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Abstract—Let R be a class of generators of node-labelled describing correctness properties of these structures. Th
infinite trees, and_ be a logical language for describing correctnessglobal model checking problerasks, givent € 7 and
properties of these trees. Givelt € R and ¢ € L, we say ., ¢ £ \yhether the set|, of nodes defined by andt is
that iz, is a p-reflectionof 72 just if (i) 1t and f, generate the finitely describable, and if so, whether it is decidable. Our
same underlying tree, and (ii) suppose a nadef the tree[R] first ribution | ! luti ’fth datcaleul : b |
generated by? has labelf, then the label of the node of [R,] Irst contribution 1S a solution of the modaa+calculus globa
is f if w in [R] satisfiesy; it is f otherwise. Thus if[R] is  model checking problem for transition graphs of CPDA (the
the computation tree of a prografi, we may regardR, as a  problem is equivalent to characterising winning regions of
trans.f.orm. of R that can |nterrjally observg its behav!our against aparity games played over the transition graphs of CPDA). To
specificationy. We say thaRk is (constructivelyyeflectivew.r.t. 2 this end, we introduce a new kind of finite-state automata
just if thgre is an algorithm that transforms a given [d; o) to R I f’1 g I ib| y q K :
R, In this paper, we prove that higher-order recursion scissame ~ Recall that an order- collapsible stacks an orders stac
reflective w.r.t. both modal-calculus and monadic second order in which every symbol (except the bottom-of-stack) has a
(MSO) logic. To obtain this result, we give the first charsisttion  pack pointer to some deeper stack of order less thafor
8]‘: Lhoellg’vi;;‘i'glggprjg]‘ég\s,vgf;uatg%a%gr?éig‘sr :L‘:y”::‘;':g’;ﬁ . afixedn, these (deterministic) automata take as input order-
defined by a new class of automata. (Orderecursion schemes " collapsible stacks represemed as We”'braCke_ted seqeenc
are equi-expressive with orderCPDA for generating trees.) As Of symbols that have back pointers. When reading a symbol,
a corollary, we show that these schemes are closed under tit@e transition to a new state depends on, not just the
operation of MSO-interpretation followed by tree unfolgia la  current state, but also the state of the automaton when the
Caucal. symbol pointed to was read. These automata are closed

under Boolean operations and have decidable acceptance and

I. INTRODUCTION emptiness problems. We show that (Theorem 4) the winning

An old model of computation, recursion schemes werd©gions of parity games played over the transition graphs of
originally designed as a canonical programming calculu$cPDA are regular i.e. recognlzab_le by these (deterministic
for studying program transformation and control strucsure @utomata. The proof is by induction on the order, and uses
In recent yearshigher-order recursion scheme@iORS) @ sequence c_)f game reductlo_ns that preserve regular sets.
have received much attention as a method of constructing AN innovation of our work is a new approach to global
rich and robust classes of possibly infinite ranked trees (of?0del checking, by “internalising” the semantigfs,,. Let
sets of such trees) with strong algorithmic properties. The? € £, and R be a HORS ovet: (i.e. the node labels of
interest was sparked by the discovery of Knapik et al. [2]I%2], the tree generated b, are elements of the ranked
that HORSs which satisfy a syntactic constraint catlatety ~ alPhabet). We say thatr,,, which is a HORS oveEUX
generate the same class of trees as higher-order pushdofffnere X consists of a marked copy of eaéksymbol),
automata. Remarkably these trees have decidable monadf @ ¢-reflectiort of R just if R and R, generate the
second-order (MSO) theories, subsuming earlier well-kmow S&me underlying tree; further, suppose a nadef [R]
MSO decidability results for regular (or order-0) trees [3] has labelf, then the label of the node of [R,] is f if
and algebraic (or order-1) trees [4]. We now know [5] that in [R] satisfiesy, and it is f otherwise. Equivalently
the modaly-calculus (local) model checking problem for W€ can think of [R,] as the tree that is obtained from
trees generated by arbitrary orderrecursion schemes is [F] by distinguishing the nodes that satisfy Our second
n-EXPTIME complete (hence these trees have decidabléont”punon is the result that HORS are (constructively)
MSO theories); further [6] these schemes are equi-expe@ssi rgflectlvew.r.t_. the modglu—calculus (Theorem 2). l.e. we
with a new variant class of higher-order pushdown automatzgive an algorithm that, given a modaicalculus formulap,
called collapsiblepushdown automata (CPDA). transforms a HORS to itg-reflection. The proof re_hes on

Let 7 be a class of finitely-presentable infinite structurestN€closure of CPDA under regular testgheorem 3) i.e. we
(such as trees or graphs) addbe a logical language for 115 programming languagesefiectionis the process by which a com-

puter program can observe and dynamically modify its owacstire and
Proofs are in the (downloadable) long version [1] of this grap behaviour.



can endow the model of CPDA with the ability to test if the [l. PRELIMINARIES
current configuration belongs to a given regular set without
increasing its expressive power as tree generators.

) An alphabetA is a (possibly infinite) set of letters. In the
The class of trees generated by HORSs is closed und%‘équelA* denotes the set dfnite wordsover A, and A®

two further logical operations. In a ranked tree, a nade o gt ofinfinite wordsover A. The empty word is written
may be represented by its unique path from the root, give

as a finite wordpath(u) over an appropriate alphabet. Let
B be a finite-state word automaton over the same alphabet. Higher-Order Recursion Schemes: Tyjges generated
We say thatRj is a B-reflectionof R just if R and Rz from the base type using the arrow constructer. Every
generate the same underlying tree; further if a nadef ~ type A can be written uniquely agl; — --- — A4, — o
[R] has labelf, then the label of node: of [Rg] is f  (arrows associate to the right), for some > 0 which
if B acceptspath(u), and it is f otherwise. We show that is called its arity; we shall often write A simply as
if a classC of tree generators is reflective w.r.t. mogal (41, , 4y, 0). We define therder of a type byord(o) :=
calculus, and w.r.t. regular paths (i.e. there is an algorit 0 and ord(A — B) := max(ord(A4) + 1, ord(B)). Let
that transforms a given paifB, R) to Rp), then it is ¥ be aranked alphabet.e. each symbolf has an arity
also reflective w.rt. MSO. We then obtain two pleasingar(f) = 0; we assume thaf’s type is the(ar(f) + 1)-
consequences. First, trees that are generated by HORS dkle(o, - - - , 0, 0). We further shall assume that each symbol
reflective w.r.t. MSO (Corollary 2). Secondly, if one starts f € X is assigned a finite seDir(f) of ar(f) direc-
with a treet generated by an order+ecursion scheme and tions (typically Dir(f) = {1,---, ar(f)}), and we define
some MSO-interpretatioh, then the unfolding of the graph Dir(¥) := U;cx Dir(f). Let D be a set of directions; a
I(t) is isomorphic to a tree generated by an Ordeﬁ_ 1) D-tree is jUSt a prefix-closed subset @*. A X-labelled
recursion scheme (Corollary 3). It follows that the class oftree is a functiont : Dom(t) — ¥ such thatDom(t) is a
trees generated by HORSs is closed under the operation &fir(X)-tree, and for every node € Dom(t), the X-symbol
MSO-interpretation followed by tree unfolding & la Caucal () has arityk if and only if o has exactlyk children and
the set of its children i «i | i € Dir(t(e)) } ie. ¢ is a
Related work: Vardi and Piterman [7] studied the rankedtree.
global model checking problem for regular trees and prefix- For each typed, we assume an infinite collectiobiar”
recognizable graphs using two-way alternating parity treeof variables of typeA, and write Var to be the union of
automata. Extending their results, Carayol et al. [8] slibwe Var” as A ranges over types; we write : A to mean
that the winning regions of parity games played overthat the expressiofihas typeA. A (deterministic)recursion
the transition graphs of higher-order pushdown automatachemes a tupleS = (3, N, R,I) whereX is a ranked
(i.e. without collapse) are regular. Recently, using gamelphabet ofterminals N is a set of typedhon-terminals
semantics, Broadbent and Ong [9] showed that for evd € N is a distinguishednitial symbol of type o; R is
ery ordern recursion scheme, the set of nodes iffS]  a finite set of rewrite rules — one for each non-terminal

that are definable by a given modaicalculus formula is F': (A4, -+, A,,0) — of the formF & --- &, — e where
recognizable by an order-(non-deterministic) collapsible eachg; is in Var?i, ande is anapplicative termof type o
pushdown word automaton. (Here we show in Theorem 2(igenerated from elements BfUN U{ &y, -+, &, }. We shall

that the nodes are recognizable byleterministicCPDA.)  use lower-case roman letters for terminasy(a, f, g), and

In a different but related direction, Kartzow [10] showed upper-case roman letters for non-terminadsg( I, F, H).
that order-2 collapsible stacks can be encoded as trees ithe order of a recursion scheme is the highest order of
such a way that the set of stacks reachable from the initiathe types of its non-terminals.

configuration corresponds to a regular set of trees. (Since \ye yse recursion schemes as generator&-¢dbelled
his notion of regularity on 2-stacks encompasses ours, irees. Thesalue treeof (or the treegeneratedby) a recursion
follows fro_m our Theorem 4 that the winning regions of 2- schemes, denoted[S], is a possibly infinite applicative
CPDA parity games are regular sets of trees with Kartzow'serm byt viewed as &-labelled treegonstructed from the

encoding.) terminals in3, that is obtained by rewriting using the rules
of S ad infinitum replacing formal by actual parameters

Outline: In Section Il we give the basic definitions. each time, starting from the initial symbdl See e.g. [6]
Section Il introduces a notion of regular set of collapsibl for a formal definition.

stacks, given by a new kind of finite-state automata. In

Section IV, we characterise the winning regions of parityExample 1. Let S be the order-2 recursion scheme with
games played over the transition graphs of CPDA. Section \hon-terminals! : o, H : (0,0), F' : ((0,0),0); variables
presents the reflection results. x o0, ¢: (0,0); terminalsf, g, a of arity 2, 1, 0 respectively;



and the following rewrite rules:

f
I — Ha Y
Hx — F(fx) a/ \g
Fo — ¢(p(Fg) p

The value tredS] (as shown above) is the-labelled tree
defined by the infinite ternfa (fa(g(g(g ---)))).

Higher-Order Collapsible StacksFix a stack alphabet
I' and a distinguishedottom-of-stack symbal € T". An
order-0 stackis just a stack symbol. Aorder-(n + 1) stack
s is a non-null sequence (writtehs; - --s;] ) of ordern
stacks such that evefly-symbol~ # | that occurs ins has
a link to a stack (of ordek wherek < n) situated below
it in s; we call the link a(k 4 1)-link. The order of a stack
s is written ord(s); and we shall abbreviate orderstack
to n-stack. As usual, the bottom-of-st&ckymbol L cannot
be popped from or pushed onto a stack. We defipe the
emptyk-stack as: Lo =1 and Lx1; =] Lg] -

The setOp,, of order~ stack operationgonsists of the
following four types of operations:

1) pop, foreachl <k <n

2) pushS* for eachl < k < n and eachv e (I'\ {L})

3) push; for each2 < j < n.

4) collapse.

First we introduce the auxiliary operationsip;, which
takes a stacks and returns the tod: — 1)-stack of s;
and push{, which takes a stack and pushes the symbol
« onto the top of the top 1-stack of. Precisely let
s = [s1---se41] be a stack withl < i < ord(s), we
define

and definepush{ [ s1---s¢t1] by
~————

if ¢ = ord(s)
if ¢ < ord(s)

Se+1

top; [ 51+ se41] top: 5041
N——— i

S

[ 51 sepush{ sey1] if ord(s)>1
[ s1--8s0110] if ord(s) =1

We can now explain the four operations in turn. Eoe 1
the order< pop operation,pop;, takes a stack and returns it
with its top (¢ — 1)-stack removed. Let < i < ord(s) we
definepop; [ s1---se1] by
———
S

[ s1---84] if i =ord(s)and?>1

[ s1---sepop;set] if ¢ < ord(s)
We say that a stack, is a prefix of a stacks (of the same
order), writtensg < s, just if s can be obtained from by

a sequence of (possibly higher-ordenp operations.

2Thus we require aorder-1 stacko be a non-null sequengez; - - - a,]
of I'-symbols such that for all <i <1, a; = L iff i = 1.

Take ann-stacks and let: > 2. To ConStrUCtpush?’i s
we first attach a link from a fresh copy efto the (i — 1)-
stack that is immediately below the tdp— 1)-stack ofs,
and then push the symbol-with-link onto the tbgstack of
s. As for collapse, suppose theop,-symbol of s has a
link to (a particular copy of) thé&-stacku somewhere irs.
Then collapse s causess to “collapse” to the prefixsy of
s such thattop,, , so is that copy ofu. Finally, for j > 2,
the order-j pushoperation,push;, simply takes a stack
and duplicates the tofy — 1)-stack ofs, preserving its link
structure.

To avoid clutter, when displaying-stacks in examples,
we shall omit the bottom-of-stack symbols and 1-links
(indeed by construction they can only point to the sym-
bol directly below), writing e.g.[[][ «v]] instead of
([T 3]0

Example 2. Take the 3-stacls = [[[ o] ] [[]1[ o111 -
We have

push??s = [[[al]l [[1TaB]]
[[[a]][[11]

a1 10T a1,

collapse (push’? s)

push]®(push?? s)

0

Then push, 8 and pushsf are respectively

[[[anmmand

[[Lal1T0IT @B (11T B3]

We have collapse (pushy0) = collapse (pushs 6) =
collapse® =[[[ o] 11 .

Important Remark. Our definition of collapsible stacks
allows non-constructiblestacks such as

[[ Lol T LA 1A

From now on, by am-stacks, we mean aonstructible one
i.e. we assume there exisfisc Op;. such thats =6.L1,,.
Collapsible Pushdown AutomataAn order-n (deter-

ministic) collapsible pushdown automat@nCPDA) is a 6-
tuple( Au{e}, T, Q, 4, qo, F') whereA is an input alphabet
and ¢ is a special symboll" is a stack alphabet) is a
finite set of statesqgq is the initial state ' C @ is the set
of final states and : Q@ xI' x (AU {e}) — Q x Op,, is
a transition (partial) function such that, for alle @ and
~v €T, if 6(¢,7,¢) is defined then for alk € 4, 6(q,v,a)
is undefined (i.e. if some-transition can be taken, then no
other transition is possible).

In the special case wherq,v,¢) is undefined for all
g € Q and~v € T" we refer to.A as ane-free n-CPDA



and we omite in the definition of 4 i.e. we denote it as
A={(AT,Q,d, q,F).

Configurationsof ann-CPDA are pairs of the fornig, s)
where ¢ € @ and s is an n-stack overT’; the initial
configurationis (go, L) andfinal configurationsare those
whose control state belongs fo.

An n-CPDA A = (AU {e}, T, Q, 9, q, F') naturally de-
fines an(AuU{e})-labelled transition grapti(A) := (V, E)
whose vertices/ are the configurations a#l and whose
edge relationE is given by: ((¢,s),a,(¢,s")) € FE iff
5(q, topys,a) = (¢’,op) and s’ = op(s). Such a graph is
called ann-CPDA graph

In this paper we will usen-CPDA for three different

Using ann-CPDA to Define a Parity GameWe start
by recalling the definition of parity game. L&t = (V, E C
VxV)bea graph. LeVgUVA be a partition oft” between
two players,Eloise and Abelard. Ayjame graphis such a
tupleG = (G, Vg, Va). A colouring functionp is a mapping
p:V — C C NwhereC is a finite set of colours. An
infinite two-player parity gamen a game grapl is a pair
G = (G.p)-

Eloise and Abelard play ift by moving a token between
vertices. Aplay from some initial vertexv, proceeds as
follows: the player owning, moves the token to a verteix
such that(vg, v1) € E. Then the player owning; chooses
a successor, and so on. If at some point one of the players

purposes: as words acceptors, as generators for infinée trecannot move, she/he loses the play. Otherwise, the play is
and as generators of the graph underlying a parity game. an infinite wordvovi v, - -- € V* and is won byEloise just

Using ann-CPDA as a Words AcceptorA orders
CPDA A = (AU {e},T,Q,6,q0, F) accepts the set of
wordsw € A* labeling a run from the initial configuration
to a final configuration (interpretingas a silent move). We
write L(.A) for the accepted language.

Using ann-CPDA as an Infinite Tree GeneratoFix an
n-CPDA A = (AU{e},T,Q, 6, qo, F). Take thes-closure
G:(A) of G(A) defined as follows: first add amlabelled
edge fromv; to vy whenever there is a path from to ve
labelled by a word that matches*, and there is no outgoing

in caseliminf(p(v;));>0 is even. Apartial play is just a
prefix of a play.

