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Abstract—Let R be a class of generators of node-labelled
infinite trees, andL be a logical language for describing correctness
properties of these trees. GivenR ∈ R and ϕ ∈ L, we say
that Rϕ is a ϕ-reflectionof R just if (i) R and Rϕ generate the
same underlying tree, and (ii) suppose a nodeu of the tree[[R]]
generated byR has labelf , then the label of the nodeu of [[Rϕ]]
is f if u in [[R]] satisfiesϕ; it is f otherwise. Thus if[[R]] is
the computation tree of a programR, we may regardRϕ as a
transform ofR that can internally observe its behaviour against a
specificationϕ. We say thatR is (constructively)reflectivew.r.t.L
just if there is an algorithm that transforms a given pair(R,ϕ) to
Rϕ. In this paper, we prove that higher-order recursion schemes are
reflective w.r.t. both modalµ-calculus and monadic second order
(MSO) logic. To obtain this result, we give the first characterisation
of the winning regions of parity games over the transition graphs
of collapsible pushdown automata (CPDA): they are regular sets
defined by a new class of automata. (Order-n recursion schemes
are equi-expressive with order-n CPDA for generating trees.) As
a corollary, we show that these schemes are closed under the
operation of MSO-interpretation followed by tree unfolding à la
Caucal.

I. I NTRODUCTION

An old model of computation, recursion schemes were
originally designed as a canonical programming calculus
for studying program transformation and control structures.
In recent years,higher-order recursion schemes(HORS)
have received much attention as a method of constructing
rich and robust classes of possibly infinite ranked trees (or
sets of such trees) with strong algorithmic properties. The
interest was sparked by the discovery of Knapik et al. [2]
that HORSs which satisfy a syntactic constraint calledsafety
generate the same class of trees as higher-order pushdown
automata. Remarkably these trees have decidable monadic
second-order (MSO) theories, subsuming earlier well-known
MSO decidability results for regular (or order-0) trees [3]
and algebraic (or order-1) trees [4]. We now know [5] that
the modalµ-calculus (local) model checking problem for
trees generated by arbitrary order-n recursion schemes is
n-EXPTIME complete (hence these trees have decidable
MSO theories); further [6] these schemes are equi-expressive
with a new variant class of higher-order pushdown automata,
calledcollapsiblepushdown automata (CPDA).

Let T be a class of finitely-presentable infinite structures
(such as trees or graphs) andL be a logical language for

Proofs are in the (downloadable) long version [1] of this paper.

describing correctness properties of these structures. The
global model checking problemasks, givent ∈ T and
ϕ ∈ L, whether the set||t||ϕ of nodes defined byϕ andt is
finitely describable, and if so, whether it is decidable. Our
first contribution is a solution of the modalµ-calculus global
model checking problem for transition graphs of CPDA (the
problem is equivalent to characterising winning regions of
parity games played over the transition graphs of CPDA). To
this end, we introduce a new kind of finite-state automata.
Recall that an order-n collapsible stackis an order-n stack
in which every symbol (except the bottom-of-stack) has a
back pointer to some deeper stack of order less thann. For
a fixedn, these (deterministic) automata take as input order-
n collapsible stacks represented as well-bracketed sequences
of symbols that have back pointers. When reading a symbol,
the transition to a new state depends on, not just the
current state, but also the state of the automaton when the
symbol pointed to was read. These automata are closed
under Boolean operations and have decidable acceptance and
emptiness problems. We show that (Theorem 4) the winning
regions of parity games played over the transition graphs of
CPDA are regular i.e. recognizable by these (deterministic)
automata. The proof is by induction on the order, and uses
a sequence of game reductions that preserve regular sets.

An innovation of our work is a new approach to global
model checking, by “internalising” the semantics||t||ϕ. Let
ϕ ∈ L, andR be a HORS overΣ (i.e. the node labels of
[[R]], the tree generated byR, are elements of the ranked
alphabetΣ). We say thatRϕ, which is a HORS overΣ∪Σ
(where Σ consists of a marked copy of eachΣ-symbol),
is a ϕ-reflection1 of R just if R and Rϕ generate the
same underlying tree; further, suppose a nodeu of [[R]]
has labelf , then the label of the nodeu of [[Rϕ]] is f if
u in [[R]] satisfiesϕ, and it is f otherwise. Equivalently
we can think of [[Rϕ]] as the tree that is obtained from
[[R]] by distinguishing the nodes that satisfyϕ. Our second
contribution is the result that HORS are (constructively)
reflectivew.r.t. the modalµ-calculus (Theorem 2). I.e. we
give an algorithm that, given a modalµ-calculus formulaϕ,
transforms a HORS to itsϕ-reflection. The proof relies on
theclosure of CPDA under regular tests(Theorem 3) i.e. we

1In programming languages,reflection is the process by which a com-
puter program can observe and dynamically modify its own structure and
behaviour.



can endow the model of CPDA with the ability to test if the
current configuration belongs to a given regular set without
increasing its expressive power as tree generators.

The class of trees generated by HORSs is closed under
two further logical operations. In a ranked tree, a nodeu
may be represented by its unique path from the root, given
as a finite wordpath(u) over an appropriate alphabet. Let
B be a finite-state word automaton over the same alphabet.
We say thatRB is a B-reflectionof R just if R andRB

generate the same underlying tree; further if a nodeu of
[[R]] has labelf , then the label of nodeu of [[RB]] is f
if B acceptspath(u), and it isf otherwise. We show that
if a classC of tree generators is reflective w.r.t. modalµ-
calculus, and w.r.t. regular paths (i.e. there is an algorithm
that transforms a given pair(B, R) to RB), then it is
also reflective w.r.t. MSO. We then obtain two pleasing
consequences. First, trees that are generated by HORS are
reflective w.r.t. MSO (Corollary 2). Secondly, if one starts
with a treet generated by an order-n recursion scheme and
some MSO-interpretationI, then the unfolding of the graph
I(t) is isomorphic to a tree generated by an order-(n+ 1)
recursion scheme (Corollary 3). It follows that the class of
trees generated by HORSs is closed under the operation of
MSO-interpretation followed by tree unfolding à la Caucal.

Related work: Vardi and Piterman [7] studied the
global model checking problem for regular trees and prefix-
recognizable graphs using two-way alternating parity tree
automata. Extending their results, Carayol et al. [8] showed
that the winning regions of parity games played over
the transition graphs of higher-order pushdown automata
(i.e. without collapse) are regular. Recently, using game
semantics, Broadbent and Ong [9] showed that for ev-
ery order-n recursion schemeS, the set of nodes in[[S]]
that are definable by a given modalµ-calculus formula is
recognizable by an order-n (non-deterministic) collapsible
pushdown word automaton. (Here we show in Theorem 2(i)
that the nodes are recognizable by adeterministicCPDA.)
In a different but related direction, Kartzow [10] showed
that order-2 collapsible stacks can be encoded as trees in
such a way that the set of stacks reachable from the initial
configuration corresponds to a regular set of trees. (Since
his notion of regularity on 2-stacks encompasses ours, it
follows from our Theorem 4 that the winning regions of 2-
CPDA parity games are regular sets of trees with Kartzow’s
encoding.)

