule checking with perfect information (see [13] for propositional µ-calculus,
and [6] forCTL∗). For the upper bound, Theorem 7 implies thatMS |=r ϕ iff
the language of the automatonAS,¬ϕ is empty. LetMS = 〈AP,Ws,We, w0, R,

L,∼=〉 be the module induced by S. Recall that the size of the set of directions
D (of the strategy trees that are the input of AS,¬ϕ) is bounded from above
by |S|. By Applying Corollary 2 to AS,¬ϕ we get the required results.

7. Discussion

Recall that in our setting, whenever we push a symbol consisting entirely
of invisible variables, the environment does not see the push at all. One can
think of a variant of the problem where the environment does see that a push
occurred, but not what was pushed. Thus, the depth of the stack is always
known to the environment. It is an open question whether this variant of the
problem is decidable or not.
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