A strategy for Eloise is a function assigning, to every
partial play ending in some vertexc Vg, a vertexy’ such
that (v,v') € E. Eloiserespects a strateg$ during a play
A = vgvive - - - if Vir1 = (I)(UO v ’UZ‘), for all : > 0 such that
v; € Vg. A strategy® for Eloise iswinning from a position
v € V if she wins every play that starts fromand respects
®. Finally, a vertexo € V is winningfor Eloise if she has a
winning strategy fronv, and the winning region foEloise

e-labelled fromws,; then remove any vertex (in the path) that consists of all winning vertices for her. Symmetrically,eon
is the source of an-labelled edge. Owing to the restriction defines the corresponding notions for Abelard. It follows
we imposed or¥, the resulting graph is deterministic and from Martin’s Theorem [11] that, from every position, eithe

e-free.
In G(A) there exists a unique configuratiap which

Eloise or Abelard has a winning strategy.
Now let A = (AU {e},T',Q, 4,90, F) be an order

is reachable from the initial configuration by a (possibly CPDA and let(V, E) be the graph obtained fro@(A) by
empty) sequence of-labelled edges, and the source of aremoving edge-labels. L&)r UQ A be a partition of) and

non<-labelled edge. Triviallyy, is a vertex ofG. (.A). Now,
let T be the tree obtained by unfoldirg. (A) from vg. Then
T is deterministic.

Finally, in order to define &-labelled tree for a ranked
alphabety, it suffices to identify a total functiop : @ —
Y such that for allg € @ and~ € T, {a | (¢,7,a) €
Dom(é)} = Dir(p(q)), and then to defineby ¢(u) := p(qu)
for every nodeu € Dom(T"), whereg, is the state of the
last configuration ofu.

In [6] (a version of) the following equi-expressivity resul
was proved.

Theorem 1. (i) Let S be an ordern recursion scheme
over ¥ and lett be its value tree. Then there is an order-
CPDAA=(AU{e},T,Q,6,q0, F), andp: Q — X such
thatt is the tree generated byl and p.

(i) Let A = (AU {e},T,Q,0,q0,F) be an ordern
CPDA, and lett be theX-labelled tree generated hyl and
a given mapp : Q — X. Then there is an ordet-recursion
scheme oveE whose value tree is.

let p: @ — C C N be a colouring function (over states).
Altogether they define a partitiohy U Va of V' whereby
a vertex belongs td% iff its control state belongs tQ)g,
and a colouring functiorp : V' — C where a vertex is
assigned the colour of its control state. The structure
(G(A),Vg,Va) defines a game graph and the p&ir=
(G, p) defines a parity game (that we callhaCPDA parity
gameg.

The Global Model-Checking Problenfix a >-labelled
tree ¢t given by a recursion scheme or by a CPDA, and a
logical formulay (e.g.a p-calculus formula, or an MSO
formula with a single free first-order variable). We denote
by |¢|, the set of nodes of described byp.

Thelocal model checking problemsks whether € |t
for a given nodeu. Decidability of this problem was first
proved in [5]. Theglobal model checking problemsks for
a finite description of the seft|,, if there is one. Agt|,,
is in general an infinite set, there are severah-equivalent
ways to represent it finitely. However there are two natural
approaches.

Moreover the inter-translations between schemes and , ExogeneousGiven aX-labelled treet and a formula

CPDA are polytime computable.

©, output a description by means of a word acceptor



device recognisingt|, < Dir(X)*.

« EndogeneousGiven aX-labelled treet and a formula
¢, output a finite description of thecUX)-labelled tree
t, — whereX = {¢ | 0 € X} is a marked copy ok
— such thatDom(t,) = Dom(t), andt,(u) = t(u) if
u € |t], andt,(u) = t(u) otherwise. -

In case theX-labelled treet is generated by an order-
recursion scheme, it is natural to consider ordeGPDA
both as words acceptors fdt|, (in the exogeneous ap-
proach) and as tree genarator fiy (in the endogeneous
approach). In the latter case, orderschemes and CPDA
can be used interchangeably.

Example 3. Let S be the order-2 recursion scheme with
non-terminals! : o, F' : ((0,0),0,0) (and variables and
terminals as in Example 1) and the following rewrite rules:
f
s TN p

’

f g
Fg(ga) g g

N |
a

Q-Q-Q-Q

where the arities of the terminald,g,a are 2,1,0
respectively. The value tree= [S] is the X-labelled tree
depicted above.

Let ¢ = py A pX.(01ps V 01 01 X), Wherep, (resp.p,)
is a propositional variable asserting that the current nede
labelled byg (resp.a), be theu-calculus formuld defining
the nodes which are labelled hysuch that the length of
the (unique) path to an-labelled node is odd.

An exogeneous approach to the global model checking

problem is to output &-CPDA accepting the selt|, =
{1"21* | n+k is odd}, which in this special case is regular.

An endogeneous approach to this problem is to output th
following recursion scheme:

f
f/ \g
I — Hga f 9 a
Hz — f(Hgz)z g g
Hz — f(ng)z g a
g
a

with non-terminals! : o, H : (0,0); and a variablez : o.

The value tree of this new scheme is depicted on the right.

(i) There is an algorithm that transform&S, ¢) to an
order-n CPDA A such thatL(A) = |t|,.

(i) There is an algorithm that transformg&S, ) to an
order-n recursion scheme that generates

Remark 1. Note that(ii) implies (i). To see why this is so,
assume that we can construct an orderecursion scheme
generatingt,. Thanks to Theorem 1, we can construct in
polynomial time an order- CPDA A which, together with

a mappingp : Q — X U X, generates,,. Taking{q € Q |
p(q) € £} as a set of final states| accepts|t|.,.

Winning Regions:The key ingredient of the proof of
Theorem 2 is a precise characterisation of the winning
regions of parity games defined by CPDA. This exploits
the close connection betweencalculus and parity games
[13]. Hence, an important part of this article is devoted to
an effective characterisation of the winning regionsnef
CPDA parity games. Section Il introduces a new class of
automata accepting sets of configurationsne€PDA, and
in Section IV we prove that for any-CPDA parity game
one can effectively represent the winning regions by such
an automaton.

IIl. REGULAR SETS OFCOLLAPSIBLE STACKS

We start by introducing a class of automata with a finite
state-set that can be used to recognize sets of collapsible
stacks. Lets be an order collapsible stack. We first
associate withs = sq1,---,s, a well-bracketed word of
depthn, se (ZU{[,] Hh*

{

In order to reflect the link structure, we define a partial
Eunction target(s) : {1,---,[5]} — {1,---,[s|]} that
assigns to every position ifi, - - - , 3]} the index of the end
of the stack targeted by the corresponding link (if exists;
indeed this is undefined fot ,[ and]). Thus with s is
associated the pajfs, target(s) ); and with a set5 of stacks

is associated the sé&t = {(5,target(s)) | s € S}.

PN

Example 4. Lets=[[[ La]] [[ L]1[ LaBA]]]. Then

ifn>1
if n=0(.e.se)

[ 5150

s=1[[[Lal]l [[LI[ LaBr]]] andtargei(5) = 4,
target(14) = 13, target(15) = 11 andtarget(16) = 7.

We considerdeterministic finite automata working on

Our first contribution of the paper addresses the globasuch representations of collapsible stacks. The automaton

model checking problem for trees generated by recursio
scheme. (The theorem will be proved in Section V).

Theorem 2 (u-Calculus Reflection)Let ¢t be aX-labelled
tree generated by an order-recursion schemé& and ¢ be
a p-calculus formula.

SWe refer the reader to [12] for syntax and semanticg.-aflculus.

neads the word from left to right. On reading a letter that
does not have a link (i.¢arget is undefined on its index) the
automaton updates its state according to the current stdte a
the letter; on reading a letter that has a link, the automaton
updates its state according to the current state, the katbr
the state it was in after processing the targeted position. A
run is accepting if it ends in a final state. One can think



of these automata as a deterministic version of Stirling’sf and only ifq € F.

dependency tree automaltdd] restricted to words.

Formally, an automaton is a tupl€), A, ¢;», F, 6 ) where
Q is a finite set of statesd is a finite input alphabety;,, €
Q is the initial state,FF C (@ is a set of final states and
§:(QxA)U(Qx AxQ)— Qis a transition function.
With a pair (u,7) whereu = a1---a, € A* and 7 is
a partial map from{1,---n} — {1,---n}, we associate a
unigue runr = rg - - -1, as follows:
= 1o = Gin,

-forall 0 <i<n,rig1 =06(ri,ai41) If i +1¢ Dom(7);
-forall 0 <1< n, Titl = 5(T1',CL1'+1,TT(1‘+1)) if i +1¢

Dom(T).

The run isacceptingjust if r, € F, and the paifu, 1) is
acceptedust if the associated run is accepting.

To recognize configurations instead of stacks, we use th
same machinery but now add the control state at the end
the coding of the stack. We code a configurat{gns) as
the pair (s - p, target(s)) (hence the input alphabet of the
automaton also contains a copy of the control state of th
corresponding CPDA).

Finally, we say that a sefil of n-stacks over alphabet
T is regular just if there is an automatof such that for
everyn-stacks overT', B accepts s, target(s) ) iff s € K.
Regular sets of configurations are defined in the same wa

Remark 2. Non-deterministic automata are strictly more
powerful than deterministic automata. Lét be the set
of words with links (s, target(s)) such thattarget(s) is
injective: Va,y, target(s)(xz) = target(s)(y) = = = v.

ThenL is not accepted by a deterministic automaton but itssx iS reached) starting fromp, 1, ..

Proof (Sketch): Fix an ordern CPDA A and an
automatonB. We wish to construct a new orderCPDA
A[B] that simulates4 and in the meantime computes the
state reached bys after processing the current stack. To
this end, we associate with every stack a finite amount of
information describing the behaviour 6f when reading it.

Let @ be the state set @. Let S be an order stack and
let s be its topk-stack. If s was simply a stack without
links, it could be described, from the point of view Bf by
the mappingr from @ to @ such that if3 starts readingy,
in stateq then it finishes reading it in stateq). However,
if one simply extractss;, from S, there may be “dangling
links” of order greater thaik. As the number of these links
is unbounded, it is impossible to specify individually the
Etate that should be attached to the target of each of these

®hks. Our idea is to associate with, @ mappingr; which

abstracts the behaviour & on s;, butin the contextof .S

%i.e. the information will only be pertinent whes), is the

op k-stack of S).

Thus sy, gives rise to a mappingy : Q"% — (Q — Q)
that, given a tupleq,, - - - , qx+1), defines a transformation
from @ to Q. We use stateg,,---,qr+1 to define the
values of the states attached to the respective targeteof th

Yinks (of ordern, - - - , k+ 1 respectively) insy: for n-links,

we consider the run induced by readifg(we stop when
sk Is reached) starting frong,, (this gives the value for
the respective targets of thelinks), for (n — 1)-links, we
consider the run induced by readitgp,,(S) (we stop when
.; and for(k +1)-links,

complement is accepted by a non-deterministic automatorwe consider the run induced by reading, ,,(S) (again

SincelL is also not accepted by a non-deterministic automa

we stop whernsy, is reached) starting from ;.

ton, the model of non-deterministic automaton is not closed At any point in the computation of the CPDA[B] where

under complement.

Closure Properties:Regular sets of stacks (resp. con-
figurations) form an effective Boolean algebra.

Property 1. Let H, K be regular sets ofi-stacks over an
alphabetl’. ThenLUK, LN K and Stacks(T") \ L are also
regular (hereStacks(T") denotes the set of all stacks over
I"). The same holds for regular sets of configurations.

We can endow the model of CPDA with the ability to test
if the current configuration belongs to a given regular se
without increasing its expressive power as tree generators

Theorem 3. Given an ordern CPDA A with a state-set)
and an automatoi8 (that takesA-configurations as input),
there exist an order: CPDA A[B] with a state-set)’, a
subsetF' C @’ and a mappingy : Q' — @ such that;

(i) restricted to the reachable configurations, the respec
tive e-closures ofG(A) and G(.A[B]) are isomorphic

(i) for every configuratior{q, s) of A[B], the correspond-
ing configuration ofA has statex(q) and belongs td.(5)

a stackS of A is simulated, thetop, symbol is a pair,
consisting of the stack symbalop, (S), and ann-tuple
(Tn_1,--+ ,70) Wherer; is equal tOTf"pfS — for technical
reasons, we do not care for the t@p- 1)-stack ofS when
defining ;).

The result is finally obtained by first showing that the
state ofB, after reading the whole stack, can be recovered
from the 7;, and then proving that the values of thecan
be maintained (for the top elements only) when simulating
any stack action.

t

[ |
Emptiness: The closure under regular tests implies
decidability of emptiness of automata with respect to con-
structible stacks.

Proposition 1. For a fixedn > 2, the question of whether
there is an ordem constructiblestack that is accepted by a

given automaton is decidable {m — 1)-EXPTIME.

Proof (Sketch): Consider the stateless-CPDA that
allows us to construct all possible stacks. Now take its



closure A’ under regular test with respect # and use 2) We now construct a new-CPDA game that makes no
A’ as a words acceptor (final states are thefseats given use ofn-links. This game mimic&,), except that whenever
in Theorem 3). Then, the given automat#haccepts at a player wants to perform aush]" action on the stack,
least one constructible stack iff(.A") # (). As the latter is this is replaced by the following negotiation between the
decidable in(n — 1)-EXPTIME, we get the expected result players:
(6]. B ., Eloise has to provide a vectoR — (Ro,---Rq) €

It is to be noted that if we no longer require the ac- (2Q:)4+1 _ here Q, are the control states afl,, —
cepted stack to be constructible the problem becomes lesghose intended meaning is the following: she claims that
intractable. she has a strategy such that if the newly created link (or a
copy of it) is eventually used by some collapse then it leads
to a state inR; where: is the smallest colour visited since
the original copy of the link was created.

« Abelard has two choices. He can agree wiloise’s
Proof (Sketch): Upper-bound is by a small model cjaim, pick a state in someR; and perform aop,, action

property argument. Lower-bound is by reducxpAT. B  hilst going to stateg (through an intermediate dummy

vertex coloured by): this is the case where Abelard wants to

IV. WINNING REGIONS OFCPDA GAMES simulate a collapse involving the link. Alternatively Abed
The main result of this section is a characterisation ofca" decide to push the symbol, i) without appending a
winning regions by regular sets. link to it. -
) Later in the play, if thetop;-element is of the forniy, R),
Theorem 4. Let G be ann-CPDA parity game. Then the and if the player controlling the current configuration veant

winning region forEloise (resp. for Abelard) is a regular set g simulate a move to staigthat collapses the stack, then
which can be effectively constructed. this move is replaced by one that goes to a dead end vertex.

Proof (Sketch): As the complete proof of Theorem 4 This is deemed winning foEloise iff ¢ € R; where
requires a lot of machinery, we will only focus on the key S thelink rank found on the currentop;-element, which
steps. Let us also stress that this proof borrows severaside COrresponds to the smallest colour visited since the algin
[6], [8] but also extend in a non trivial way their results COPY of symbol(y, ) was pushed onto the stack (recall
(decidability of CPDA games of [6] and characterisation ofthat Axx is rank-aware). The intuitive idea is that, when
winning region of HOPD games -i-e. games generated by 5|_mul<'_;1t|ng a gqllapse_ (involving an prder-lmk), Eloise
CPDA without links — of [8]). The full version [1] provides Wins iff her initial claim on the possible reachable states
a self contained proof of the result. by following the link was correct. Otherwise she loses.