Outline: In Section II we give the basic definitions.
Section III introduces a notion of regular set of collapsible
stacks, given by a new kind of finite-state automata. In
Section IV, we characterise the winning regions of parity
games played over the transition graphs of CPDA. Section V
presents the reflection results.

II. PRELIMINARIES

An alphabetA is a (possibly infinite) set of letters. In the
sequelA∗ denotes the set offinite wordsoverA, andAω

the set ofinfinite wordsoverA. The empty word is written
ε.

Higher-Order Recursion Schemes: Typesare generated
from the base typeo using the arrow constructor→. Every
type A can be written uniquely asA1 → · · · → An → o
(arrows associate to the right), for somen ≥ 0 which
is called its arity; we shall often writeA simply as
(A1, · · · , An, o). We define theorder of a type byord(o) :=
0 and ord(A → B) := max(ord(A) + 1, ord(B)). Let
Σ be a ranked alphabeti.e. each symbolf has an arity
ar(f) ≥ 0; we assume thatf ’s type is the(ar (f) + 1)-
tuple(o, · · · , o, o). We further shall assume that each symbol
f ∈ Σ is assigned a finite setDir(f) of ar(f) direc-
tions (typically Dir(f) = { 1, · · · , ar(f) }), and we define
Dir(Σ) :=

⋃
f∈Σ Dir(f). Let D be a set of directions; a

D-tree is just a prefix-closed subset ofD∗. A Σ-labelled
tree is a functiont : Dom(t) → Σ such thatDom(t) is a
Dir(Σ)-tree, and for every nodeα ∈ Dom(t), theΣ-symbol
t(α) has arityk if and only if α has exactlyk children and
the set of its children is{α i | i ∈ Dir(t(α)) } i.e. t is a
ranked tree.

For each typeA, we assume an infinite collectionVarA

of variables of typeA, and writeVar to be the union of
VarA as A ranges over types; we writet : A to mean
that the expressiont has typeA. A (deterministic)recursion
schemeis a tupleS = 〈Σ,N ,R, I 〉 whereΣ is a ranked
alphabet ofterminals; N is a set of typednon-terminals;
I ∈ N is a distinguishedinitial symbol of type o; R is
a finite set of rewrite rules – one for each non-terminal
F : (A1, · · · , An, o) – of the formF ξ1 · · · ξn → e where
eachξi is in VarAi , ande is anapplicative termof type o
generated from elements ofΣ∪N ∪{ ξ1, · · · , ξn }. We shall
use lower-case roman letters for terminals (e.g.a, f, g), and
upper-case roman letters for non-terminals (e.g. I, F,H).
The order of a recursion scheme is the highest order of
the types of its non-terminals.

We use recursion schemes as generators ofΣ-labelled
trees. Thevalue treeof (or the treegeneratedby) a recursion
schemeS, denoted[[S]], is a possibly infinite applicative
term, but viewed as aΣ-labelled tree,constructed from the
terminals inΣ, that is obtained by rewriting using the rules
of S ad infinitum, replacing formal by actual parameters
each time, starting from the initial symbolI. See e.g. [6]
for a formal definition.

Example 1. Let S be the order-2 recursion scheme with
non-terminalsI : o, H : (o, o), F : ((o, o), o); variables
x : o, ϕ : (o, o); terminalsf, g, a of arity 2, 1, 0 respectively;



and the following rewrite rules:





I → H a
H x → F (f x)
F ϕ → ϕ (ϕ (F g))

f
pp

pp
p

NN
NN

N

a f
oo

oo
o

OO
OO

O

a g

g

The value tree[[S]] (as shown above) is theΣ-labelled tree
defined by the infinite termf a (f a (g (g (g · · · )))).

Higher-Order Collapsible Stacks:Fix a stack alphabet
Γ and a distinguishedbottom-of-stack symbol⊥ ∈ Γ. An
order-0 stackis just a stack symbol. Anorder-(n+1) stack
s is a non-null sequence (written[s1 · · · sℓ]) of order-n
stacks such that everyΓ-symbolγ 6= ⊥ that occurs ins has
a link to a stack (of orderk wherek ≤ n) situated below
it in s; we call the link a(k + 1)-link. The order of a stack
s is written ord(s); and we shall abbreviate order-n stack
to n-stack. As usual, the bottom-of-stack2 symbol⊥ cannot
be popped from or pushed onto a stack. We define⊥k, the
emptyk-stack, as:⊥0 = ⊥ and⊥k+1 = [⊥k].

The setOpn of order-n stack operationsconsists of the
following four types of operations:

1) popk for each1 ≤ k ≤ n
2) pushα,k

1 for each1 ≤ k ≤ n and eachα ∈ (Γ \ {⊥ })
3) pushj for each2 ≤ j ≤ n.
4) collapse.
First we introduce the auxiliary operations:topi, which

takes a stacks and returns the top(i − 1)-stack of s;
and pushα

1 , which takes a stacks and pushes the symbol
α onto the top of the top 1-stack ofs. Precisely let
s = [s1 · · · sℓ+1] be a stack with1 ≤ i ≤ ord(s), we
define

topi [s1 · · · sℓ+1]︸ ︷︷ ︸
s

=

{
sℓ+1 if i = ord(s)
topi sℓ+1 if i < ord(s)

and definepushα
1 [s1 · · · sℓ+1]︸ ︷︷ ︸

s

by

{
[s1 · · · sℓ pushα

1 sℓ+1] if ord(s) > 1
[s1 · · · sℓ+1 α] if ord(s) = 1

We can now explain the four operations in turn. Fori ≥ 1
the order-i pop operation,popi, takes a stack and returns it
with its top (i− 1)-stack removed. Let1 ≤ i ≤ ord(s) we
definepopi [s1 · · · sℓ+1]︸ ︷︷ ︸

s

by

{
[s1 · · · sℓ] if i = ord(s) andℓ ≥ 1
[s1 · · · sℓ popisℓ+1] if i < ord(s)

We say that a stacks0 is a prefix of a stacks (of the same
order), writtens0 ≤ s, just if s0 can be obtained froms by
a sequence of (possibly higher-order)pop operations.

2Thus we require anorder-1 stackto be a non-null sequence[a1 · · · aℓ]
of Γ-symbols such that for all1 ≤ i ≤ l, ai = ⊥ iff i = 1.

Take ann-stacks and let i ≥ 2. To constructpushα,i
1 s

we first attach a link from a fresh copy ofα to the(i− 1)-
stack that is immediately below the top(i − 1)-stack ofs,
and then push the symbol-with-link onto the top1-stack of
s. As for collapse, suppose thetop1-symbol of s has a
link to (a particular copy of) thek-stacku somewhere ins.
Then collapse s causess to “collapse” to the prefixs0 of
s such thattopk+1 s0 is that copy ofu. Finally, for j ≥ 2,
the order-j pushoperation,pushj , simply takes a stacks
and duplicates the top(j− 1)-stack ofs, preserving its link
structure.

To avoid clutter, when displayingn-stacks in examples,
we shall omit the bottom-of-stack symbols and 1-links
(indeed by construction they can only point to the sym-
bol directly below), writing e.g.[[][αγ]] instead of
[[⊥][⊥ α γ]].

Example 2. Take the 3-stacks = [[[α]] [[][α]]].
We have

pushβ,2
1 s = [[[α]] [[][αβ]]]

collapse (pushβ,2
1 s) = [[[α]] [[]]]

pushγ,3
1 (pushβ,2

1 s)︸ ︷︷ ︸
θ

= [[[α]] [[][αβ γ]]].

Thenpush2 θ andpush3θ are respectively

[[[α]] [[][αβ γ][αβ γ]]] and

[[[α]] [[][αβ γ]] [[][αβ γ]]].

We have collapse (push2 θ) = collapse (push3 θ) =
collapse θ = [[[α]]].

Important Remark. Our definition of collapsible stacks
allows non-constructiblestacks such as

[[⊥α][⊥β][⊥β]]

From now on, by ann-stacks, we mean aconstructible one
i.e. we assume there existsθ ∈ Op∗

n such thats = θ⊥n.
Collapsible Pushdown Automata:An order-n (deter-

ministic) collapsible pushdown automaton(n-CPDA) is a 6-
tuple 〈A∪{ε},Γ, Q, δ, q0, F 〉 whereA is an input alphabet
and ε is a special symbol,Γ is a stack alphabet,Q is a
finite set of states,q0 is the initial state,F ⊆ Q is the set
of final states andδ : Q× Γ × (A ∪ {ε}) → Q× Opn is
a transition (partial) function such that, for allq ∈ Q and
γ ∈ Γ, if δ(q, γ, ε) is defined then for alla ∈ A, δ(q, γ, a)
is undefined (i.e. if someε-transition can be taken, then no
other transition is possible).

In the special case whereδ(q, γ, ε) is undefined for all
q ∈ Q and γ ∈ Γ we refer toA as anε-free n-CPDA



and we omitε in the definition ofA i.e. we denote it as
A = 〈A,Γ, Q, δ, q0, F 〉.

Configurationsof ann-CPDA are pairs of the form(q, s)
where q ∈ Q and s is an n-stack overΓ; the initial
configurationis (q0,⊥n) and final configurationsare those
whose control state belongs toF .

An n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 naturally de-
fines an(A∪{ε})-labelled transition graphG(A) := (V,E)
whose verticesV are the configurations ofA and whose
edge relationE is given by: ((q, s), a, (q′, s′)) ∈ E iff
δ(q, top1s, a) = (q′, op) and s′ = op(s). Such a graph is
called ann-CPDA graph.

In this paper we will usen-CPDA for three different
purposes: as words acceptors, as generators for infinite trees
and as generators of the graph underlying a parity game.

Using an n-CPDA as a Words Acceptor:A order-n
CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 accepts the set of
wordsw ∈ A∗ labeling a run from the initial configuration
to a final configuration (interpretingε as a silent move). We
write L(A) for the accepted language.

Using ann-CPDA as an Infinite Tree Generator:Fix an
n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉. Take theε-closure
Gε(A) of G(A) defined as follows: first add ana-labelled
edge fromv1 to v2 whenever there is a path fromv1 to v2
labelled by a word that matchesaε∗, and there is no outgoing
ε-labelled fromv2; then remove any vertex (in the path) that
is the source of anε-labelled edge. Owing to the restriction
we imposed onδ, the resulting graph is deterministic and
ε-free.

In G(A) there exists a unique configurationv0 which
is reachable from the initial configuration by a (possibly
empty) sequence ofε-labelled edges, and the source of a
non-ε-labelled edge. Trivially,v0 is a vertex ofGε(A). Now,
let T be the tree obtained by unfoldingGε(A) from v0. Then
T is deterministic.

Finally, in order to define aΣ-labelled treet for a ranked
alphabetΣ, it suffices to identify a total functionρ : Q →
Σ such that for allq ∈ Q and γ ∈ Γ, {a | (q, γ, a) ∈
Dom(δ)} = Dir(ρ(q)), and then to definet by t(u) := ρ(qu)
for every nodeu ∈ Dom(T ), wherequ is the state of the
last configuration ofu.

In [6] (a version of) the following equi-expressivity result
was proved.

Theorem 1. (i) Let S be an order-n recursion scheme
over Σ and let t be its value tree. Then there is an order-n
CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉, andρ : Q→ Σ such
that t is the tree generated byA and ρ.

(ii) Let A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 be an order-n
CPDA, and lett be theΣ-labelled tree generated byA and
a given mapρ : Q→ Σ. Then there is an order-n recursion
scheme overΣ whose value tree ist.

Moreover the inter-translations between schemes and
CPDA are polytime computable.

Using ann-CPDA to Define a Parity Game:We start
by recalling the definition of parity game. LetG = (V,E ⊆
V ×V ) be a graph. LetVE∪VA be a partition ofV between
two players,Éloı̈se and Abelard. Agame graphis such a
tupleG = (G, VE, VA). A colouring functionρ is a mapping
ρ : V → C ⊂ N whereC is a finite set of colours. An
infinite two-player parity gameon a game graphG is a pair
G = (G, ρ).

Éloı̈se and Abelard play inG by moving a token between
vertices. A play from some initial vertexv0 proceeds as
follows: the player owningv0 moves the token to a vertexv1
such that(v0, v1) ∈ E. Then the player owningv1 chooses
a successorv2 and so on. If at some point one of the players
cannot move, she/he loses the play. Otherwise, the play is
an infinite wordv0v1v2 · · · ∈ V ω and is won byÉloı̈se just
in caselim inf(ρ(vi))i≥0 is even. Apartial play is just a
prefix of a play.

A strategy for Éloı̈se is a function assigning, to every
partial play ending in some vertexv ∈ VE, a vertexv′ such
that (v, v′) ∈ E. Éloı̈serespects a strategyΦ during a play
Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0 such that
vi ∈ VE. A strategyΦ for Éloı̈se iswinning from a position
v ∈ V if she wins every play that starts fromv and respects
Φ. Finally, a vertexv ∈ V is winning for Éloı̈se if she has a
winning strategy fromv, and the winning region foŕEloı̈se
consists of all winning vertices for her. Symmetrically, one
defines the corresponding notions for Abelard. It follows
from Martin’s Theorem [11] that, from every position, either
Éloı̈se or Abelard has a winning strategy.