The proof is by induction on the order, and the inductionCall Gy (If for n-link free) this new game. Then one can
step can be divided in three sub-steps (for ortehe result ~ define a transformatiom, from any vertexv in Gy to a
is a classical one [15]). Assume one starts withha@PDA  Vertexvz(v) in Gy such thatEloise wins inGyy from v
parity gameG (using colourg0, . . ., d}) generated by some iff she wins fromuz(v) in Gi¢. One also proves that regular
n-CPDA A. One does the following steps: sets of configurations are preservedidgy : hence it suffices

1) One builds a new:-CPDA A, that mimics.A and o prove that winning regions are regular for ordegames
that is rank-aware in the following sense. TakeraGPDA  that have nan-links.
and assume that states are coloured by integers. Considetat us briefly explain how, works as it motivated our
finite run A of A and assume that thip,-element in the definition of automata recognising collapsible stackss.
last configuration of\ has ann-link: then thelink rank is  takes a collapsible stacks and transforms it into a stackevhe
defined as the smallest colour encountered since the aneatie@very symbol with ann-link is replaced by some syribol
of the original copy of the current-link. An n-CPDA is (v, R) without any link. Hence, one needs to explain héw
rank-awarejust if there is some functiop from its stack is defined. Consider the stack obtained by removing every
alphabet into the set of colours such that at any point irsymbol abovey and by collapsing (hence the netwp,,
a run of the automaton, if theop,-element has am-link, stack is the targeted one), and Ietbe the set of states such
then applyingp to it gives the link rank. Then fromd,,, one that Eloise wins inG,x from this state with this new stack
naturally gets a new parity ganfe,,, and a transformation content: thenR = (R,---, R). An automaton deciding
vy from any vertexv in G to a vertexv; (v) in G, such that  whether a configuration ifsy; is winning will process the
Eloise wins inG from v iff she wins fromu, (v) in G,x. One  stack and encode on its control state a subset of statese(of th
also proves that regular sets of configurations are prederveCPDA) that are the winning ones at every position of the
by v;*: hence it suffices to prove that winning regions arestack. To decide if a configuration is winning i&,, one
regular for games generated by rank-awar€PDA. computes on-the-fly its image undeg and simulates the

Proposition 2. For a fixedn > 2, the question of whether
there is an ordem possibly non-constructiblstack that is
accepted by a given automaton is NP-complete.



previous automaton. This image can be inferred as the onlgxists an ismorphism from U, to Dom(¢) such that for all
information neededig. R) is precisely what is computed nodesr of U, t(h(n)) = p(gx)-
by the automaton and the information is available following Assume that for every stateof A, we have a predicate

the n-links in our model of automata. pq that holds at a node of U iff ¢ = ¢,. Then the formula
Example 5. Assume we are playing a two-colour parity ¢ can be translated to a formufd on U, (i.e. h(|U:|,) =
game. Let |t],) as follows: for eachu € X, replace every occurrence
S X of the predicate,, in ¢ by the disjunction\/ €Q.p(q)=a Pa:
s=[[[all 11T ap?1] [[1T aBA1], In turn ¢’ can be translated to a forqmulk,g: on U

(i.e. h(|Us]p') = |Uly.). Take the formulap. obtained
by replacing iny every sub-formula of the form,¢ by
o o oq (uX.[( A —(oc true)) V 0. X]), i.e. replace the assertion
va(s) =[[[ ] [[1] aB(v, R)I] [[1[ aB (v, R)]]]. “take ana-edge to a vertex wherg holds” by the assertion
_ “take ana-edge to some vertex from which one can reach,

3) The last step is to construct &n — 1)-CPDA game g a finite sequence afedges, a vertex wherg holds and
from which one can reconstruct the winning regionGit.  \hich is not the source vertex of arlabelled edge”.
This can be done using the concept of abstract pushdown as unfolding preservegi-calculus definable properties,
games developed in [8] and noting that ordegames that we have thatr € |U.|, iff 7 € |Ul,. iff (¢, 5:) €
have non-links are a special class of such games. The |G(A)|,,.. Using Corollary 1 we know that the set of con-
using induction hypothesis and extending the results in [8figyrations ofG/(A) that satisfy. is regular;.e. |G(A) o
one concludes that the winning regions are regula@in is accepted by some automatBn

n Using Theorem 3, we construct a newCPDA A’ with

Since the class of-CPDA graphs is closed under Carte- 3 set)’ of state together with a sét C @’ and a mapping
sian product with finite structures, Theorem 4 directly kad . ’ — @ such that:
to a characterisation qf-calculus definable sets over those . restricted to the reachable configurations, the respective
graphs. e-closures ofG(A) and G(A’) are isomorphic
« for any configuration(q, s) of A/, the corresponding

configuration ofA has state(q) and belongs td.(B)

if and only if g € F.

Proof (Sketch):Take a CPDA-graplt’ and au-calculus It follows at once that the trefg, is defined byA’ with the
formulay. Frome, it is well known (see for instance [12]) mappingy’ defined as follows: for aly € Q’, p’(q) := p(q)
how to construct a finite rooted gragh, and a parity game if ¢ ¢ F, andp’(q) := p(q) otherwise. O
G over the synchronized product 6t and G, such that, T ) .
for any vertexv in G the formulay holds atv iff Eloise Remark 3. There are two natural questions concerning

wins in G from (v,r) wherer is the root ofG,,. As the complexity. The first one concerns the algorithm in Theorem

class of CPDA graphs is closed under Cartesian produc%: it is n time exponential in both the size of the scheme and
with finite graphs,G is a CPDA parity game. Hence to the size of the formula. This is because we need to solve an

decide whethery holds in a configuration it suffices to  ©rdern CPDA parity game built by taking a product of an
simulate on(v,r) the automaton (constructed in Theorem Order-» CPDA equi-expressive wilhi (thanks to Theorem 1
4) accepting the (regular) winning region f&ioise inG. its size is polynomial in the one &%) with a finite transition

This easily implies that the set of vertices wheréolds in ~ SyStém of polynomial size in that ¢t The second issue

R={r| (r[[a]]]) is winning for Eloise inG} andR =
(R, R). Then

Corollary 1. The u-calculus definable sets oveérPD A-
graphs are regular.

G is itself regular. m concerning complexity is how the size of the new scheme
(obtained in the second point of Theorem 2) relates to that
V. MODAL p-CALCULUS AND MSO REFLECTIONS of § and . For similar reasons, it i3, time exponential in

Ouir first task is to prove Theorem 2. the size ofS and .

Proof of Theorem 2We concentrate ofii) as it implies It is natural to ask if trees generated by HORS are
() (cf. Remark 1). Fix an ordet- recursion schem& = reflective w.r.t. MSO. (Modalu-calculus and MSO are
(X, N,R,I) and lett be its value tree. Letp be au-  equivalent for expressing properties of a determinisie tr
calculus formula. Using Theorem 1, we can construct arat theroot, but not other nodes; semg.[16]. Indeed one
n-CPDA A = (AU {e},T,Q,d,q0, F) and a mapping : would need backwards modalities to express all of MSO in
@ — X such thatt is the tree generated by and p. pu-calculus.) Consider the following property (definable in

Let U be the unfolding ofG(A) from its initial configu- MSO but not inu-calculus) on nodes of a tree: % is the

ration andU. be thee-closure ofU. A noderw of U. is a  right son of anf-labelled node, and there is a path fram
path inG(.A) starting from the initial configuration ot and  to ana-labelled node which contains an odd occurrences of
ending in some configuratiofy,, s ). By definition, there g-labelled nodes”. Returning to the scheme of Example 1



one would expect the following answer to the global model-obtain the following (more general) result.
checking problem for the corresponding MSO formula:

e f ~_ Theorem 5. Let R be a class of generators ai-labelled
f g trees. IfR is reflective w.r.t. modak-calculus and w.r.t. reg-
I — Fga 7 ‘ a ular paths, then it is also reflective w.r.t. MSO.
- g
%zi : ;E?géig;%g g a A natural extension of this result is to use MSO to
- g define new edges in the structure and not simply to mark
. certain nodes. This corresponds to the well-know mechanism

of MSO-interpretations [18]. Furthermore to obtain trees,
we unfold the obtained graph from one of its nodes. As
MSO-interpretations and unfolding are graph transforma-
) ) ) tions which preserve the decidability of MSO, we obtain
() There is an algorithm that transformgS, ) to an 5 yree with a decidable MSO-theory. Combining these two
ordern CPDA A such thatL(A) = [t],. transformations provides a very powerful mechanism for
(i) There is an algorithm that transformgS, ) to an  ¢onstructing infinite graphs with a decidable MSO-theory.
order-n recursion scheme that generatgs If we only use MSO-interpretations followed by unfolding

Proof (Sketch):As before, we concentrate @iy which to pr_oduce trees starting from the class of finit_e trees, we
implies (i). Using the well-known equivalence between MSO obtain the cl_ass of value tregs of _safe recursive schemes
and automata (see [17]), the question of whether a node [19], [20]. This class of trees is conjt_ectured to be a proper
of ¢ satisfiesp(z) can be reduced to whether a given parity subclass of the value trees of recursion schemes.

tree automatoi8 accepts the treg, that is obtained front We present here a definition of MSO-interpretations which
by marking the node: (and no other node). is tailored to our setting. An MSO-interpretation ovEF

In order to construct,,, we first annotaté with informa-  |abelled trees is given by a domain formyg(z), a formula
tion on the behaviour oB on the subtrees of. We mark  ,(z) for eacho € ¥ and a formulapy(z,y) for each
t by p-calculus definable sets to obtain an enriched tregjirection d € Dir(X). When applied to a2-labelled tree
denoted:. With each pair(q,d) € Q x Dir(¥), we associate ¢, 7 produces a graph, denotédt), whose vertices are the
a formulay, 4 such that, u |= ¢, 4 iff the d-son ofu exists  vertices oft satisfyingps(z). A vertexu of Z(t) is coloured
and B has an accepting run difu d] starting fromq (here by o iff u satisfiesp, () in ¢. Similarly there exists an edge
t[v] is the subtree of rooted atv). By Theorem 2f can be  |abelled byd € Dir(X) from a vertexu to a vertexw iff the
generated by an-CPDA. pair (u,v) satisfies the formule,(z,y) in t.

Let ¥’ be the alphabet of. For every node:, one can
decide, using the annotations érand considering only the
path from the root tou, whether3 acceptst,. Precisely,
there is a regulaf. C (¥’ UDir(X'))* such that a node of
t satisfiesy iff the word obtained by reading inthe labels
and directions from the root to the nodebelongs toL.

Finally ann-CPDA generating,, is obtained by taking a
synchronised product between arCPDA accepting and
a finite deterministicautomaton recognising. [ | Consider the MSO-interpretatiod which removes all
nodes below a node labelled gy All colours are preserved

xcept forg which is renamed tg;. Finally all edges are
Cﬁreserved ‘and a loop labelled lpyis added to every node
previously coloured by;. It is easily seen thaf is a well-
formed interpretation. By applying to the treet of the
example above and then unfolding it from its root, we obtain
the tree on the right which is generated by the scheme on
the left:

Corollary 2 (MSO Reflection) Let ¢t be a>-labelled tree
generated by an ordet-recursion scheme, and o(x) be
an MSO-formula.

We say thatZ is well-formedif for all X-labelled treeg,
every vertexu of Z(t) is coloured by exactly one € ¥
and has exactly one out-going edge for each direction
in Dir(c). Here we restrict our attention to well-formed
interpretation$, which ensures that after unfolding of the
interpreted graph, we obtain a deterministic tree respgcti
the arities of.

Remark 4. In a X-labelled tree, a node may be identified
with the word obtained by reading the node-labels an
directions along the unique path from the root:to Call
this word path(u) € (X U Dir(X))*. Let R be a class of
generators of-labelled trees, and be a finite-state word
automaton over the alphabgtuU Dir(X). Let R € R and
we write [R] for the tree defined byR. We say thatRp is
a B-reflectionof R just if (i) Dom(R) = Dom(Rp), and
(i) suppose a node: of [R] has labelf, then the label
of nodew of [Rz] is f if B acceptspath(u), and it is f
otherwise. We say tha® is reflective w.r.t. regular pathjsist 4Gi . _ o

iven an MSO-interpretatio?, we can decide if it is well-form. In

if there is an algorithm that transforms a_g_iven pefit, 5) fact, we can construct an MSO-formujar which holds on the complete
to Ri. The proof of Corollary 2 can be trivially adapted to binary tree iffZ is well-formed [3].



N,
I — FEg(ga) ;o g
G — g¢gG
For — [(Fg(pr)G )
Fox — f(Eg(pz))a ‘

More generally, we have the following result.

Corollary 3. Lett be aX-labelled tree given by an order-
n recursion scheme and letZ be a well-formed MSO-
interpretation. The unfolding df(¢) from any vertex: can
be generated by an ordér: + 1) recursion scheme.

Remark 5. A natural question is whether every tree gener-
ated by ordertn + 1) recursion scheme can be obtained
by unfolding a well-formed MSO-interpretation of a tree
generated by an ordet- recursion scheme. This is for in-

stance true when considering the subfamily of safe recarsio
schemes [2], [20]. A positive answer for general recursion
schemes would imply safe schemes of any given order are as

expressive (for generating trees) as unsafe ones of the sam

level. This can be established by induction on the order
with the base case following from the definition of safety.

However already at order 2, unsafe recursion schemes argl0]
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widely conjecture to generate more trees then safe ones (see

for instance the so-called Urzyczyn language in [21]).

tive notion of logical reflection we have shown: (i) The

Conclusions and Further DirectiondJsing a construc-

global model checking problem may be approached fruit-
fully from a new, internal angle. (ii) The class of trees

generated by HORS is robust: it is closed under both mod
p-calculus and MSO reflections, and the operation a |

Caucal of MSO-interpretation followed by tree unfolding.
We believe that our results on reflection is relevant to
verification and program transformation; demonstratirag th

it is so is our most pressing future work.
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APPENDIX

Appendix

have a run on a stack of order less thagontained within
s without explicit reference to its context. So let< k& <
n and lett be somek-stack contained withirs (if & =

Non-deterministic automata are strictly more powerful then we must have = t). Of courset might contain

than deterministic automata.

Indeed, letL be the set of words with linké&s, target(s))
such thattarget(s) is injective: Va,y, target(s)(z) =
target(s)(y) = = = y.

Then one has the following two results.

Proposition 3. The setL cannot be recognised by a deter- y, _ {l

ministic automaton.

Proof: Assume A = (Q, A, qin, F,§) acceptsL. Take
any input(w,7) in L with strictty more than|Q|? links.
Let » be the (accepting) run ofl over (u, 7). Then by the
pigeon hole principal, there are two pairsi’) and (4, ')
such that:

o i< i andj < j’;

e i=7(+1)andj=7('+1);

T =Tj andri/ =Tj.
Consider the inputu, 7’ ) wherer' (k) = 7(k) if k # j'+1
and7'(j' + 1) = 7/(¢ + 1): hence(w,7) is obtained by

changing the link from;’ + 1 to have the same target as the

one fromi’ + 1. It follows from how (i,¢’) and(j, ;') were
defined that- is also a run overd. However(u, ") is not
in L, leading a contradiction. ]

Proposition 4. The complemenk of L can be recognised

by a non-deterministic automaton.

Proof: The languagd. consists of the words with two
links having the same target: to recognised this language,
non-deterministic automaton guesses by going into a specia
state the target. Then whenever reading a letter that points

to that position one increments a counter fronto 1 and

then from1 to 2 and when the counter i8 it loops in a

final state: hence a word is accepted iff it belongd.tom
Hence one can concludes.

Proposition 5. Non-deterministic automata are strictly more

expressive than deterministic ones.

some ‘dangling links’ which are those links bearing an order

greater thark. We allow .4 to handle such links by means
of an (n — k)-tuple (Q., ..., Qk+1) SO that the automaton
is allowed to ‘pretend’ that an-link points to a position
associated with a state ;.

More formally suppose thatl = (Q, %, qo, d, F) where
il 1 < i < n}uUT for some integem and
some stack-alphabdt. Given an order stacks over T’
we choose (without loss of generality) to represenising
indexed brackets so thtand], delimit ans-stack. We also
assume thatarget(s) is only used to define links of order at

least2 (i.e. 1-links are ignored). We define a partial function

ordl(s) : {1---]8|]} — {2---n}

that specifies the order of a link from any given element of

the stacks (and is undefined on positionsirlabelled with a
bracket). Given an orderstackt (for 1 < k& < n) contained
in s, we definet to be the corresponding subsequencé of
andtarget(t) (resp.ordl(t)) to be the natural restriction of
target(s) (resp.ordl(s)) to the positions in.

Remark 6. Note that for some position € {1--- |t}
of ¢, if ¢ € Dom(ordl(t)) with ordl(t)(i) < k, then
i € Dom(target(t)).

Suppose thatt = a;...a,. Given (n — k) sub-
setsQn, ..., Qry1 Of Q, @ (Qy,...,Qry1)-run of A on
g,target(t), ordl(t)) is a sequence of stat@sy . .. gm €

* such that:

o forall 0 < i < m, qiv1 = 5(qi,ai+1) if ¢ +1 ¢

Dom/(ordl(r)) (and soi + 1 ¢ Dom/(target(t)))
eforal 0 < i < m, git1 = 6(gi,ai+1,q) for

¢ € Qoraityi+1) If @ + 1 € Dom(ordi(t)) with

ordl(t)(i+1) > k
o forall 0 <i < m, qi+1 = 5(Tiaai+1aqtarget(t)(i+l)) if

i+ 1€ Dom(ordl(t)) with ordl(t)(i + 1) < k.

Remark 7. In the special case wheh = n (and sot =

Proof: The deterministic model being closed by com-s) ()-runs of A on (t,target(t), ordl(t)) are exactly the
plementation, ifL was recognised by a deterministic au- (ordinary) runs ofA on <%V, target(t)).

tomaton, it would be the same fdr, contradicting Proposi-
tion 3. [ |
We aim to establish the following:

Proposition 2. Given fixedn > 2 and some automatod,
deciding whether there exists some oraderollapsible stack
(resp. configuration) that it accepts is NP-complete.