Now let A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 be an order-n
CPDA and let(V,E) be the graph obtained fromG(A) by
removing edge-labels. LetQE∪QA be a partition ofQ and
let ρ : Q → C ⊂ N be a colouring function (over states).
Altogether they define a partitionVE ∪ VA of V whereby
a vertex belongs toVE iff its control state belongs toQE,
and a colouring functionρ : V → C where a vertex is
assigned the colour of its control state. The structureG =
(G(A), VE, VA) defines a game graph and the pairG =
(G, ρ) defines a parity game (that we call an-CPDA parity
game).

The Global Model-Checking Problem:Fix a Σ-labelled
tree t given by a recursion scheme or by a CPDA, and a
logical formulaϕ (e.g. a µ-calculus formula, or an MSO
formula with a single free first-order variable). We denote
by ||t||ϕ the set of nodes oft described byϕ.

The local model checking problemasks whetheru ∈ ||t||ϕ
for a given nodeu. Decidability of this problem was first
proved in [5]. Theglobal model checking problemasks for
a finite description of the set||t||ϕ, if there is one. As||t||ϕ
is in general an infinite set, there are severalnon-equivalent
ways to represent it finitely. However there are two natural
approaches.

• Exogeneous:Given aΣ-labelled treet and a formula
ϕ, output a description by means of a word acceptor



device recognising||t||ϕ ⊆ Dir(Σ)∗.
• Endogeneous:Given aΣ-labelled treet and a formula
ϕ, output a finite description of the(Σ∪Σ)-labelled tree
tϕ — whereΣ = {σ | σ ∈ Σ} is a marked copy ofΣ
— such thatDom(tϕ) = Dom(t), andtϕ(u) = t(u) if
u ∈ ||t||ϕ and tϕ(u) = t(u) otherwise.

In case theΣ-labelled treet is generated by an order-n
recursion scheme, it is natural to consider order-n CPDA
both as words acceptors for||t||ϕ (in the exogeneous ap-
proach) and as tree genarator fortϕ (in the endogeneous
approach). In the latter case, order-n schemes and CPDA
can be used interchangeably.

Example 3. Let S be the order-2 recursion scheme with
non-terminalsI : o, F : ((o, o), o, o) (and variables and
terminals as in Example 1) and the following rewrite rules:

{
I → F g (ga)
F ϕx → f (F ϕ (ϕx))x

f

f

f

...
g

g

g

a

g

g

a

g

a

where the arities of the terminalsf, g, a are 2, 1, 0
respectively. The value treet = [[S]] is the Σ-labelled tree
depicted above.

Let ϕ = pg ∧ µX.(⋄1pa ∨ ⋄1 ⋄1 X), wherepg (resp.pa)
is a propositional variable asserting that the current nodeis
labelled byg (resp.a), be theµ-calculus formula3 defining
the nodes which are labelled byg such that the length of
the (unique) path to ana-labelled node is odd.

An exogeneous approach to the global model checking
problem is to output a2-CPDA accepting the set||t||ϕ =
{1n21k | n+k is odd}, which in this special case is regular.

An endogeneous approach to this problem is to output the
following recursion scheme:





I → H g a
H z → f (H g z) z
H z → f (H g z) z

f

f

f

...
g

g

g

a

g

g

a

g

a

with non-terminalsI : o, H : (o, o); and a variablez : o.
The value tree of this new scheme is depicted on the right.

Our first contribution of the paper addresses the global
model checking problem for trees generated by recursion
scheme. (The theorem will be proved in Section V).

Theorem 2 (µ-Calculus Reflection). Let t be a Σ-labelled
tree generated by an order-n recursion schemeS andϕ be
a µ-calculus formula.

3We refer the reader to [12] for syntax and semantics ofµ-calculus.

(i) There is an algorithm that transforms(S, ϕ) to an
order-n CPDAA such thatL(A) = ||t||ϕ.

(ii) There is an algorithm that transforms(S, ϕ) to an
order-n recursion scheme that generatestϕ.

Remark 1. Note that(ii) implies (i). To see why this is so,
assume that we can construct an order-n recursion scheme
generatingtϕ. Thanks to Theorem 1, we can construct in
polynomial time an order-n CPDA A which, together with
a mappingρ : Q 7→ Σ ∪ Σ, generatestϕ. Taking {q ∈ Q |
ρ(q) ∈ Σ} as a set of final states,A accepts||t||ϕ.

Winning Regions:The key ingredient of the proof of
Theorem 2 is a precise characterisation of the winning
regions of parity games defined by CPDA. This exploits
the close connection betweenµ-calculus and parity games
[13]. Hence, an important part of this article is devoted to
an effective characterisation of the winning regions ofn-
CPDA parity games. Section III introduces a new class of
automata accepting sets of configurations ofn-CPDA, and
in Section IV we prove that for anyn-CPDA parity game
one can effectively represent the winning regions by such
an automaton.

III. R EGULAR SETS OFCOLLAPSIBLE STACKS

We start by introducing a class of automata with a finite
state-set that can be used to recognize sets of collapsible
stacks. Lets be an order-n collapsible stack. We first
associate withs = s1, · · · , sℓ a well-bracketed word of
depthn, s̃ ∈ (Σ ∪ {[,]})∗:

s̃ :=

{
[s̃1 · · · s̃ℓ] if n ≥ 1

s if n = 0 (i.e. s ∈ Σ)

In order to reflect the link structure, we define a partial
function target(s) : {1, · · · , |s̃|} → {1, · · · , |s̃|} that
assigns to every position in{1, · · · , |s̃|} the index of the end
of the stack targeted by the corresponding link (if exists;
indeed this is undefined for⊥,[ and ]). Thus with s is
associated the pair〈 s̃, target(s) 〉; and with a setS of stacks
is associated the set̃S = {〈 s̃, target(s) 〉 | s ∈ S}.

Example 4. Let s = [[[⊥α]] [[⊥][⊥ a β γ]]]. Then

s̃ = [[[⊥α]] [[⊥][⊥αβ γ]]] and target(5) = 4,
target(14) = 13, target(15) = 11 and target(16) = 7.

We considerdeterministic finite automata working on
such representations of collapsible stacks. The automaton
reads the word̃s from left to right. On reading a letter that
does not have a link (i.e.target is undefined on its index) the
automaton updates its state according to the current state and
the letter; on reading a letter that has a link, the automaton
updates its state according to the current state, the letterand
the state it was in after processing the targeted position. A
run is accepting if it ends in a final state. One can think



of these automata as a deterministic version of Stirling’s
dependency tree automata[14] restricted to words.

Formally, an automaton is a tuple〈Q,A, qin, F, δ 〉 where
Q is a finite set of states,A is a finite input alphabet,qin ∈
Q is the initial state,F ⊆ Q is a set of final states and
δ : (Q × A) ∪ (Q × A × Q) → Q is a transition function.
With a pair 〈u, τ 〉 where u = a1 · · · an ∈ A∗ and τ is
a partial map from{1, · · ·n} → {1, · · ·n}, we associate a
unique runr = r0 · · · rn as follows:
- r0 = qin;
- for all 0 ≤ i < n, ri+1 = δ(ri, ai+1) if i+ 1 /∈ Dom(τ);
- for all 0 ≤ i < n, ri+1 = δ(ri, ai+1, rτ(i+1)) if i + 1 ∈
Dom(τ).

The run isacceptingjust if rn ∈ F , and the pair(u, τ) is
acceptedjust if the associated run is accepting.

To recognize configurations instead of stacks, we use the
same machinery but now add the control state at the end of
the coding of the stack. We code a configuration(p, s) as
the pair〈 s̃ · p, target(s) 〉 (hence the input alphabet of the
automaton also contains a copy of the control state of the
corresponding CPDA).

Finally, we say that a setK of n-stacks over alphabet
Γ is regular just if there is an automatonB such that for
everyn-stacks overΓ, B accepts〈 s̃, target(s) 〉 iff s ∈ K.
Regular sets of configurations are defined in the same way.

Remark 2. Non-deterministic automata are strictly more
powerful than deterministic automata. LetL be the set
of words with links 〈s̃, target(s)〉 such thattarget(s) is
injective: ∀x, y, target(s)(x) = target(s)(y) ⇒ x = y.
ThenL is not accepted by a deterministic automaton but its
complement is accepted by a non-deterministic automaton.
SinceL is also not accepted by a non-deterministic automa-
ton, the model of non-deterministic automaton is not closed
under complement.

Closure Properties:Regular sets of stacks (resp. con-
figurations) form an effective Boolean algebra.

Property 1. Let H,K be regular sets ofn-stacks over an
alphabetΓ. ThenL∪K, L∩K andStacks(Γ)\L are also
regular (hereStacks(Γ) denotes the set of all stacks over
Γ). The same holds for regular sets of configurations.

We can endow the model of CPDA with the ability to test
if the current configuration belongs to a given regular set
without increasing its expressive power as tree generators.

Theorem 3. Given an order-n CPDAA with a state-setQ
and an automatonB (that takesA-configurations as input),
there exist an order-n CPDA A[B] with a state-setQ′, a
subsetF ⊆ Q′ and a mappingχ : Q′ → Q such that:

(i) restricted to the reachable configurations, the respec-
tive ε-closures ofG(A) andG(A[B]) are isomorphic

(ii) for every configuration(q, s) ofA[B], the correspond-
ing configuration ofA has stateχ(q) and belongs toL(B)

if and only if q ∈ F .

Proof (Sketch): Fix an order-n CPDA A and an
automatonB. We wish to construct a new order-n CPDA
A[B] that simulatesA and in the meantime computes the
state reached byB after processing the current stack. To
this end, we associate with every stack a finite amount of
information describing the behaviour ofB when reading it.

LetQ be the state set ofB. Let S be an order-n stack and
let sk be its topk-stack. If sk was simply a stack without
links, it could be described, from the point of view ofB, by
the mappingτ from Q to Q such that ifB starts readingsk

in stateq then it finishes reading it in stateτ(q). However,
if one simply extractssk from S, there may be “dangling
links” of order greater thank. As the number of these links
is unbounded, it is impossible to specify individually theQ-
state that should be attached to the target of each of these
links. Our idea is to associate withsk a mappingτS

k which
abstracts the behaviour ofB on sk but in the contextof S
(i.e. the information will only be pertinent whensk is the
top k-stack ofS).

Thussk gives rise to a mappingτS
k : Qn−k → (Q→ Q)

that, given a tuple(qn, · · · , qk+1), defines a transformation
from Q to Q. We use statesqn, · · · , qk+1 to define the
values of the states attached to the respective targets of the
links (of ordern, · · · , k+1 respectively) insk: for n-links,
we consider the run induced by readingS (we stop when
sk is reached) starting fromqn (this gives the value for
the respective targets of then-links), for (n − 1)-links, we
consider the run induced by readingtopn(S) (we stop when
sk is reached) starting fromqn−1, . . . ; and for(k+1)-links,
we consider the run induced by readingtopk+2(S) (again
we stop whensk is reached) starting fromqk+1.

At any point in the computation of the CPDAA[B] where
a stackS of A is simulated, thetop1 symbol is a pair,
consisting of the stack symboltop1(S), and ann-tuple
(τn−1, · · · , τ0) whereτi is equal toτpopiS

i – for technical
reasons, we do not care for the top(i− 1)-stack ofS when
definingτi).

The result is finally obtained by first showing that the
state ofB, after reading the whole stack, can be recovered
from the τi, and then proving that the values of theτi can
be maintained (for the top elements only) when simulating
any stack action.

Emptiness: The closure under regular tests implies
decidability of emptiness of automata with respect to con-
structible stacks.

Proposition 1. For a fixedn ≥ 2, the question of whether
there is an order-n constructiblestack that is accepted by a
given automaton is decidable in(n− 1)-EXPTIME.

Proof (Sketch): Consider the statelessn-CPDA that
allows us to construct all possible stacks. Now take its



closureA′ under regular test with respect toB and use
A′ as a words acceptor (final states are the setF as given
in Theorem 3). Then, the given automatonB accepts at
least one constructible stack iffL(A′) 6= ∅. As the latter is
decidable in(n − 1)-EXPTIME, we get the expected result
[6].

It is to be noted that if we no longer require the ac-
cepted stack to be constructible the problem becomes less
intractable.

Proposition 2. For a fixedn ≥ 2, the question of whether
there is an order-n possibly non-constructiblestack that is
accepted by a given automaton is NP-complete.

Proof (Sketch): Upper-bound is by a small model
property argument. Lower-bound is by reducing3-SAT.

IV. W INNING REGIONS OFCPDA GAMES

The main result of this section is a characterisation of
winning regions by regular sets.

Theorem 4. Let G be ann-CPDA parity game. Then the
winning region forÉloı̈se (resp. for Abelard) is a regular set
which can be effectively constructed.

Proof (Sketch): As the complete proof of Theorem 4
requires a lot of machinery, we will only focus on the key
steps. Let us also stress that this proof borrows several ideas
[6], [8] but also extend in a non trivial way their results
(decidability of CPDA games of [6] and characterisation of
winning region of HOPD games —i.e. games generated by
CPDA without links — of [8]). The full version [1] provides
a self contained proof of the result.

The proof is by induction on the order, and the induction
step can be divided in three sub-steps (for order-1, the result
is a classical one [15]). Assume one starts with ann-CPDA
parity gameG (using colours{0, . . . , d}) generated by some
n-CPDA A. One does the following steps:

1) One builds a newn-CPDA Ark that mimicsA and
that is rank-aware in the following sense. Take ann-CPDA
and assume that states are coloured by integers. Consider a
finite run λ of A and assume that thetop1-element in the
last configuration ofλ has ann-link: then thelink rank is
defined as the smallest colour encountered since the creation
of the original copy of the currentn-link. An n-CPDA is
rank-awarejust if there is some functionρ from its stack
alphabet into the set of colours such that at any point in
a run of the automaton, if thetop1-element has ann-link,
then applyingρ to it gives the link rank. Then fromArk one
naturally gets a new parity gameGrk and a transformation
ν1 from any vertexv in G to a vertexν1(v) in Grk such that
Éloı̈se wins inG from v iff she wins fromν1(v) in Grk. One
also proves that regular sets of configurations are preserved
by ν−1

1 : hence it suffices to prove that winning regions are
regular for games generated by rank-awaren-CPDA.