A. The upper-bound

First we show that the problem lives in NP.
We extend the notion of a run of an automatdnon
(5, target(s)) for some order stacks so thatA can also

Letk > 2 gndt be ak-stack contained with the-stack
s. The stringt must be of the form:

[k [k—lwl]k—l [k—1U72]k—1 [k—lwl]k—l]k

We say thathe k-height oft is [.

Lemma 1. Suppose thatd has a(Qn, ..., Qk+1)-run p

on (t,target(t), ordl(t)) starting with ¢ and ending with
¢, then there exists &-stackt’ (residing in ann-stacks’)

of k-height bounded by|Q| + 1).|Q|* such thatA has a

(Qny .-, Qrt1)-run p’ on <P, target(t'), 07"dl(t')> starting



with ¢ and ending withg’. Moreover the(k — 1)-stacks
occurring insidet’ all occur insidet as well.

Proof: The runp must be of the following form:

aPITQ1P27392 - - - Di—1T1 1@

wherep; is the state reached upon readingtieoccurrence
of [,_, andg; is the state reached upon reading tiie
occurrence of,_, for1 <i<Il. LetR;:={¢; : 1<j<
i}. Observe thaR; C R, for everyl < i < [. Since each
R; C Q there can be at mo$f)| + 1 distinct R; (remember
() and thus at mostiQ|+1).|Q|? distinct triples(p;, ¢, R;)
with 1 <i <.
Let p’ be the subsequence pf

P = AP T €0 Pis T i - - Pi i 4
such that:
« i1 is the greatesj such that(p;, ¢;, R;) = (p1,q1,0)
o Forl <j <1, i;41 is the greatesj such thatp; =

Piy+1, 4 = ¢iy+1 and Rj = Ry U{qi,, }.
We can easily check the following two propertiesf

Property 2.  « Given atriple(p;, ¢;/, R;-) for somel <
J' <1, there is at most ong such that(p;,, ¢;;, R;;) =
(pjr» 4505 Bjr))-

Thus! < (|Q[ + 1).|Q[?

o Given al < j < m, if u € R;;, there exists al <
j' < j such thatu = ¢; ,. Let us writewitness(u, j)
to denote the position af.

since this occurs at _,-labelled positiont’ is a correctly
formed k-stack.

We claim that p/ is a (Qn,...,Qk+1)-run of
<7:‘v’7target(t’),ordl(t’)2 on A. This is verified by an
easy induction with the hypothesis that an initial segment
of p/is a(Qn,...,Qrs+1)-run of the corresponding initial
segment of<P7target(t’), ordl(t’)> on A. The induction-
step prevails since the construction pf together with
the handling of k-links in the definition of target(t’)
ensures that every transition made by when reading
<i7,target(t’),ordl(t’)> with run p’ was made when

reading(t, target(t), ordl(t)) with run p.

Finally note that the first item of Property 2 tells us that
t hask-height bounded by|Q| + 1).|Q|?), as required.

|

Note that the following lemma also holds and is es-
tablished by the standard pumping-argument for finite-
automata. (As links are ignored ()., . . . , @2)-runs.A may
as well be a conventional finite automaton for the purposes
of this lemma):

Lemma 2. If A has a (Qu,...,Q2)-run (for some
Qn,...,Q2 C Q) starting in stateg and ending in state’
on a l-stackt contained ins, then it has a(Q, ..., Q2)-
run starting in stateq and ending in state’ on a 1-stack
t' with height at mostQ)|.

Given an integelk, let us define a sequence of integers
(Vi(k))1<i by ¢1(k) = k + 2 and ¢ = ((k +
1).k?)k=14; (k) + 2. As a consequence of the previous two

The first item is due to the fact that we always selectiemmas we get:
the right-most element of the sequence that satisfies a ) o
given equality and the second follows immediately from theLemma 3. Let ¢ be ak-stack contained within am-stack

definition of R;, and the way thaf?;, . is generated from
Rij and qi;-

We now define thé:-stackt in terms oft’, target(t') and
ordl(t’) as follows:

« The string?’ is given by:

=l Wi ey e Wil g - Wil g

For any positiona’ in ¢ let us writea to denote the
corresponding position i
o ordl(t') is the restriction ofordi(t) to ¢/
« For any stack-alphabet position’ in # we have
target(t')(v') = target(t)(y), if ordl(t')(v') < k—1.
If ordl(t')(y) = k, thentarget(t') := witness(u, j)
wherew is the state in positiomarget(t)(v) in p.
Links internal to the(k — 1)-stacks are preserved from
Now consider a position’ in ¢’ (and p’) which resides in
aw;; (r;;). Since the statg at positiontarget(t)(vy) in p
occurs at a position prior tg in p, it must be a state := ¢
with j* < i;. This means that € R;,. By the second item
of Property 2witness(u, j) is thus well-defined. Moreover,

s (for 1 < k < n)andlet@,,...,Qrr1 C Q. If an
automatonA has a(Qy, ..., Qk+1)-run fromgq to ¢’ on
(t,target(t), ordl(t)), then it has a(Qn,...,Qk+1)-run

from ¢ to ¢’ on <§,target(t’), ordl(t’)> for somek-stack
t' such that|t] < ¥ (|Q]).

Proof: Argue by induction ork. The base case (= 1)
is given by Lemma 2 (adding to the length to account for
the opening and closing bracketsand], ).
For the induction step suppose that the result holds for
k < n. Lett be a(k + 1)-stack contained i3 where

;: [kJrlul...um]kJrl

Suppose further that there is (8),,...,Qr12)-run p on
(t, target(t), ordl(t)). We write p; and ¢; respectively for
the state irp that arises for entering and exiting thestack
s; (for 1 < i < m).

Let R, := {q; : 1 <j <i}. Since(k + 1)-links from
elements in a stack; must point to the end of a stask for
1 < j <, we have it that there is@,, ..., Qx+2, R;)-run
on s; starting inp; and ending ing; for eachl < i < m.



The induction hypothesis thus tells us that we can replace o target(o,v)(z}) := v; wherez; is the atomp; or the

eachs; with a stacku! such that|s ’| < r(|Q))-
It follows that there is a(k + 1)-stack ¢’ containing
k-stacks v with |u| < %(]Q|) such that there is a

negation of the atornp; (and similarly fory; and z;)
for1 <i<k.

Remark 8. It should be clear that satisfiesy just in case

(Qn, - Qr+2)-run on <t"tar9€t(t/)v ordl(t') ). To finish ¢4 every1 < i < k at least one of the following holds of
the induction-step we appeal to Lemma 1. B ()

As a corollary to the previous lemma, taking the case y _ /

; o x, = o andtarget(p,v)(z})

when k£ = n, we may conclude that if an automatoh or 2/ = e and target(y )(I/)
. . . [ Y 7
recognises any stack, then it must accept a small stack: « 4/ = o and target(p, v)(y,

)
or y, = e and target (o, v)(y,
o 2l =0 andtowget(so7 )(z7)

or z; = e andtarget(p,v)(z})

Lemma 4. Let A be an automaton recognising some
stack. It must accept an-stacks such that|s| < ¥,,(|Q]),
where( is the state-space oAl.

Sincew,, (z) is a polynomial it follows that an automaton Remark 9. We can easily build a (not-necessarily
A recognising some stack must have a witness to this fagtonstructible) 2-CPDA stack s,, over the stack-
that is polynomial in the size afl. Since membership can alphabet I' such that (sg.,target(s,,)) encodes
be decided in linear-time, it follows that the stack-emesis  (I'(p, v), target(p, v)) in a trivial manner. Where
problem is indeed in NP.

D(p,v)=v1...

we takes, , to be:

Lol - x;cy;czllc]l]Q

andtarget(s,,) to be derived fromtarget(p, v) by shifting
each target one step to the right to point td,aposition.

Bearing in mind that this is possible, we will continue to
use the string with pointersl'(p, v), target(p,v)) as this
carries less baggage thafs, ., target(s,,v)).

o0 o0

B. The lower-bound

Now we show NP-hardness. We do this by reduciag
SAT to the emptiness problem.

We say that a propositional formujais in 3-conjunctive
normal form @-CNF) if it is of the form:

[1”m]1[1xllyllzi e

(1 Vyr Vzi) AlxaVya Vo) A A(xe Ve Vzk)

wherex;, y; andz; (for 1 < ¢ < k) are either propositional
atoms or negations of propositional atoms. The problem
SAT takes as input a propositional formula 3sCNF and We now construct an automatod that recognise strings
asks whether there is a valuation satisfying it. It is wellencoding valuations satisfying. The pointers allow us to
known that this problem is NP-complete. build such an automaton with only a polynomial number
Consider an alphabét: of states as they provide non-local access to the values
assigned to atoms by a valuation. We thus do not need to
o= {tt, ff,o1,81,...,

have this information to hand locally, which would require
. Take a propositional formula in 3-CNF. Without loss

an exponential number of states to represent all possible
of generality we may assume that every conjunctive clausffuth-value assignments.

Oka'k}

containsexactly three atoms — if need be we can repeat e define:
a (ne.gatlon_of ap) atom in a d|§1unct|ve clause without Ay = (Qu.T,q0,0,, F,)
affecting satisfiability. So we have:
(@ ViV ) A @ ViRV i) A A Ve V) e
Y=T1VYyy1Vz=a T2 VY2 V 22 Tk V Yk V 2k
L4 Q(P = {QO7 qflta C]if7 ety q:tna q;fm/rilta rif7 Sifa S{a tif7 ey
Let p1,...,pm be the propositional variables occurring in it ol st s it fail}

. Letv be a valuation assigning a boolean value to each of « F,, := {t{}

the p;. We now define a strin@'(yp, v) € I'* together with « We state once and for all that we only allow a transition

a partial functiontarget(yp,v) from positions inl'(y,v) to to r; whilst reading a symbob; if z; = p,. Likewise

other positions therein: we only allow a transitiotio r; whilst reading a symbol

o; if z; = —p;. A similar restriction applies tos;

L(p,v) = 1. with y; andt; with z;. We do not re-state below these

restrictions explicitly to assist with readability.

= 0,(qi, tt) := gf'yy anddy(gi, ff) ==

for0<i<m-—1.
= 0p(qm, 05, 4}) = Tl andd, (gm, o5, ¢} ) = r
— 0y (gm, 0 J7qu) = 7°1 anddy (gm, ®j,q}) =71

A 0
UmT Y121 - - TR YR 2L

where:
o v; = v(p;) for eachl < i <m.
o 2 =0, if x; =p; andx} = e; if z; = —p;
=p; andy, = e; if y; = —p,

. y;:Oj if Yi
. Z;:Oj if Zi = Py andzl{:.j if Zi = Tpj

(Jifﬂ



- 0p(rt,a, qj) = st witha € {o;,e;} andb € {t, f} Fix an ordern CPDA A and an automatof. We wish to

for eachl <j<mandl <i<k. construct a new ordes-CPDA A[5] that computes4 and

— 0,(s¥,a,qb) ==t with a € {o;,e;} andb € {tt, f} B in parallel.
for eachl < j<mandl <:<k. Let @ be the state set &. Let S be an order stack. Fix

— O, (tt, J,qj) =l andd, (¢!, J,qf) :=rf , for  an internalk-stacks of S. Readingpop, s, the automato
1<i<k—-1landl1<j<m. induces a run (for some technical reason we do not care of

- 6¢(t?,oj,qu) = er andd, (tf,e;,q%) = rifﬂ for  top(k—1) stack ins). We want to associate witha function
1<i<k—-1landl <j<m. describing its behaviour. However, if one simply extragts

- 6¢(rzf, 0j,qf) = s¥ and g, ( Ty, J,qu) := st for  from S, there may be some “dangling link” of order greater
1<i<kandl <j<m. thank. To define the transformationinduces or, we need

— 0,(s],05,q") == t! and 6,(s{,e;,q]) := ! for  to know the@-state that should be attached to the target of
1<i<kandl <j<m. each of these links. Thus gives rise to a mapping; :

= 0,(r]0j,q]) == sT and o, (1] e;.q%) = s! for  Q"7F x Q — Q that, given a tupldg,,, - ,gr+1), defines
1<i< andl <j<m. a transformation fron@) to ). We use states,,, - - , qx+1

- 6@(s{,oj, f) .= fail andé, (s, e;,q}) := fail for  to define the value of the states attached to the respective
1<:<k and1 <j<m. targets of the links (of ordet, - - - , k+ 1 respectively) ins:

— Everywhere else the transition function is defined tofor n-links, we consider the run induced by readifigwe
map tofail stop whens is reached) starting fromp, (this give the value

_ _ for the respective targets of thelinks), for (n — 1)-links,
Lemma 5. The (j +_ l)zrgp.?tate n ‘_"1 run of A, we consider the run induced by readin@pn((S) (V\)/e stop
(L, v), target(p, v)) is ¢; " for 1 < j < m. whens is reached) starting fromp,_1, ...; and for(k +1)-
Proof: An easy induction onn. m links, we consider the run induced by reading, , ,(.5)
(again we stop whens is reached) starting fromy,,. We
Lemma 6. The automatonA,, reaches the stat¢/ when  refer the reader to Table B for an illustration in the case
reading (I'(¢, v), target(p,v)) iff v satisfies all clauses \wheres is the topk-stack (this is actually the only relevant
(i, yi,2) for 1 <@ < j. case in the following as we will maintain the validity of the

Proof: Given Remark 8 and Lemma 5 this is a Straight_information on ther; only in that case) where we have more

forward induction on the length of the runs endingfn m formally: , , _
The special case of Lemma 6 when= k gives the = 7o[Zn, -, x2](21) is the function fromy to Q) induced
following: by reading (the segment ofj starting fromtop,(.S) (with

state given by the input; to the function), and stopping just
Lemma 7. The automatond,, recognises the language: after readingtop, (S). (For eachk > 2, the targets of the
k-links emanating from the segment are attacligdtates

Ly = {(L'(p,v), target(p,v)) : v satisfiesp} according to the run induced by readiiq starting from
topy.1(S) with statexy.)
- Foreachl <i<n-—2, rj[zn, -, zit2](zit1) is the

Note that£ is non-empty iff¢ is satisfiable. Moreover function from@ to @ induced by reading (the segment 6f)
note that|Q,,| < 4.|¢| and so (taking into account the size starting froméop; ,(.5) (with state given by the input;
of §,,) the size ofA,, is O(|Q,|?) and so can be constructed to the function) and stopping just before readtog, ., (5).
in polynomial time. Given Remark 9 this thus reduces the - Tn-1(z») is the function from@ to @ induced by
polynomial-time reduction of 3-SAT to the regular stack readingS (with state given by the input,, to the function),
emptiness problem, thereby showing it to be NP-hard. ~ and stoping just before readingp,,(S).

Let us first recall the statement of Theorem 3. A stack symbol of the CPDA[B], is a pair, consisting
of a symbola, which is a stack symbol ofl, and anr-tuple

Theorem 3. Given an ordern CPDA A with a state-set) of the form¢ = (7,,_1,- - - ,70) where ther;s are as above
and an automatoif§ (that takesA-configurations as input), (i.e. ; is associated with theop i-stack).
there exist an orders CPDA A[B] with a state-set)’, a For further use, we definegr[xn---:vg](xl) to be the
subset/” C Q" and a mappingy : Q" — @ such that: same asy|z, - - - 22|(z1); and for eactd < k < n — 3,

(i) restricted to the reachable configurations, the respec- I
tive e-closures ofG(A) and G(A[B]) are isomorphic T [n s Trps] (Thp2)

ot
(i) for any configuration(q, s) of A[B], the correspond- = Tl Bl (T [on e weas] (Th2)-
ing configuration ofA has statex(q) and belongs ta.(B)  Thus eachr; is a function fromQ to Q induced by reading
if and only ifq € F. (the segment ofy starting fromtop,. ,(S) (with state given
Proof: by the inputx,; to the function), and stopping just after



readingtop,(S), as indicated in Table B(ii). As eachjr A partial play A is a non-empty sequence of configura-
can be obtained from thes we assume that we can accesstions vy, ... v, such that for alli € [m — 1], there is an
them directly on reading th&p, element of the stack. Note edge inG from v; to v;+1. Note that we do not require,

that, consideringr,” applied to the initial state o3 we
deduce whether the current stack is accepted3byence
this information will be maintained in the control state of
A[B] and is used to defing’. The functionZ is the one
erasing all auxiliary information used b¥[B] in its control
state. R

Now supposetop,(S) = (a,(Tn—1,---,70)). For each
ordern stack actiond of A, we define the corresponding
stack action ofA[P], 4, in Table B(ii)). This complete the
description of A[B].

Correctness: The only case that are not trivial are

pop, and collapse (actually they are rigorously iden-

to be the initial configuration.

We first define a generalisation afstacks,indexedn-
stacks in which every internak-stack (for0 < k£ < n), i.e.
ak-stack that is not the curretivp, stack, is labelled with a
natural number. Therasureof an indexed-stack is then-
stack obtained by erasing all the indices of its internalksta
An indexed configuration is a pair formed by a control state
and an indexed stack. We extend the notion of erasure to
indexed configuration in the obvious way.