2) We now construct a newn-CPDA game that makes no
use ofn-links. This game mimicsGrk except that whenever
a player wants to perform apushγ,n

1 action on the stack,
this is replaced by the following negotiation between the
players:

• Éloı̈se has to provide a vector
−→
R = (R0, · · ·Rd) ∈

(2Qrk)d+1 — hereQrk are the control states ofArk —
whose intended meaning is the following: she claims that
she has a strategy such that if the newly created link (or a
copy of it) is eventually used by some collapse then it leads
to a state inRi wherei is the smallest colour visited since
the original copy of the link was created.
• Abelard has two choices. He can agree withÉloı̈se’s
claim, pick a stateq in someRi and perform apopn action
whilst going to stateq (through an intermediate dummy
vertex coloured byi): this is the case where Abelard wants to
simulate a collapse involving the link. Alternatively Abelard
can decide to push the symbol(γ,

−→
R ) without appending a

link to it.
Later in the play, if thetop1-element is of the form(γ,

−→
R ),

and if the player controlling the current configuration wants
to simulate a move to stateq that collapses the stack, then
this move is replaced by one that goes to a dead end vertex.
This is deemed winning foŕEloı̈se iff q ∈ Ri where i
is the link rank found on the currenttop1-element, which
corresponds to the smallest colour visited since the original
copy of symbol(γ,

−→
R ) was pushed onto the stack (recall

that Ark is rank-aware). The intuitive idea is that, when
simulating a collapse (involving an order-n link), Éloı̈se
wins iff her initial claim on the possible reachable states
by following the link was correct. Otherwise she loses.
Call Glf (lf for n-link free) this new game. Then one can
define a transformationν2 from any vertexv in Grk to a
vertex ν2(v) in Glf such thatÉloı̈se wins inGrk from v
iff she wins fromν2(v) in Glf . One also proves that regular
sets of configurations are preserved byν−1

2 : hence it suffices
to prove that winning regions are regular for order-n games
that have non-links.

Let us briefly explain howν2 works as it motivated our
definition of automata recognising collapsible stackss.ν2
takes a collapsible stacks and transforms it into a stack where
every symbolγ with ann-link is replaced by some symbol
(γ,

−→
R ) without any link. Hence, one needs to explain how

−→
R

is defined. Consider the stack obtained by removing every
symbol aboveγ and by collapsing (hence the newtopn

stack is the targeted one), and letR be the set of states such
that Éloı̈se wins inGrk from this state with this new stack
content: then

−→
R = (R, · · · , R). An automaton deciding

whether a configuration inGlf is winning will process the
stack and encode on its control state a subset of states (of the
CPDA) that are the winning ones at every position of the
stack. To decide if a configuration is winning inGrk one
computes on-the-fly its image underν2 and simulates the



previous automaton. This image can be inferred as the only
information needed (i.e. R) is precisely what is computed
by the automaton and the information is available following
the n-links in our model of automata.
Example 5. Assume we are playing a two-colour parity
game. Let

s = [[[α]] [[][αβ γ]] [[][αβ γ]]],

R = {r | (r, [[[α]]]) is winning for Éloı̈se inGrk} and
−→
R =

(R,R). Then

ν2(s) = [[[α]] [[][αβ (γ,
−→
R )]] [[][αβ (γ,

−→
R )]]].

3) The last step is to construct an(n − 1)-CPDA game
from which one can reconstruct the winning region inGlf .
This can be done using the concept of abstract pushdown
games developed in [8] and noting that order-n games that
have non-links are a special class of such games. Then
using induction hypothesis and extending the results in [8]
one concludes that the winning regions are regular inGlf .

Since the class ofn-CPDA graphs is closed under Carte-
sian product with finite structures, Theorem 4 directly leads
to a characterisation ofµ-calculus definable sets over those
graphs.

Corollary 1. The µ-calculus definable sets overCPDA-
graphs are regular.

Proof (Sketch):Take a CPDA-graphG and aµ-calculus
formulaϕ. Fromϕ, it is well known (see for instance [12])
how to construct a finite rooted graphGϕ and a parity game
G over the synchronized product ofG andGϕ such that,
for any vertexv in G the formulaϕ holds atv iff Éloı̈se
wins in G from (v, r) wherer is the root ofGϕ. As the
class of CPDA graphs is closed under Cartesian product
with finite graphs,G is a CPDA parity game. Hence to
decide whetherϕ holds in a configurationv it suffices to
simulate on(v, r) the automaton (constructed in Theorem
4) accepting the (regular) winning region forÉloı̈se inG.
This easily implies that the set of vertices whereϕ holds in
G is itself regular.

V. M ODAL µ-CALCULUS AND MSO REFLECTIONS

Our first task is to prove Theorem 2.
Proof of Theorem 2:We concentrate on(ii) as it implies

(i) (cf. Remark 1). Fix an order-n recursion schemeS =
〈Σ,N ,R, I 〉 and let t be its value tree. Letϕ be a µ-
calculus formula. Using Theorem 1, we can construct an
n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 and a mappingρ :
Q→ Σ such thatt is the tree generated byA andρ.

Let U be the unfolding ofG(A) from its initial configu-
ration andUε be theε-closure ofU . A nodeπ of Uε is a
path inG(A) starting from the initial configuration ofA and
ending in some configuration(qπ, sπ). By definition, there

exists an ismorphismh from Uε to Dom(t) such that for all
nodesπ of Uε, t(h(π)) = ρ(qπ).

Assume that for every stateq of A, we have a predicate
pq that holds at a nodeπ of Uε iff q = qπ. Then the formula
ϕ can be translated to a formulaϕ′ onUε (i.e. h(||Uε||ϕ′) =
||t||ϕ) as follows: for eacha ∈ Σ, replace every occurrence
of the predicatepa in ϕ by the disjunction

∨
q∈Q,ρ(q)=a pq.

In turn ϕ′ can be translated to a formulaϕε on U
(i.e. h(||Uε||ϕ′) = ||U ||ϕε

). Take the formulaϕε obtained
by replacing inϕ every sub-formula of the form⋄aψ by
⋄a(µX.[(ψ ∧ ¬(⋄ε true)) ∨ ⋄εX ]), i.e. replace the assertion
“take ana-edge to a vertex whereψ holds” by the assertion
“take ana-edge to some vertex from which one can reach,
via a finite sequence ofε-edges, a vertex whereψ holds and
which is not the source vertex of anε-labelled edge”.