With any play A = vgv; --- we inductively associate a
sequence of indexed configuratiohS= vjv} - -- such that
the erasure ofA’ equalsA (the erasure of a sequence of

tical, hence we only prove the first one). Supposeindexed configurations being defined as the sequence of the

-~

top, (S) (a, (Th—-1,"-+,70)) and top;(pop.(S))
(@, () _1, - ,75)). Note that for eactd < i < k — 1,
we haver; is correct because it is preserved pysh;, for
eachj > k + 1. For eachk < i < n — 1, we haver; = 7/

as required, becaug&apk+l(§) = popk+1(p0pk§).

[ |
We give here a fully detailed proof of Theorem 4:

Theorem 4. Let G be ann-CPDA parity game. Then the
winning region forElaise (resp. for Abelard) is a regular set
than can be effectively constructed.

In the sequeln-CPDA are used exclusively for defining
games and therefore, we will omit initial state and finalegat
when defining am-CPDA, i.e.denote am-CPDA as a tuple

(A,T,Q,¢) (hence considering it as a process defining an

infinite graph rather than an accepting device).

Mainly for technically and to improve readability, we
consider a version of CPDA in which we can rewrite the
top, element®. Hence the statement of Theorem 4 is to be
understood in this (richer) setting. Formally,sifis a stack
with links, then the stackew!s is the one obtained by
replacing thetop, element ofs by g without modifying the
link from this element

Example 6. Take the following 3-stack

s= a1 T ad¥1]

then

N
rewfs =[[[ a]1T[1T aBBI1]
C. First step: making a CPDA rank aware

Fix ann-CPDA A = (A, T',Q,4), a partitionQgr U Qa
of @ and a colouring function : Q — C' C N. Denote by
G the induced parity game.

5This can be simulated in the original model (mainly by pugttine new
version of a symbol) thanks te-moves.

respective erasures).

The initial configurationy), is obtained by indexing every
internal stack by0. Assume now that] ---v/, has been
constructed, then we have the following cases.

- A pushy, operation is applied at configuratian, in A.
Then all indices of the existing internal stacks are simply
inherited; and indices for the new internal stacks are
defined as follows. The indices of the internal stacks in
the top (k — 1)-stack of configuratiorv,,; are copied
from the former top(k — 1)-stack (hence one can think
of this as a generalization gfush;, to indexed stacks);
and, for each relevant the indices of theéop;(pop;(s))
stacks (wheres denotes the stack inj, ;) are assigned
index (m + 1).

A push‘f’k operation is applied at configuratiat), in A.
Then all previous indices are inherited and no new indices
are needed.

A pop;, operation or acollapse operation is applied at
configurationwv,, in A. Then all indices are inherited
(except those corresponding to thep; stacks inv;,
which have now disappeared).

In the sequelA’ will denote the indexed version of.

Then the following holds:

- The erasure of\’ equalsA.

- For any indexed configuratiarj,, for anyk-stacks inside
the indexedh-stack associated withy,,, the index ofs, if
defined, is greater or equal to all indices of thstacks
(j < k) contained ins.

The following proposition is crucial to the rest of the
proof. In particular, it means that if we store some infor-
mation on the stack, the index gives the "expiry date” of

the stored information, that is the step in the computation

starting from which the information has no longer been
updated.

Proposition 6. Let A and A’ be as above. For any indexed

configuration v/,,, for any internal k-stack s inside the

indexedn-stack associated with/, let « be the index of
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(iii) Definition of 9. Notation. Let ¢ and#’ be triples. We writerw t’ for the action of replacing the top-of-stack eleméat¢), say, by(a,t’); and let

2< k< n. _
0 0
pushy, pushy 3 TW (Tp—1,""* , Tk, b, Tk—2," " ,70)
where tlan, -+, oppa](@r) = 6T [Tn, - wppa](@r), 11 1 em1)
pushl{’k pushib’ (Tn—1,,7T1,t)),k
where t[zp, -, z2](z1) :== 6(7(;r [@n, -, z2](x1), b, Tkt 1[Tn, - -+, Tht3](xk))
popy, POPE 5 TW (Tr—1, " s Thh 1> Ths Th—1> " * » T0)
where top, (popy (S)) = (a/, (1), _1,-- . 7))
collapse collapse 5 7w (Tn—1, -, Thi 1> Ths Th_15 " "~ + T0)
wheretop, (collapse(S)) = (a/, (7},_1,- -+ ,7}))

where is the transition function of the automatdh

Table |
ILLUSTRATIONS AND DEFINITIONS.

s. If  # 0, thentopg+1(v,—1) = s. In particular one also
has thattop; (vz—1) = top,(s).

We now introduce the notion df-ancestor. Fix a partial
play A = vgvy - - - v, letv, = (g, s) be some configuration
in A and lets’ be some internak-stack ins. Then thek-
ancestorof s’ is the configurations; wherei is the index
of s’ in the indexed version of,,.

We now introduce the notion ofollapse rank Fix a
partial play A = wovy---v,, and assume that theop,
element ofv,, has a(k + 1)-link for some k. Then the
collapse rank inv,, is the smallest colour visited since the
k-ancestor of the pointed-stack.

Finally, we give a notion opop rank Fix a partial play
A = vy - - - vy, @nd a configuration,,, = (g, s) in A. Then
the pop rank folk (for any1 < k < n), when defined, is the
smallest colour visited since thieancestor ofpop,(s). In
particular, the pop rank for is the smallest colour visited
since the stack has height at least the height. of

Consider a partial play\ = vgvy - --v,, in G ending in
a configurationv,, = (g, s) such thattop,(s) has ann-
link (if the link is a k-link for somek < n the following
concepts are not relevant). Thiak ancestorof v, is the

configurationv; where the original copy of the-link in
top,(s) was created, opy if the link was present in the
stack of the configuratiomy. The link rank of v, is the
minimum colour of a state occurring it betweenv,,, and
its link ancestor; (inclusive)i.e. min{p(v;), - - - p(vm)}.

Definition 1. An n-CPDA equipped with a colouring func-
tion is rank-awarefrom a configurationyy if there exist
functionsColRk : I' — N and LinkRk : ' — N such
that for any partial playA = wovy---vg, the collapse
rank and the link rank (if defined) of the configuration
vy = (g, s) are respectively equal t6'ol Rk(top,(s)) and
LinkRk(top,(s)). In other words, the collapse rank and the
link rank are stored in theop,-element of the stack.

Remark 10. In the current setting, if the collapse ancestor
(respthe pop ancestor / the link ancestor) refers to a stack
that was internal in the initial configuration (i.e. the k-
ancestor isvg) then the collapse rankréspthe pop rank

/ the link rank) is simply the smallest priory seen since the
beginning of the play. Hence, it does not make much sense
but it permits the construction to remain uniform.

The next lemma shows that we can restrict our attention



to CPDA games where the underlying CPDA is rank-awarestack. The meaning of a symbgdlis that the corresponding

Lemma 8. For any n-CPDA A and any parity games
on it, one can construct an-CPDA A, and an associated
parity gameG,, such that there exists a mappingfrom the
configurations ofA4 to that of A,, satisfying the following
conditions:
« for any configuratiory, of A, A,y is rank-aware from
1 (vo);
« Eloise has a winning strategy i@ from some config-
uration v iff she has a winning strategy i, from
11 (Uo).
o both vy and vy ! preserve regular sets of configura-
tions;

The proof is a non-trivial generalisation of [19, Lemma
6.3] (which concerns 2-CPDA) to the general settingnef
CPDA and starting from an arbitrary configuration, and it
occupies the rest of the section.

Fix ann-CPDA A = (A, T,Q,¢), a partitionQg U Qa
of @ and a colouring functionp : @ — C C N. Denote

object (collapse rank, link rank or pop rank) has not been
yet settled. However, it can be very easily computed as it
necessarily equals the smallest colour visited so far (gdno
in Remark 10): this is why we made the computation of the
minimal colour visited so far in the control state df,.

In order to save space and to make the construction
more understandable, we do not formally describe but
rather explain howA,y is supposed to behave. It should be
clear thaté,,, can be formally described to fit this informal
description (and that some extra control states are agtuall
needed). Note that the following description also contains
the inductive proof of its validity, namely that., m; andr
are as stated above. To avoid case distinction on whether the
link rank is defined or not, we take the following convention
that min(t,¢) =  for everyi € N.

Assume A, is in some configuration((q,#),s) with
top,(s) = (o, m., my, ) and letwvyv; - - - v, be the begin-
ning of the run ofA4,, where we denote; = ((¢;,0;), si)
(henceq; = ¢ and sy, = s). The following behaviours are

by G the induced parity game. We define a rank-aware (tghose allowed in((g¢, ), s).

be proven)n-CPDA A,x = (A, T, Qr, drk) ) such that
Q xC CQy and

Lic =T x (CU{0}) x (CU{o,1}) x (" ufo})

The main configurations((q, 6), s) of A (by main we

mean a configuration that is reached after simulating aitrans

tion of A: indeed simulating one transition gf need several

steps inA4,x, hence goes through intermediate configurations

that we do not care about when stating our invariant) will
satisfy the following invariant. Firsf} is the minimal colour

visited from the beginning of the path/run/play. Second, if

top,(s) = (o, m¢, my, 7) then the following holds.

- me is the collapse rank.

- my is the link rank if it makes senseé€. there is am-link
in the current top symbol) or i otherwise.

- 7 is thepop rank that is, for everyi =1,--- ,n, 7(i) is
the pop rank for.

Let us now explain when one uses thesymbol and how
vy is defined. Let(q, s) be some configuration ipd. Then
11(q,s) = ((q,p(q), s") wheres’ is obtained by:
Replacing every internal symbel (i.e. that is not the
top,-element) by(y, ©, O, ©) if it has ann-link and
by (v, O, 1, ©) otherwise.

Replacing thetop, elementy by (v, p(q), p(q), p(q))
if it has ann-link and by (v, p(¢), T, p(¢)) otherwise.
Hence at the beginning of the run the invariant holds.
The transition function ofA,. mimics that of A and

updates the ranks as explained below. First, let us explain

the meaning of symbolsb. Such symbols will never be
created using ey)ushfk action: hence they can only be
duplicated (usingpush,) from symbols originally in the

1) For everyd(q,a,a) = (¢, popy,) with 1 < k < n, let
pop(s) = s" and lettop, (s') = (¢, m., mj, 7). Then
on reading:, A, goes to the configuratiofiq’, ¢'), s”)
whered’ = min(0, p(¢')) and s” is obtained froms’
by replacingtop, (s’) by
a) (/,0,0,(0,....0)) if m, =0, m; =0 andr’ =

(O,...,0).

b) (¢/,0",1,(0',...,0")) if m, =0, m; =1and7’ =
(O,...,0).

¢) (o, min(ml, 7(k), p(¢’)), min(m}, 7(k), p(¢')), "),
with

if i <k
if e >k

iy = {min( @070, p(@)
min(7 (i), p(q'))
Cases(a) and (b) correspond to the case where one
reach (possibly a copy) of a symbol that was in the
stack from the very beginning and that never appeared
as atop, element: then the value of the collapse rank,
link rank (if defined this is casé:) otherwise it is case
(b)) and pop ranks are all equal &.
We now explain caséc). Let v, be the k-ancestor
of topy(popy(s)). Thenz > 0 as we would be
otherwise in caséu) or (b). By Proposition 6, it follows
that topy, (popy(s)) = top(sz—1), and by induction
hypothesis, at stefpz — 1), m,, m; and 7’ had the
expected meaning. Lef be the index of the pointed
stack ins’: y is also the index of the pointed stack in
sz—1, and moreovey < x. The collapse rank img;
is min{p(qy), -, p(qz—1), p(qz) - -, p(an), p(¢')} =
min{m., 7(k), p(¢')}. Similarly, when defined, the link
ancestor ofs’ is the same as the one k)._;: hence
the pop rank inveq is min{m;, 7(k), p(¢')}.



2) For everyd(q,a,a) =

3

~

For any: < k, top;(pop:(s’)) top;(sz—1) and
therefore the pop rank foi in vy, is obtained by
updating 7' (i) to take care of the minimum colour
seen sincev, which (as for the collapse rank) is
min{7(k), p(¢')}: therefore the pop rank farin ve4q
equalsmin{7’(i), 7(k), p(¢')}.

For any i > k, pop;i(s’) pop;(s) and thus
top; (pop;(s')) = top;(pop;(s)). Therefore the pop rank
for ¢ in vy is obtained by updating the one in to
take care of the new visited colop(q’): hence the pop
rank fori in vey; equalsmin{r (i), p(¢")}.

(¢, push;) with 2 < j < n, let
push;(s) = s' and lettop,(s’) = (a, me, my, 7) (NOtE
that does not appear itop, (s')). Then, on reading,
A,k can go to the configuratiofiq’, 0'), s”) where¢’ =
min(6, p(¢’)) ands” is obtained froms’ when replac-
ing top, (s") by (o, min(me, p(q’)), min(my, p(q')), ')
with

if i £ j
if i = j

Indeed, the ancestor of the pointed stack in the new
configuration is the same as the one 4n As by
induction hypothesisn. is the collapse rank iny, the
collapse rank inv,y, is obtained by updatingn. to
take care of the new visited colour, namely by taking
min{m,, p(¢')}. Similarly, if defined, the link ancestors
in v, andwvyy; are identical and then the link rank in
ve1 IS min{m,, p(q')}.

For anyi # j, aspopi(s) = pop;(s’), the i-ancestor
of top;(pop:(s)") and thei-ancestor oftop;(pop;(s’))
are the same. Again using the induction hypothesis one
directly gets that the pop rank farin v, equals
min{r(i), p(q')}.

The index of thej-ancestor oftop;(pop;(s’)) is by
definition ¢ 4 1. Hence as the only colour visited since
vet1 IS p(¢') it equals the pop rank fof.

For everyd(q, o, a) (q',push?’k) with 1 < k <

n, and 8 € (I'\ {L}), on readinga, A, goes
to (q’,@’)/, where ¢ = min(0,p'(¢")), and applies
pushgﬁ’mc’mm 'k where m), min(7(k), p(¢')),

m] p(q) if k n and m; = {1 otherwise,
and (i) = min(7(¢), p(¢’)) for every: > 2 and
(1) = p(q).

Indeed, the pointed stack isf is top, (pop,(s)) and
therefore the collapse rank in,; is the minimum of
the pop rank fork in s and of the new visited colour
p(¢'), that ismin{r(k), p(q')}.

If & = n, the link ancestor ofv,1 IS vy itself
and hence the link rank is the colour of the current
configuration, namely(q’).

For any i > 2, as pop;(s) pop;(s') one also
has top;(popi(s')) = top;(popi(s)) and therefore the

4)

5)

pop rank fori in vyy; equals the minimum of the
one in vy with the new visited coloup(q’), that is
min{7(4), p(¢’)}. Finally as thel-ancestor ofop, (s)
is v, then the pop rank ford is the current colour,
namelyp(q’).
For everyd(q, o, a) = (¢', collapse), let collapse(s) =
s" and lettop, (s') = (¢/,m.,, mj, 7"). Then, on reading
a, A goes to the configuratiof(q’,6’),s”) where
¢ = min(f,p(q’)) and s” is obtained froms’ by
replacingtop, (s’) by
a) (o, 0, 9’ (@, .
(©,
b) (a 9’
(©,
C) (a mln(
with

S, 0") if ml, =0, m; =0 andr’ =

/\\_/

9’, ,01) if ml, =0, m; =1 and7r’ =

S\./

s Me, p(q')), min(my, me, p(q')), 7")
min(7'(4), me, p(q'))

T@_{mMWWMW)

Cases(a) and (b) correspond to the case where one
reach (possibly a copy) of a symbol that was in the
stack from the very beginning and that never appeared
as atop, element: then the value of the collapse rank,
link rank (if defined this is casé:) otherwise it is case
(b)) and pop ranks are all equal &.

We now explain caséc). Let = be the index of the
pointed stack in(¢, s). Thenaz > 0 as we would be
otherwise in caséa) or (b). By induction hypothesis,
m,, and7’ give the collapse rank / link rank / pop ranks
in v,_1. Moreover thek-ancestor of the target of the
top link in s’ is the same as the oneip_;. Therefore

the collapse rank is obtained by taking the minimum
of the one inv,—1 with min{p(q.), ... p(gn), p(¢")} =
min{me, p(¢’)}. Similarly (if defined) the link ancestor

in s’ being the same as the onep_1, the link rank

is obtained by taking the minimum of the onedp_;

with min{p(qz), . .. p(an), p(¢')} = min{me, p(¢')}.