As unfolding preservesµ-calculus definable properties,
we have thatπ ∈ ||Uε||ϕ′ iff π ∈ ||U ||ϕε

iff (qπ , sπ) ∈
||G(A)||ϕε

. Using Corollary 1 we know that the set of con-
figurations ofG(A) that satisfyϕε is regular,i.e. ||G(A)||ϕε

is accepted by some automatonB.
Using Theorem 3, we construct a newn-CPDA A′ with

a setQ′ of state together with a setF ⊆ Q′ and a mapping
χ : Q′ → Q such that:

• restricted to the reachable configurations, the respective
ε-closures ofG(A) andG(A′) are isomorphic

• for any configuration(q, s) of A′, the corresponding
configuration ofA has stateχ(q) and belongs toL(B)
if and only if q ∈ F .

It follows at once that the treetϕ is defined byA′ with the
mappingρ′ defined as follows: for allq ∈ Q′, ρ′(q) := ρ(q)
if q 6∈ F , andρ′(q) := ρ(q) otherwise. �

Remark 3. There are two natural questions concerning
complexity. The first one concerns the algorithm in Theorem
2: it is n time exponential in both the size of the scheme and
the size of the formula. This is because we need to solve an
order-n CPDA parity game built by taking a product of an
order-n CPDA equi-expressive withS (thanks to Theorem 1
its size is polynomial in the one ofS) with a finite transition
system of polynomial size in that ofϕ. The second issue
concerning complexity is how the size of the new scheme
(obtained in the second point of Theorem 2) relates to that
of S andϕ. For similar reasons, it isn time exponential in
the size ofS andϕ.

It is natural to ask if trees generated by HORS are
reflective w.r.t. MSO. (Modalµ-calculus and MSO are
equivalent for expressing properties of a deterministic tree
at the root, but not other nodes; seee.g. [16]. Indeed one
would need backwards modalities to express all of MSO in
µ-calculus.) Consider the following property (definable in
MSO but not inµ-calculus) on nodesu of a tree: “u is the
right son of anf -labelled node, and there is a path fromu
to ana-labelled node which contains an odd occurrences of
g-labelled nodes”. Returning to the scheme of Example 1



one would expect the following answer to the global model-
checking problem for the corresponding MSO formula:





I → F g a
F ϕx → f (F g (ϕx)) (g x)
F ϕx → f (F g (ϕx)) (g x)

f

f

f

...
g

g

g

a

g

g

a

g

a

Corollary 2 (MSO Reflection). Let t be a Σ-labelled tree
generated by an order-n recursion schemeS, andϕ(x) be
an MSO-formula.

(i) There is an algorithm that transforms(S, ϕ) to an
order-n CPDAA such thatL(A) = ||t||ϕ.

(ii) There is an algorithm that transforms(S, ϕ) to an
order-n recursion scheme that generatestϕ.

Proof (Sketch):As before, we concentrate on(ii) which
implies(i). Using the well-known equivalence between MSO
and automata (see [17]), the question of whether a nodeu
of t satisfiesϕ(x) can be reduced to whether a given parity
tree automatonB accepts the treetu that is obtained fromt
by marking the nodeu (and no other node).

In order to constructtϕ, we first annotatet with informa-
tion on the behaviour ofB on the subtrees oft. We mark
t by µ-calculus definable sets to obtain an enriched tree
denoted̄t. With each pair(q, d) ∈ Q×Dir(Σ), we associate
a formulaψq,d such thatt, u |= ψq,d iff the d-son ofu exists
andB has an accepting run ont[u d] starting fromq (here
t[v] is the subtree oft rooted atv). By Theorem 2,̄t can be
generated by ann-CPDA.

Let Σ′ be the alphabet of̄t. For every nodeu, one can
decide, using the annotations ont̄ and considering only the
path from the root tou, whetherB acceptstu. Precisely,
there is a regularL ⊆ (Σ′∪Dir(Σ′))∗ such that a nodeu of
t satisfiesϕ iff the word obtained by reading in̄t the labels
and directions from the root to the nodeu belongs toL.

Finally ann-CPDA generatingtϕ is obtained by taking a
synchronised product between ann-CPDA acceptinḡt and
a finite deterministicautomaton recognisingL.

Remark 4. In a Σ-labelled tree, a nodeu may be identified
with the word obtained by reading the node-labels and
directions along the unique path from the root tou. Call
this word path(u) ∈ (Σ ∪ Dir(Σ))∗. Let R be a class of
generators ofΣ-labelled trees, andB be a finite-state word
automaton over the alphabetΣ ∪ Dir(Σ). Let R ∈ R and
we write [[R]] for the tree defined byR. We say thatRB is
a B-reflectionof R just if (i) Dom(R) = Dom(RB), and
(ii) suppose a nodeu of [[R]] has labelf , then the label
of nodeu of [[RB]] is f if B acceptspath(u), and it is f
otherwise. We say thatR is reflective w.r.t. regular pathsjust
if there is an algorithm that transforms a given pair(R,B)
to RB. The proof of Corollary 2 can be trivially adapted to

obtain the following (more general) result.

Theorem 5. Let R be a class of generators ofΣ-labelled
trees. IfR is reflective w.r.t. modalµ-calculus and w.r.t. reg-
ular paths, then it is also reflective w.r.t. MSO.

A natural extension of this result is to use MSO to
define new edges in the structure and not simply to mark
certain nodes. This corresponds to the well-know mechanism
of MSO-interpretations [18]. Furthermore to obtain trees,
we unfold the obtained graph from one of its nodes. As
MSO-interpretations and unfolding are graph transforma-
tions which preserve the decidability of MSO, we obtain
a tree with a decidable MSO-theory. Combining these two
transformations provides a very powerful mechanism for
constructing infinite graphs with a decidable MSO-theory.
If we only use MSO-interpretations followed by unfolding
to produce trees starting from the class of finite trees, we
obtain the class of value trees of safe recursive schemes
[19], [20]. This class of trees is conjectured to be a proper
subclass of the value trees of recursion schemes.

We present here a definition of MSO-interpretations which
is tailored to our setting. An MSO-interpretation overΣ-
labelled trees is given by a domain formulaϕδ(x), a formula
ϕσ(x) for eachσ ∈ Σ and a formulaϕd(x, y) for each
direction d ∈ Dir(Σ). When applied to aΣ-labelled tree
t, I produces a graph, denotedI(t), whose vertices are the
vertices oft satisfyingϕδ(x). A vertexu of I(t) is coloured
by σ iff u satisfiesϕσ(x) in t. Similarly there exists an edge
labelled byd ∈ Dir(Σ) from a vertexu to a vertexv iff the
pair (u, v) satisfies the formulaϕd(x, y) in t.

We say thatI is well-formedif for all Σ-labelled treest,
every vertexu of I(t) is coloured by exactly oneσ ∈ Σ
and has exactly one out-going edge for each direction
in Dir(σ). Here we restrict our attention to well-formed
interpretations,4 which ensures that after unfolding of the
interpreted graph, we obtain a deterministic tree respecting
the arities ofΣ.