Let ¢ < k. The i-ancestor oftop;(pop;(s’)) is

the same as thei-ancestor of top;(pop;(sz—1)).
Therefore the pop rank foi in vy is obtained

by taking the minimum of the one in,_; with
min{p(gz), . .. p(an), p(¢')} = min{me, p(¢')}.

Let ¢ > k. Then thei-ancestor oftop;(popi(s’)) is

the same as thé-ancestor oftop;(pop;(s.)): indeed

the collapse also modified thabp, stack. Therefore
the pop rank fori in v,11 is obtained by taking the
minimum of the one inv, with the new visited colour
p(q')-

For everyd(q,o,a) = (¢,rew’) with 3 € (T \
{L}), on readinga A goes in state(q’,0') where
o' min(g, #) and app|IeSrew(B mlomisr where
m., = min(me,p(¢’)), m; = min(my,p(¢’)) and
7'(k) = min(7(k), p(¢")) for everyl < k < n, if

if i <k
if ¢ >k



we let top,(s) = (o, me, my, 7). action whilst going to state (through an intermediate

This case is trivial as we just need to update all in- dummy vertex coloured by): this is the case where
formation by considering the colour of the new control Abelard wants to simulate a collapse involving the link.
state. Alteipatively Abelard can decide to push the symbol
From the previous description (and the included inductive (7, i) without appending a link to it.
proof) we conclude that, for any configuration of A, Ay Later in the play, if theop, -element is of the fornfy, ﬁ),
is rank-aware fromv; (vo). and if the player controlling the current configuration v&ant

to simulate a move to statgthat collapses the stack, then
this move is replaced by one that goes to a dead end vertex
which is winning for Eloise iff ¢ € R; wherei is the
link rank found on the currentop;-element and which
corresponds to the smallest colour visited since the axlgin
Now, in order to proof the second point of Lemma 8, onecopy of symbol(y,l_f) was pushed onto the stack (recall
considers the parity gante,, on A, defined by that A, is rank-aware). The intuitive idea is that, when
« using a similar partition as the one i from Q: simulating a collapse (involving an orderdink), Eloise
Qg = Qr x C (the control states i, \ @ x C  wins iff her initial claim on the possible reachable states
inducing configurations with exactly one successor carby following the link was correct. Otherwise she loses.
be controlled by any player), There are now two tasks. The first one is to prove that the
« and extending to Q. by letting p((q,6)) = p(#) and  previous simulation game can be generated by 4EPDA
assigning the maximal colour to states@i, \ Q x C with the extra property that it never createdinks. The
(hence not modifying the winner). second one is to prove that this game correctly simulates

It is immediate tha€loise has a winning strategy & the original onei(e. Eloise wins inG.; from some vertex

from some configuration, iff she has a winning strategy iff she wins in theG; from the configuratiom(v) for some
in Gy from vy (vg). mappingv, — to be defined — transforming vertices of the

Finally, the fact that both/; and v;'! preserve regular first game into vertices of the second one). The first task (see
sets of configurations is immediate: for this one basically>ection D1) is simple as the initiad-CPDA defining G
needs to simulate an automaton on the image;bfor ,/1—1) is rank aware and therefore comes with a functienk Rk
that can be computed on-the-fly (except for the very las@S in Lemma 8. The second task (see Section D2) is more
steps ofy; where one needs to know the control state befordnvolved because we have to defing and to prove that it
deducing thetop, stack element as it as information on the Preserves (arbitrary) winning configurations.
colour of the control state. However, this is not a problem 1) The simulation gameGy;: As in Gy the player that
to have a slight — finite — delay in the final steps of the control the current vertex has to make a move, apply

Remark 11. Note that building a rank-aware-CPDA from
a non-aware one increases the stack alphabe€by? and
the state set bg™*! (recall that we need extra states, that
where hidden in the previous description, mainly to store

simulation). a transition of then-CPDA. In case this player wants to
simulate a transition going tg and performing aush]™"
D. Second step: frors, to Gyr. Removing ther-links action on the stack, the play goes as follows.
Let Ay = (A, Tik, Quk, 6 ) be the (rank-awarep- - The CPDA goes in a new control stafe and no operation
CPDA generating the gamg,,. obtained in the previous  on the stack is performed.
step - From ¢7, Eloise has to move to a new control Egaﬁe
Consider the following informal description of a new and can push any symbol of the forim, R) where R =
gameGy; defined fromG,. The new games mimic& (Ro, - - Rq) € (29)4T1. Here we assume that the symbol
except that whenever a player wants to perforpuah] ™™ comes with no links (alternatively, we could add a dummy
action on the stack, this is replaced by the following nego- link and state that no collapse can be performed from a
tiation between the players: configuration withtop; element being of the forryy, R).
. Eloise has to provide a vectoR — (R, Rq) €~ From ¢, Abelard has to play and choose one of the two
(2Qu)d+1 — here@,y are the control states of, — possible options: either go to statend perform no action

whose intended meaning is the following: she claims ©On the stack, or pick any staigin some R;, go to an

that she has a strategy such that if the newly created link intermediate new statg’ (of colour i) without changing

(or a copy of it) is eventually used by some collapse the s_tack and from this new configuration go to state

then it leads to a state iR; wherei is the smallest ~ and finally perform gop,, action.

colour visited since the original copy of the link was The intended meaning of such a decomposition of the

created. pus_}h?’n operation is the following: when choosing the sets
« Abelard has two choices. He can agree wWilvise’s in R, Eloise is claiming that she has a strategy such that

claim, pick a state; in someR; and perform apop,, if the n-link created by pushingy is eventually used for



collapsing the stack then the control state after collapsin a € Ay such that5(q,a,a) = (p, collapse) andp €

will belong to R; wherei is meant to be the smallest colour Rpinkri(a) thend(q, (o, R) ) = (tt,id) (otherwised
from the creation of the link to the collapse of the stack is undefined). _

(equivalently it will be the link rank — as computed in - Vg € Q., V(a, R) € Ty, if there exists some
A — the just before collapsing). Note that; are sets a € Ay such thatd(q, «, a) (p, collapse) andp ¢
because of the fact that we have a game and h&taise RLGkRk(a thend(q, (a, R) 1) = (ff,id) (otherwise

has not a full control of the play. Then Abelard is offered § is undefined).

to simulate the collapse (here statels only used for going In order to define a game gramh: out of Ay we let
through a state of coloub If he does not want to simulate - i
e = Qe U{q" | ¢ € Quw, v € Ta}U{q" | g €

a collapse then one stords for possibly checking its truth Qrx, 0 < i < d}U{ff}.Finally to define a corresponding
later. n- CPDA parity gameGy; we extendp by letting p(¢") =

Later, in case some player wants to simulate a coIIapsg — d for any ¢ € Q (has one cannot loop forever in
transition involving ann-link and going to_statey, the such states, it means that they have no influence on the parity
top, element is necessarily of the forfn, R) Then the _condition) andy € T and p(g;) = i for every0 < i < d.
simulation is done by going to a dead-end vertex that is Note that.A; never creater-link, hence the gamé&; is
winning for Eloise iff ¢ € Rpinkri(y), 1-€. Eloise wins iff a5 expected.

—

her former claim onR was correct. 2) Correctness of the simulatiorConsider some config-

For all other kind of transitionspppy, pushy, rew or  urationv = (p,s) in G,. We explain now how to define
collapse involving < n links), the simulation is immediate an "equivalent” configuratiom,(v) in G); (here equivalent
(either the top element is a single letter frdimor it is an  is in the sense of Theorem 6). The transformation simply
element froml” x (29)9+1 in which case one simply ignores replace any occurrence of a stack letter (caH/)|tW|th an

the (2?)4+! component). n-link in s by another letter of the forngy, R ). Let s’ be
Formally we setdyr = ( Aj¢, Ti¢, Qu¢, d1¢ ) with the stack obtained by popping every element abgvand

- A = AU (2@ ) Ul | g e Qu, 0<i<diu letS ={q| EIO|se wins inG, from (g, collapse(s'))}.
{go,tt, ff} Then one setsf — (R,---,R).

- T — Qi )d+1 : .
D =T U T >fl(2 <) ) Example 7. Assume we are playing a two-colour parity
" Qi = QuUH{q" [ ¢ € Qu, a € Tup U | ¢ € game et

Qrk}U{qi|qurkaOgigd}u{#aﬂ} Ny P
- &i¢ is defined as follows. s=[[[al] [[1[ abe]] [[I[ abe]l]],

— Vg € Qu, Vy € T, Va € Aif 6(q,7,0) = (d50p) R ={r|(r,[[[a]]]) is winning forEloise inG} and & =
is such thatop is neither of the formpush!™ nor (R, R). Then

/6 . .
rew; nor a collapse using an-link, thendé(q,v,a) = e N
5(q, (7, R),a) = (¢, op). va(s) =[[[all [[1T ablc, R)I] [[1[ ab(c, R)]I1].
-Vg € Qu VW € Ik, Va € A ﬁif In this section we prove the following result stating the
6(g;v,a) = (q rewy), thend(g,v,a) = (¢,rew))  validity of the previous construction:

andd(q, (v, R),a) = (¢, rew!” R’)

. Theorem 6. Eloise wins inG,, from some configuration
_vq € Qrk7 V7 € 1—‘rka Va € A if 6(Q775a) =

if and only if she wins Gy from s (v).

(p pushﬁ’") then 8(g,v.a) = d(g.(7. B),a) =
Proof: In the following, we intensively work with
(p°,id)
- Vp € Qu, V7 c plf’VR c (2Qrk)d+l 5(pﬁ a, R) strategy (both inG,, andGyy). When defining the value (_)f
o push(ﬁ R, 1) Note here that we createlalink as such a strategy on some partial play we may alternatively

define it as a vertex (which respects the definition of a

strategy as we gave it) or as a pdir,op) formed by a

folv f Cit control state and a stack operation. In the latter, one has to
one can safely forget it. — Ourdi1 understand this as the strategy that goes to the confignratio

- Vp € Qrk’ v E Pa VR € (29%)7, (g, 0p(s)) if s denotes the stack in the current configuration.

5(p’, (3, R ) o) = (p, Zd)-_> ., } _ Assume that the configuratian= (po, s) is winning for

- Vp € Quy VB € Tu,VR € (29%)4+1 vg' € Ay, Eloise inGu, and letd be a winning strategy for her. Using

5(p’, (B, R),q") = (¢',id) providedq € R; (otherwise &, we define a strategy for Eloise inGy from v, (v). The

we do not permit in the definition af-CPDA to push
symbol without link: however this link being never used,

¢ is undefined). o strategyy stores a partial play ifG,x, that is an element
-V¢' € Qu, Y(3,R) € Ty, d(¢",(6, R),e) = in Vi (whereV,, denotes the set of vertices @). This
(g, pop,,). memory will be denoted. At the beginningA is initialized

—-Vq € Qu, V(a,ﬁ) € Ty, if there exists some to the vertex(pg, L). At any moment in the play, if the



current vertex hagop; symbola and control state, then
the last vertex ofA has control state and top; symbol
a or (o, R) (in this case there is an-link from the top,
symbol).

We first describep, and then we explain how is updated.

Choice of the move Assume that the play is in some vertex ~

(p, s) with p € Qg. The move given by> depends orp(A)
(we shall later argue thab is well defined while proving
that it is winning):

- If ®(A) = (q,o0p), with op being somepopy, pushy,
push?’l with i < n, or collapse involving an < n-link
thenEloise goes tdq, op(s)).

- If ®(A) = (g, rew?), then Eloise goes ta(q, rew?(s))
if topi(s) = b for someb € I' and she goes to
(g, rew(™ ™) (s)) if topa(s) = (8, R).

- If ®(A) = (g, collapse) then Eloise goes td(i, s). We
shall later see that this move is always valid

- If ®(A) = (¢, push"™) thenEloise goes tdq®, s).

In this last case, or in the case where o and Abelard
goes to(¢“, s), we also have to explain hofloise behaves
from (¢%, s). _

She has to provide a vectdt € P(Q)?*! that describes
which states can be reached if théink created by pushing

- If the transition is of the formg, rew) or (q, rew§a=R>)

and if (p, o) denotes the last configuration i, then the
updated memory ig\ - (g, rew$ (o).

- If the transition is of the forn{#, id) or (ff,id), the play
is in a dead end. Therefork needs not to be updated.

If the last traipsitions form a sequence of the fqufy, id)-
(¢°, push{™ Ty . (¢,id), then the updated memory is
A - (q,push{"" (o)), where (p,o) denotes the last con-
figuration in A.

- If the last transitions form a sequence of the fdify, id)-

(q?,pushga’R)’l) - (r,id) - (r, pop,), then we extend\

by a sequence of actions (consistent with that starts
by performing transition(q, pushi”") and ends up by
collapsing (possibly a copy of) the link created at this first
step and goes to statevhile visiting iasa minimal colour
in the meantime. By definition ofR such a sequence
always exists. More formally, if{p,c) denotes the last
configuration inA, then the updated memory is now a
play in Gy, A - (¢, pushy""(c))vg -+ vg - vk+1, Where
Eloise respect® and such thaty,1 = (r,popn(c)) is
obtained by applying a collapse from, and configuration
(g, push{""(0)) is the link ancestor ofy,.

Therefore, with any partial play in Gy in which Eloise

a (or a copy of it) is used for collapsing the stack, dependind©SPects her strategy, is associated a partial play in
on the_smallest visited colour in the meantime. In order toCrx- An immediate induction shows thaioise respectd
define R, Eloise considers the set of all possible continuain A. The same arguments works for an infinite playand

tions of A - (¢, push{""(c)) (where(p, o) denotes the last
vertex of A) where she respects her strate§y For each

the corresponding play is therefore infinite, starts from
v2(po, s) and Eloise respect® in that play. Therefore it is

such play, she checks whether some configuration of th@ Winning pla_y. . o _ .
form (r, pop, o) is eventually reached by collapsing using Moreover, if A is an infinite play, it easily follows from

(possibly a copy of they-link created bypush{". If it is
the case, she considers the smallest colausited from the

the definitions ofp and A that the smallest infinitely visited
colour in X is the same as the one in Hence, any infinite

moment where the link was created to the moment collapsBlay in Gir starting fromus(po, L) whereEloise respects
is performedi(e. the link rank before collapsing). For every ¢ iS winning from her.

i € {0,...d}, R;, is defined to be the set of statess @
such that the preceding case happens. More formally,

R; = {r | 3 A-(q, pushi""(0))vo - - - vg-vk4+1 - - play in
G whereEloise respect® and s.t.vgy1 = (r, pop, (o))
is obtained by applying a collapse from, and

configuration(q, push{"" (o)) is the link ancestor ofy, }

Finally, we setl—%> = (Ry,...,Rq) and Eloise moves to

(¢, push{™ ™ (s))

Update of A. The memoryA is updated after each visit to
a configuration with a control state . We have five cases
depending on the transition:

- If the transition is of the formig, op) with op being some
popi, pushy, pushi™* with i < n, or collapse involving
an < n-link, then we extendA by applying the same
transition. That is, if(p, o) denotes the last configuration
in A, then the updated memory is- (¢, op(o)).

Now, considering finite playsi.é. plays ending either
in statet# or ff). Reaching a dead-end is necessarily by
simulating a coﬂ)apse from some configuration witbp,
of the form (g, R). We should distinguish between those
elements(«, R) that are "created” beford.€. by the nus
function) or during the play (byEloise). For the second
ones, one may note that wheneoise wants to simulate
a collapse, she can safely goes to statémeaningy is
well defined): indegj, if this was not the case, it would
contradict the wayR was defined when simulating the
original creation of the link. For the same reason, Abelard
can never reach staf¢ providedEI%c,e respects her strategy
. Now consider an elementx, R) created byv, and
assume that one player wants to simulate a collapse from
some configuration with such tp, element. Call\ the
partial play just before and call the associated play i@.
Then in A, Eloise respects her winning strategy If she
has to play next inA, strategy® indicates to collapse; if
it is Abelard’s turn to play it can collapse. In both case, it



means that the configuration that is reached after collgpsin- If ¢(A) =

is winning for Eloise (it is a configuration visited in a
v_vpmng play). Hence its control state belongsRowhere
R = (R,---, R) by definition ofv, and therefore, from the
current vertex inGy¢, there are no transition t§f and there
is at least one ta&t. Therefore finite plays ifis; are won by
Eloise (provided she respects.

Hence, any finite play ifis); starting fromw, (po, s) where
Eloise respects is winning from her.

Altogether, it proves thap is a winning strategy foEloise
in Gir from (pin, Ln).

- If p(A) = (¢”

Update of A\. The memory\ is updated after each move
(by any player). We have four cases depending on the last
transition:

(q, rewga’ )

(¢, rew) or p(A) = ) thenEloise
goes to(g, rew{ (s)).

- If o(A) = (&,id) then Eloise goes tdr, collapse) for
somer € R; where we letr be_t)he stack in the last con-
figuration of A, topi(0) = (o, R) andi = LinkRk(«).
Note that in this case, the collapse involvesrahink.

,id) thenEloise goes tdq, push{""(s)).

- If the transition is of the fornig, op) with op being some

Let us now prove the converse implication Assume that
the configuration,((po, s)) is winning for Eloise in Gy,
and lety be a winning strategy for her. Using, we define
a strategy® for Eloise in G, from (po, s). Recall how
va((po, s)) is defined: it replaces every symbwolin s with
ann-link by a pair(a, (R, ..., R)) whereR is the collection
of statesr such thatEIO|se WInS from(r,s’) wheres’ is

the stack obtained by removing every symbol (and stacks)

abovea and then performing collapse. We can therefore
assume that we have a collection of winning strategies for al
those configurationg, s'). Then, during a play whetgloise

respects®, if one eventually visits such a configuration
(r,s"), the strategyd will mimic the winning strategy from

that point and therefore the resulting play will be winning -
for Eloise. Then in the rest of this description we mainly

popk, pushg, pushy™ with i < n, or collapse involving
an < n-link, then we extend\ by applying the same
transition. That is, if(p, c) denotes the last configuration
in A, then the updated memory Js- (¢, op(0)).

- If the transition is of the fornfq, rew) then we extenc

by mimicking the same transition. That is(jf, o) denotes
the last configuration im\, then the updated memory is
A+ (g, rewt(a)) if topi(s) = bp for someg € I and it is

(g rew® T () if topy(s) = (8, F).

r If the transition is of the fornig, pushi"") then, if (p, o)

denotes the last configuration i the updated memory

is A+ (¢,0) - (a7, push{™ ™ (0)) - (g, push(® T (0))

where (1 - () = (¢ push{® ™ (0)).
If the last transition is of the fornfr, collapse) involving
ann-link, then we have two cases. Either the collapse was

deal with the case of plays where this phenomenon is not following (possibly a copy of) am-link that was already

happening.

The strategy® stores a partial play ifzi¢. This memory
will be denoted). At the beginning) is initialized to the
vertexva((po, s)). At any moment in the play, if the current
vertex hastop; symbola and control state, then the last
vertex of A has control state andtop; symbola. At any
moment in the play, if the current vertex has; symbol
(o, R)) and control state, then the last vertex oA has
control statep andtop; symbola with ann-link; moreover
if (possibly a copy of) this link is eventually used in a
collapse, then the state that will be reached after coltapsi
will belongs toR; wherei would be the link rank just before
collapsing.

We first describeé and then we explain how is updated.
Recall that we switch to a known winning strategy in case
we apply a collapse from (possibly a copy of) =aink that
was already insg.

in so in case we claim (and prove later) that we end up
in a winning configuration and switch to a corresponding
winning strategy as already explained. Either we follow
ann-link that was created during the play and we let

vo - - - Uy, and lety; be the link ancestor af,, 6. Then the
updated memory is obtained by backtracking insidentil
reaching the configuration where the (simulation of the)
collapsedn-link was created (this configuration being the
link ancestor) and then extend it by a choice of Abelard
consistent with the collapse. That is, M = vg - - - vy,
and if v; = (p’,0) is the link ancestor of,,, then the
updated memory isq - - - v; - (1, pop, (7)) - (r, popn (o))
where: denotes the link rank in the configuratisgnwas
just before collapsing.

Therefore, with any partial plag in G,x in which Eloise

respects her strategy, is associated a partial play in
Gys.

Note that if we end up in a configuration that is

known to be winning,\ is no longer extended. This also

Choice of the move Assume that the play is in some vertex
(p, s) with p € Qg. The move given by> depends orp(A)
(we shall later argue thap is well defined while proving
that it is winning):

- If p(A) = (g,0p), with op being somepopy, pushy,
push{"" with ¢ < n, or collapse (necessarily involving
an < n-link) then Eloise goes tdq, op(s)).

hence whenever doing pus
|ndex of the current conf|gurat|on Then if thep; element ofv,, is some
(o, R) then the link ancestor ob.,, is defined to bev; wherei is the
indexed attached withR. Note in particular that the control state in the
link ancestor is of the formp”.

6Here we implicitly extends the notion of link ancestor asldmb In

Gy instead of creating-link one pushes symbol of the forrm R)

h<“ )1 one attached to the vectd® the



implies that when collapsing an-link that was already
in sg one necessarily ends up in a winning configuration.
Indeed assume the contrary and Jetbe the constructed
play before collapsing: then eithé&loise has to play and
therefore moves tat (and therefore the configuration in
A after collapsing is winning by definition af,, leading

a contradiction) of Abelard could move tf (leading a
contradiction withy being winning). Therefore from now
on we restrict our attention to the case where thinks
(and their copies) iy are never used to collapse.

An immediate induction shows th&loise respects in
A. The same arguments works for an infinite play and
the corresponding play is therefore infinite, starts from
(pin, L) andEloise respects in that play. Therefore it is
a winning play.

Now, in order to conclude that any playin G,y in which
Eloise respects her strategyis winning for her, one needs
to relate the sequence of colours Anand in A. For this,
we introduce a notion of factorisation of a partial play in
A = vgvy - - - v, (We should later note that it trivially extend
to infinite plays). A factor will be a nonempty sequence of
vertices of the following kind:

(1) it is a sequencey, - - - v; such that the transition from
vp—1 t0 vy, is apushi’®, the transition fromv,_; to
v is collapse involving am-link, and v, is the link
ancestor ofuy,.

(2) or it is a single vertex;

Then the factorisation oA denotedFact(A) is a sequence

of factors inductively defined as follows (we bracket fastor

to make them explicit):

Fact(A) = [vg---vi], Fact(vp41 - - -vy,) if there exists
somek such thaty - - - vy is a in (1) above, an@act(A) =
[vo], Fact(vy - - - v,) Otherwise.

In the following, we refer to theolour of a factoras the
minimal colour of its elements.

Note that the previous definition is also valid for infinite
plays. Now we easily get the following proposition (the
result is obtained by reasoning on partial play using a smpl
induction combined with a case analysis. Then it directly
extends to infinite plays):

Proposition 7. Let A be some infinite play iz, starting
from (po,s) where Eloise respectsb and assume that it
never collapses (possibly a copy of) adink in s. Let A
the associated infinite play iy constructed fromb. Let
Ag, A1, --- be the factorisation ofA and, for everyi > 0,
let ¢; be the colour ofA;.

Then the sequencg;);>o and the sequence of colours
visited in A (ignoring the dummy colours of states of the
form ¢* ¢-) are equals.

The previous proposition directly implies thdt is a
winning strategy forEloise from(po, s) iN Gyx.

3) Regularity of sets of winning positions is preserved:
We established in Theorem 6 thélbise wins inG,, from

some configuration if and only if she wins inGy; from
vo(v). It remains now to prove that regular sets of winning
positions are preserved by inverse imagerby

Proposition 8. Assume that we have an automat®p that
recognises the set of winning configurationsGr:. Then,
one can compute an automatd, that recognises the set
of winning configurations irG.y.

Proof: We can safely assume that any control state of

Bys is of the form(p, R) with R C Qs and such that, after
reading some input stack (possibly with some pending
parenthesisP; is in a state of the forn{p, R) with R =
{r | Bis accepts(r,s’)} wheres’ is the stack obtained from
s by closing the pending parenthesi®(s’ = s]* for some
k <mn).

On input (p, s) the automator3,, Simultaneously com-
putes on-the-fly the image by ((p, s)) and simulates;; on
it. In order to computex((p, s)), Bk heeds to retrieve the
states that are winning for the stack obtained by collapsing
the link.This is simple as it is given by ti& component of
By (recall thatB,,, simulatesi3;;) and hence the automaton
can access it by definition of the model of automata. Indeed,
the information is correct before reading the first lettethwi
ann-link, and by induction on the number oflinks, if it is
correct after reading thefirst n-links, on reading th¢k+1)
n-link, the information is still correct as it was correct for
the prefix read so far and therefaBg, correctly simulated
B on this prefix. [ |

E. Third step: fromGy; to G'. Reducing the order

The contain of Section E reuse many of the ideas
and results developed in [8]: abstract pushdown
automata, automata with oracles, description of the
winning region by mean of automata with oracles.

Our only contribution in this section is to show

that the approach can be used for our purpose of
describing the winning region in G;¢. A minor change
is that we use deterministic CPDA instead of collapsi-
ble pushdown processes (which are CPDAs withou
input, hence somehow non deterministic which is not
an issue when dealing with game graphs).
Therefore, the main result, Theorem ?? comes with
no proof and we refer the reader to the long version
of [8] for this.

I) Absiract pushdown automataiVe situate the tech-
niques developed here in a general and abstract framework
of (order-1) pushdown processes whose stack alphabet is a
possibly infiniteset.

An abstract pushdown automatois a tuple A
(A,Q,T, ) where A is a finite input alphabetQ is a
finite set of states]" is a (possibly infinite) set called an
abstract pushdown alphabetaind containing a bottom-of-
stack symbol denoted € I', and

6:QxTI' xA—Qx{rew(y),pop,push(y) | v€TI}




is the transition function. We additionally require that € B=(S,Q,T,9,sin, 01O, Acc) whereS is a finite set
Q,Vy # L, Va € A, 6(q,v,a) ¢ {(¢',push(L)) | ¢ €  of control states is a set of input stateg is a (possibly
QU {(¢,rew(Ll)) | ¢ € Q} andd(q, L,a) ¢ {(¢',pop) | infinite) input alphabetsi, € S is the initial state O, are
g € QYU{(¢,rew()) | ¢ € Q@andy # L}, i.e.the subsets ofl" (called oracleg andé : S x {0,1}" — S
bottom-of-stack symbol can only occur at the bottom of theis the transition function. Finallydcc is a function from
stack, and is never popped or rewritten. S to 2¢. Such an automaton is designed to accept in a
An abstract pushdown conteig a word inSt = L(T"\ deterministicway configurations of an abstract pushdown
{L})*. A configuration ofA is a pair(q,c) with ¢ € @ and  automaton whose abstract pushdown content alphaléet is
o € St. Note that the top stack symbol in some configurationand whose control states afe
(g, 0) is the rightmost symbol of. Let B = (S5,Q,T,4,sin,O01--- Oy, Acc) be such an
automaton. With every € I we associate a Boolean vector

Remark 12. In general an abstract pushdown automaton |sw(7) — (by,---by) where

not finitely describable, as the domain &fis infinite and

no further assumption is made an 1 ifreo;
Example 8. A pushdown automaton is an abstract push- ‘10 otherwise.

down automaton whose stack alphabet is finite. . _
The automaton reads a configurati®n= (g, y17y2 - - - ¢)

~ An abstract pushdown automatod = (A, Q,I'0)  from left to right. Arun overC is the sequence, - - - , s¢+1
induces a (possibly infinite) graph, called abstract push- ¢ ,ch thatsy = sin and s, 1 = d(s;, 7(y;)) for everyi =
down graph,denotedG/(A) = (V, E), whose vertices are 0,---,¢. Finally the run isacceptingif and only if ¢ €
the configurations ofA (i.e. pairs from¢@ x St), and edges
E CVxAxV are induced by the transition functioni.e.,

from a vertex(p, oy) one has, provided(p, v, a) is defined, Remark 13. When the input alphabet is finite, it is easily

Acc(spy1).

an a-labeled edge to: seen that automata with oracles behave as (standard) deter-
_ (q7 0,,7/) Wheneveré(p,% a) _ (q’ rew(v’)). ministic finite automata.

- (q,0) whenevers(p, v, a) = (g, pop). We are going to use automata with oracles to accept sets
- (g,077') whenevers(p, v, a) = (g, push(v)). of configurations ofn-CPDA that does not have-links.

Example 9. n-CPDAs that does not createlinks (as.A;) As seen in Example 9 for an orderCPDA that does not

are special cases of abstract pushdown automatanletl ~ haven-links, we takel' to be the set of all ordefr — 1)
and consider such an-CPDA A = (4,Q, %, 5). Setl to stacks with links. The sets of configurations of an order-

be the set of all ordefn — 1) stacks with links oveE, and " CPDA withoutn-links accepted by automata using, as
for everyp € Q, v € T with 0 = top,y anda € A, we oracles, regular sets of ordét-— 1) stacks are easily seen

defined(p, v, a) to be to be regular.

- (g, pop) if §(¢q,0,a) = (q, pop,,); Proposition 9. Fix an ordern CPDA A and consider an au-
- (g,push(7)) if §(q,0,a) = (q, pushy); tomaton’s with oraclesO;, .. ., O, respectively accepted by
- (¢, rew(op(7))) if 6(q,0,a) = (q,0p) wherek < n and  automataBy, ..., B, (hence working on ordefr—1) stacks

op is an orderk action. with links). LetC be the set of configurations of accepted
- undefined otherwise. by B. Then we can construct an automaton (hence working
It follows that the abstract pushdown automatonon ordern stacks with links), of siz€(|B||B]--|Bxl),
(A,Q,T,¢") and A have isomorphic transition graphs. accepting the se€'.

Consider now a partitio®g U Qa of Q betweenEloise Proof: It mainly suffices to mimic the behaviour &
and Abelard. It induces a natural partitibg UV of V by  and to run in parallel thé3; to compute the value of the
settingVg = Qg x St andVa = Qa x St. The resulting oracles. n

game graply = (Vg, Va, F) is called arabstract pushdown 3) Conditional games and winning regions of abstract
game graphLet p be a colouring function frond) to a finite  pushdown game:From now on, let us fix an abstract
set of coloursC C N. This function is easily extended to a pushdown automatomd = (A,Q,T,d) together with a
function fromV to C by settingp((¢, o)) = p(q)- Finally,an  partition Qg U Q4 of @ and a colouring functiop using a
abstract pushdown parity gamis a parity game played on finite set of colour”. Denote respectively b§.,s = (V, E)
such an abstract pushdown game graph where the colourirndG,s the associated abstract pushdown game graph and
function is defined as above. abstract pushdown parity game.

2) Automata with oracles..We now define a class of @ We can define an automaton with oracles that accepts
automata to accept the winning positions in an abstracEloise’s winning region of the gam@&,s. The oracles of
pushdown game. Arautomaton with oracleds a tuple this automaton are defined using conditional games. For



every subseR of () the gameG..,s(R) played over is the Moreover in caseG,;,s aims at coding an orden- CPDA
conditional game induced b} overg. A play A in G,ps(R) that does not use-links, the resulting gamé&’ is an order-

is winning for Eloise iff one of the following happens: (n — 1) CPDA game.

« In A no configuration with an empty stack.¢. of Proof: We refer the reader to [8] for the first part of
the form (¢, 1)) is visited, andA satisfies the parity he statement. The fact that in ca8ey. aims at coding an
condition. ) ) ) . ordern CPDA that does not use-links, the resulting game

+ In A a configuration with an empty stack is visited and ¢/ 5 an ordertn — 1) CPDA game, is simply by observing
the control state in the first such configuration belongsy,e shape of3'. ' -
to R.

More formally, the winning condition i ,ps(R) is F. Conclusion

. y . w We are ready to conclude. For this we reason by induction
[Spar \ V(@ x {LLPV] U V(R X {LYV on the ordem of G. If n =1 (i.e. G is a pushdown game),
For any statey, any stack lettery £ 1, and any subset it is a well known result that the winning region is regular
R C Q it follows from Martin’s Determinacy theorem that (seee.qg.[15]).

eitherEloise or Abelard has a winning strategy frém L) Assume the result holds for some order— 1. Now
in G.bs(R). We denote byR(q, ) the set of subset® for consider an order- CDPA gameG. Following the transfor-
which Eloise wins inG,ns(R) from (g, L~): mationsG — Gyx — Gy ~ Gaps — G’ one ends up with

o , an ordertn — 1) gameG’. Hence the winning regions in
R(¢,7) ={R < Q| (¢, L) is winning for Eloise inGans(R)}G’ is recognised by an automaton by induction hypothesis.
Then one has the following characterisation of the set!Nen, using Proposition 9 one gets an automaton recognising

of winning positions inG,;s in terms of automaton with the winning region inG_If' using _Pr(_)positio_n 8 one gets
oracles. an automaton recognising the winning regionGg, and

finally using Lemma 8 one gets an automaton recognising
Theorem 7. [8] Let Gans be an abstract pushdown parity the winning region inG.
game induced by an abstract pushdown automatbr= Concerning complexity, going from ordet to order
(4,Q,T,6). Then the set of winning positions iB.bs (1) cost an exponential blow up in the size of automata.
for Eloise (respectively for Abelard) is accepted by anHence constructing an automaton recognising the winning
automaton with oraclest = (S, Q,T', 9, 5,01 ---On, Acc)  regions isn-ExPTIME-complete (completeness come from

such that the fact that deciding whether the initial configuration is
.« S =29 winning is already complete for-ExPTIME [6]) and the
o 5, =10. resulting automaton is times exponential in the size of the
 There is an oracla), r for everyp € Q and R C @, n-CPDA describingG.
andy € O, g iff R € R(p,v) and~ # L. We start with the full proof of Corollary 2.

e There is an oraclg?; and~y e O, iff v = L
« Using the oracles§ is designed such that:

— From state § on reading 1, A goes to{p | formula

(p, L) is winning forE!oTse N Gaps } (i) There is an algorithm that transform&S, ¢) to an
— From stateS on readingy, A goes to{p | S € ordern CPDA A such thatL(A) = |¢]..

Corollary 2. Lett be aX-labelled tree gererated by an
order-n recursion schemeS and let o(z) be an MSO-

R@v 7)}'_ ) ) (i) There is an algorithm that transformgS, ¢) to an
« Accis the identity function. order-n recursion scheme that generates
4) Solving the abstract pushdown gamén [8] one Proof: We only concentrate of2) as it implies(1).

We denote by, u = ¢(x) the fact that a node of ¢ satis-
fiesp(z). For any node:, we lett,, be the tree obtained from
Theorem 8. [8] Let Gaps be an abstract pushdown parity ¢ by marking the node (and no other node). Consider now
game induced by an abstract pushdown automatbr=  the MSO formula)(y) = root(y) A 3z, marked(z) A ¢(z)
(4,Q,T,0). Then one can effectively construct a new gamghere root and marked are predicates respectively true at
G’ such that the following holds: ) the root and at a marked node). Then for any nede

1) A configuration(p;,, L) is winning forEloise inG if  t,u = ¢(z) iff t,,e = ¥(y). Using the well-known

and only if (pin, L, (0,...,0), p(pin)) is winning for  equivalence between MSO logic and automata (seg

proved the following result.

Eloise inG. [17]), one can construct a parity tree automatBnthat
2) Foreveryg € Q,y€l'andR C @, R € R(q,y)ifand  accepts, iff t,,c = ¢(y) iff t,u = p(z).
only if (¢,7, (R, ..., R), p(q)) is winning forEloise in In order to construct,,, we first annotate with informa-

G. tions on the behaviour o8 on the subtrees of We mark



t by p-calculus definable sets to obtain an enriched treef ¢ and lett’ be the tree obtained by unfoldirif) from
denotedf. With each pair(q, d) € Q x Dir(¥), we associate u’. We want to show that’ is the solution of some order-
a formulay, 4 such that, u |= 1), q iff the d-son ofu exists  (n + 1) scheme. By Theorem 1, it is enough to show that
and B has an accepting run offud] starting fromq (here  Z(t) restricted to the vertices reachable frans isomorphic
t[u] is the subtree of rooted atu). Existence ofy, 4 is due  to thee-closure of the transition graph of some order-1)
to the strong relations betwegncalculus and tree automata CPDA A restricted to the reachable configurations.
(seee.g.[12]). By (successive applications of) Theorem 2, Before proceeding with the construction of such a CPDA,
t can be generated by a orderollapsible automaton. we need to fix some notations on MSO logic and on tree

Let 3’ be the alphabet of. Using the annotations oy  automata.
for any nodeu one can decide, only considering the path We denote byt,u,v = ¢(z1,z2) the factt satisfies
from the root tou, whetherB acceptst,. More precisely, ¢(z1,22) whenz; is interpreted as andz, asv. For all
there exists a regular words languafeover X' U Dir(Y')  X-labelled tree, all nodesu andv of ¢, lett, ., be the tree
such that a node of ¢ satisfiesy if and only if the word  obtained from¢ by marking the paifu, v). Formally,t,, ,, is
obtained by reading in the labels and directions from the the (X x2{!:2})-labelled tree such th&om(t,, ,) = Dom(t)
root to the node: belongs toL. Indeed given a node of £,  and forw € Dom(ty,), tu(w) = (t(w), X) wherel € X
a stateq of B and a directioni one can compute the set of iff w =u and2 € X iff w =wv.
statesp of B that may appear in a run @& overt, where: Similarly we definet, ., (resp.t.,,., resp.t..) for e ¢

. Bis in stateq in noden. Dom(t) as the tree obtained by markingby 2 (respu by

. the continuations of the run from every nodd with 2. reSpno node).l.e e means here that no node is marked

d' # d are accepting provided no marked node appealVith the corresponding index (and / or2). _
in the subtrees. Using the well-known equivalence between MSO logic

« p is the state imd. and automata (see.g. [17]), one can construct for any

Indeed it suffices to know whether there is a transition offormula p(z1,22) a parity tree automatof, that accepts

) . . Ly Iff tu,v = o(x1,22).
B that, fromg on readingt(n), goes togy, for directiond; ' PSS ’ . .
and such that,n = ¢, 4, for all d; # d and g, = p. For all ¢ € Dir(X), we write B, the parity tree automaton

Doing a subset construction, one gets a deterministic ﬁnitcorrespondlng to the formula (z, y) of Z. Let Q; be its

automaton reading the path from the rootdain . and %ne set of states and l&t, be its set of transitions.
. 9 be o Annotation oft by MSO-definable setsThe first step
computing the set of possible states/fn u on the prefix

f i ar . Finally to decid heth of the construction of4 is to annotate with information
of some accepling run ovey,. Finally to decide whether concerning essentially the behaviour of the autom@ta
this prefix of run can be prolongated into an accepting run

) . ) . . on the subtrees of. The resulting annotated version of
in caseu is marked, it suffices to check whether there is a 9

o ) is denotedt. More precisely the annotated tréehas for
transition of B that fromgq on readingt(n) goes tog,, for D y

. ) A each nodeu satisfyin on t, the following finite
directiond; and such that, n |= v, 4, for all d;. information: fying () g

Finally an ordem collapsible automaton acceptirig

is obtained by taking a synchronisation product between

an orderrn collapsible automaton acceptirtgand a finite
deterministicautomaton recognising: a note is marked iff
the associated control state in the automaton recognising
is finite.

Now to construct4 as in (1), it suffices to consider an
n-CPDA A generating,: a noden belongs to|t|, if the
configuration reached on readindy .4 is marked. Hence it
suffices to take as final states fdrthe one that are marked.

[ |

Corollary 3. Lett be aX-labelled tree given by some order-
n recursion scheme and letZ be a well-formed MSO-
interpretation. The unfolding of (¢) from any vertex. can
be generated by an ordér: + 1) recursion scheme.

Proof:

Lett be aX-labelled tree given by some orderecursion
schemeS and letZ be a well-formed MSO-interpretation
given by formulasys(x), p.(x) for eacho € ¥ and
we(x,y) for each direction/ € Dir(X). Let v be a node

« the uniques € ¥ such thatt,u = ¢, (x). Unicity is
by definition of a well-formed interpretation.

« d; € Dir(X)uU{e} which is the direction from the father
of the curent node to the current nodee(u is of the
form v'd; for somew’ € Dom(t)) ande if the current
node is the root.

« for each? € Dir(X), we have:

— i€ {1,],0, L} such that
x i, = L iff there are nov such thatt,u,v |
Sof(x’ y)’
x 1, =1 iff there is a uniquev such thatt, u,v =
we(x,y) which does not lay below,
x 1, =] iff there is a uniquev such thatt, u,v =
we(x,y) which is belowu,
x 1g =0 iff t,u,u = @e(z,y).
— the setR, of statesq € @, such that there exists
a partial accepting run oB; on t deprived of the
nodes below: which assigns the statgto w,

"We assume that, u = ¢s(x).



— the setS, of pairs (d, ¢) € Dir(X) x Q. such that
there exists an accepting run Bf starting fromg
on the subtree of, , rooted atud,

— the setT} of pairs (d,q) € Dir(X) x Q, such that
there exists a node’ below ud s.t. B, has an
accepting run on the subtree &f, rooted atud
starting in state;.

Let 3 be the resulting labelling alphabet of As the
information annotated ofhis MSO-definable irt, we know
from Corollary 2 thatt is the solution of some order-
scheme.

Replacing MSO-formulas om by tree-walking au-
tomata working ort.: Fix a direction? € Dir(X). Thanks
to the extra information available ofy it is possible to
decide if a pair of node&u, v) satisfies the formula,(x, y)

q € Qg such thatB, admits an accepting run on the
subtree oft, . rooted atu. This set can be computed
from A, and S,.

The nodev is beloww (i.e. iy =]): The automaton begins
the second phase. It computes the unique direafion
and the selt” of statesq € Q, such that:

— B, admits an accepting run on the trgg, deprived

of the nodes belovwd and assigning statesto ud,

- (¢,d) € 5.

First phase.: The automaton is at some node and
stores the sefX of statesq € @, such thatB, admits an
accepting run on the subtreegf, rooted atw. The label of
the nodew is (o,dy, (ix, Ry, Sk, Tk ) kepir(s))- The automa-
ton goes up in the tree (while rememberitig and X) to
a nodew’ whose label is(o’, d}, (i}, Ry, Sy, Ty ) reDir(s))-

on ¢ using a deterministic tree-walking automaton runningpet 4, ..., d,, be the set of directions of’. Let j be the
on t. Intuitively a tree-walking automaton is a finite state jndex of d; in this enumeration.

automaton that can navigate through the tree. There are now there cases:
Formally, adeterministic tree-walking automataevorkin . L .
Y 9 9 The nodev is the current node. This is the case iff there

on X-labelled trees is a tupl® = (Q, qo, F, ) where@
is the finite set of statesy, € @ is the initial state,F' is
the set of final states antlis the transition function. The
transition function associates to a péjr,o) € Q x ¥ —
corresponding respectively to the current state and ndwd la
—apair(¢g,a) € @ x ({T,e} UDir(X)) whereq is the new
state ands is action to perform. Intuitively= corresponds
to "staying in the current node”} to "going to the parent
node” andd € Dir(X) corresponds to "going to thé-son”.
We say thatW accepts a pair of node@:,v) if it can
reachv in a final state starting from in the initial state.
We claim that there exists a deterministic tree-walking
automatoniV, such for any pair(u,v) of nodes oft, we
have:

W, accept(u,v) in ¢ iff ¢,u,v = vz, ).

The automatori¥, works in two phases: during the first
phase the automaton only goes up in the tree (or stay i

the current node) and during the second phase it only goes

down in the tree (or stay in the current node). Both phase
can potentially be empty. In fact, to accept a pairv) the

automaton will first go up to the greatest common ancestor

of v andv and down to they.
Assume thal¥, started at a node and denote by the
unique node (if it exists) such thatu,v = pe(z, y).
Initialisation.: The automaton is in its initial state,
at nodeu and reads a labéb, d+, (ix, Rk, Sk, Tk ) kepir(s))-

The automaton checks in which of the following cases, we

are:

The nodev does not exists (i.e, = 1): No transition is
defined.

The nodev is equal tou (i.e. iy = : The automaton goes
to the accepting state.

The nodev is not beloww (i.e. i, =1): The automaton be-
gins the first phase while memorising the 3&bf state

exists a statey € R;, and a transition inA, starting
in stateq with o x {2} as label and associating states
¢; to thed;-son such that:

— ¢; belongs toX ,
— forall i # j, (di,q:) € 5.

In this case, the automaton goes to the accepting state.

The nodev is belowd-son ofw for somed € Dir(%).
This is the case iff there exists a state= R, and a
transition inA, starting in state; with o x () as label
and associating stateg to the d;-son such that there
existsj’ # j € [m] s.t.
— ¢; belongs toX,
— forall i # j, (di,q;) € 5,
- (dj/,qj/) (S Té

In this case, the automaton begins the second phase

while memorising the sets of alt” of all state g;
matching this definition together with the directidp.®
the accepting state.

¥he nodev is not beloww. This is the case when the two

n

previous cases do not apply. The automaton update the

new setX usingd;, A, and the old value ofX and
goes to the beginning of the first phase.

The second phasefhe automaton is at some node
and stores a directiosh and the sel” of statesy € @, such:

« B, admits an accepting run on the trgg, deprived of
the nodes belowd and assigning statesto wd

« there exists a node belowwd such that3, admits an
accepting run on the subtree Qf, rooted atwd and
starting in statey.

8Due to the restriction imposed op,(x,y) by the fact thatZ is a
well-formed MSO-interpretation, there cannot be two défg directions.
Otherwise, we would have # o/ such thatt,u,v = ¢(z,y) and

t,u, v = oz, y).



The automaton goes down in directiod (while In a configuration of the forn{p, s,,) with p a state of
remembering Y) to a node w' whose label is W, B simulates the behaviour &%, ont at nodeu in state
(o', le’ (i}, }.2;, S_,’w T} )kepir(sy). Let di,...,d,, be phbyasequence czf—tra.n_sitions. As(u) = p(top;(su)), B
the set of directions of”. can compute the transition taken by the automaignon ¢

There are two cases: at nodeu in statep. The behaviour of3 will be such that

The nodev is below thed'-son ofw’ for somed’ € Dir(x). If We goes from(p, u) to (g, ) in one step the will go
This is the case iff there exists a statez Y and a  through a series of-transitions from(p, s.) t0 (¢, su').

transition inA, starting in statey with & x 0 as label We distinguish several cases depending on the action
and associating states to the d;-son such that there Performed byl

existsj € [m] s.t. « W, stays in the current node in stateThenBB changes

— for all i # 4, (di, q;) € S}, its state tog b_y ane-transition. _

— (djr,q) € T}, « W, goes to its parent node in state(i.e. u = v'd

and W, ends up inu’ in stateq). Then B performs
pop,, ., followed by apop, and moves to state. The
configuration of B is now (q, pop; (pop,1(s4))) =
Sy -

o W, goes to itsd-son in stateg (i.e. v = u'd and W,
ends up inud in stateq). Assume thas,, is equal to:

In this case, the automaton return at the beginning of
the second phase and update thelSetith all stateq;
matching this condition. It also stores the directibn

The nodev is the current node. This is precisely when the
previous case does not hold. The automaton moves to
an accepting state.

Construction of the ordefn + 1) CPDAB.: By The- (S0, 81, - - Sm—1, push{™* (sym)]
orem 1, there exists an order-CPDA C = (Dir(X) U
{e},T,Q, 4, q0, F'), and a mapping : Q — ¥’ such thatt
is the tree generated [y and p. 50,81, - - ,push‘f’l(push‘fm’l(sm)),pushﬁm“’l(smﬂ)

Hence for every nodeu = di---d,, € Dom(t),
there exists a unique sequence of configuration
(05 50); - - - » (gm, sm) Of C such that:

and thats,q is of the from:

By definition, there exists a path in G(C) from
(Gms Sm) and (gm+1, $m) labelled byde*.
Then B starts by performing epush‘f’l followed by

. _th_e_re exist a path ii7(C) labelled bye* from the push,, ,, andpop, . At this point the stack is:
initial configuration to(qo, so),
« for all i € [0,m], (¢;,s;) does not have out-going [0, 81, - - ., push® (pushd™ " (s,n)), pushi™"* (s,m).]

labelled arcs inG(C),
« for all i € [0,m — 1], there exists a path labelled in
d/i-i—lg* from (Qia Si) to (Qi+la Si+1) in G(C)
Such a sequence can be coded as ofdef-1) stacks,,
— recall that thes; are order — in the following way:

B pops the state,, and simulates the order-opera-
tions of C along the pathr usinge-transitions. When
no e-transition of C can be applied goes to state
qm-+1-

Eventually B will reach a configuration of the form

5w = [50, 61 swr_1, push®™ ! (s,)] (¢%,s.) whereg} is the accepting state ¥,. It then goes
u ) yrrrygm—1Ly m
! to the statey,.

where for alli € [0,m —1], §; = pushfi“vl(push‘lhvl(Si))_ From its initial configuration,3 deterministically build
The stack alphabet contains both the stacks alphabét of the stacks,,, (which correspond to the vertex from which
and its set of states. Z(t) is unfolded) by using sequencesfransitions and goes

The automator8 works on stacks corresponding to someto the statey,.
s, for someu € Dom(t). The states ofC include a By construction, we have that theclosure off3 restricted

distinguished statg, and the states of all the tree-walking to the vertices reachable from its initial configuration is
automata(W;)sepirz) Which we assumed to be disjoint. isomorphic toZ(¢) restricted to the vertices reachable from
The configurations of3 that are source of nogHabelled 0. The isomorphism simply maps a configuratign, s..) €
arcs will be of the form(q,,s.) for someu € Dom(t).  G(B) to u € Dom(t).
The intended behaviour df is that for some/ € Dir(X), u
t,u,v = @¢(z,y) then B can go from the configuration
(gx, su) to the configuratior(q,, s,) by a path labelled by
le*.

First B moves by/-labelled transition to the configuration
(g6, s.) where ¢f is the initial state of the tree-walking
automatoni¥,. Recall that the existence of the vertexs
annotated inp(top; (su))-