Consider the MSO-interpretationI which removes all
nodes below a node labelled byg. All colours are preserved
except forg which is renamed tog. Finally all edges are
preserved and a loop labelled byg is added to every node
previously coloured byg. It is easily seen thatI is a well-
formed interpretation. By applyingI to the treet of the
example above and then unfolding it from its root, we obtain
the tree on the right which is generated by the scheme on
the left:

4Given an MSO-interpretationI, we can decide if it is well-form. In
fact, we can construct an MSO-formulaϕI which holds on the complete
binary tree iffI is well-formed [3].
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I → F g (g a)
G → g G

F ϕx → f (F g (ϕx))G
F ϕx → f (F g (ϕx))x
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More generally, we have the following result.

Corollary 3. Let t be aΣ-labelled tree given by an order-
n recursion schemeS and let I be a well-formed MSO-
interpretation. The unfolding ofI(t) from any vertexu can
be generated by an order-(n+ 1) recursion scheme.

Remark 5. A natural question is whether every tree gener-
ated by order-(n + 1) recursion scheme can be obtained
by unfolding a well-formed MSO-interpretation of a tree
generated by an order-n recursion scheme. This is for in-
stance true when considering the subfamily of safe recursion
schemes [2], [20]. A positive answer for general recursion
schemes would imply safe schemes of any given order are as
expressive (for generating trees) as unsafe ones of the same
level. This can be established by induction on the order
with the base case following from the definition of safety.
However already at order 2, unsafe recursion schemes are
widely conjecture to generate more trees then safe ones (see
for instance the so-called Urzyczyn language in [21]).

Conclusions and Further Directions:Using a construc-
tive notion of logical reflection, we have shown: (i) The
global model checking problem may be approached fruit-
fully from a new, internal angle. (ii) The class of trees
generated by HORS is robust: it is closed under both modal
µ-calculus and MSO reflections, and the operation à la
Caucal of MSO-interpretation followed by tree unfolding.

We believe that our results on reflection is relevant to
verification and program transformation; demonstrating that
it is so is our most pressing future work.
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APPENDIX

Appendix
Non-deterministic automata are strictly more powerful

than deterministic automata.
Indeed, letL be the set of words with links〈s̃, target(s)〉

such that target(s) is injective: ∀x, y, target(s)(x) =
target(s)(y) ⇒ x = y.

Then one has the following two results.

Proposition 3. The setL cannot be recognised by a deter-
ministic automaton.

Proof: AssumeA = (Q,A, qin, F, δ) acceptsL. Take
any input 〈u, τ 〉 in L with strictly more than|Q|2 links.
Let r be the (accepting) run ofA over 〈u, τ 〉. Then by the
pigeon hole principal, there are two pairs(i, i′) and (j, j′)
such that:

• i < i′ andj < j′;
• i = τ(i′ + 1) andj = τ(j′ + 1);
• ri = rj andri′ = rj′ .

Consider the input〈u, τ ′ 〉 whereτ ′(k) = τ(k) if k 6= j′+1
and τ ′(j′ + 1) = τ ′(i′ + 1): hence〈u, τ 〉 is obtained by
changing the link fromj′ +1 to have the same target as the
one fromi′ + 1. It follows from how(i, i′) and(j, j′) were
defined thatr is also a run overA. However〈u, τ ′ 〉 is not
in L, leading a contradiction.

Proposition 4. The complementL of L can be recognised
by a non-deterministic automaton.

Proof: The languageL consists of the words with two
links having the same target: to recognised this language, a
non-deterministic automaton guesses by going into a special
state the target. Then whenever reading a letter that points
to that position one increments a counter from0 to 1 and
then from1 to 2 and when the counter is2 it loops in a
final state: hence a word is accepted iff it belongs toL.

Hence one can concludes.

Proposition 5. Non-deterministic automata are strictly more
expressive than deterministic ones.

Proof: The deterministic model being closed by com-
plementation, ifL was recognised by a deterministic au-
tomaton, it would be the same forL, contradicting Proposi-
tion 3.

We aim to establish the following:

Proposition 2. Given fixedn ≥ 2 and some automatonA,
deciding whether there exists some order-n collapsible stack
(resp. configuration) that it accepts is NP-complete.

A. The upper-bound

First we show that the problem lives in NP.
We extend the notion of a run of an automatonA on

〈s̃, target(s)〉 for some order-n stacks so thatA can also

have a run on a stack of order less thann contained within
s without explicit reference to its context. So let1 ≤ k ≤
n and let t be somek-stack contained withins (if k =
n then we must haves = t). Of courset might contain
some ‘dangling links’ which are those links bearing an order
greater thank. We allowA to handle such links by means
of an (n − k)-tuple (Qn, . . . , Qk+1) so that the automaton
is allowed to ‘pretend’ that ani-link points to a position
associated with a state inQi.

More formally suppose thatA = (Q,Σ, q0, δ, F ) where
Σ = {[i, ]i : 1 ≤ i ≤ n} ∪ Γ for some integern and
some stack-alphabetΓ. Given an order-n stack s over Γ
we choose (without loss of generality) to represents̃ using
indexed brackets so that[i and]i delimit ani-stack. We also
assume thattarget(s) is only used to define links of order at
least2 (i.e. 1-links are ignored). We define a partial function

ordl(s) : {1 · · · |s̃|} −→ {2 · · ·n}

that specifies the order of a link from any given element of
the stacks (and is undefined on positions iñs labelled with a
bracket). Given an order-k stackt (for 1 ≤ k ≤ n) contained
in s, we definet̃ to be the corresponding subsequence ofs̃
andtarget(t) (resp.ordl (t)) to be the natural restriction of
target(s) (resp.ordl (s)) to the positions int.

Remark 6. Note that for some positioni ∈ {1 · · · |t̃|}
of t̃, if i ∈ Dom(ordl (t)) with ordl (t)(i) ≤ k, then
i ∈ Dom(target(t)).

Suppose thatt̃ = a1 . . . am. Given (n − k) sub-
setsQn, . . . , Qk+1 of Q, a (Qn, . . . , Qk+1)-run of A on〈
t̃, target(t), ordl (t)

〉
is a sequence of statesq0q1 . . . qm ∈

Q∗ such that:
• for all 0 ≤ i < m, qi+1 = δ(qi, ai+1) if i + 1 /∈
Dom(ordl (r)) (and soi+ 1 /∈ Dom(target(t)))

• for all 0 ≤ i < m, qi+1 = δ(qi, ai+1, q) for
q ∈ Qordl(t)(i+1) if i + 1 ∈ Dom(ordl (t)) with
ordl (t)(i+ 1) > k

• for all 0 ≤ i < m, qi+1 = δ(ri, ai+1, qtarget(t)(i+1)) if
i+ 1 ∈ Dom(ordl (t)) with ordl(t)(i+ 1) ≤ k.

Remark 7. In the special case whenk = n (and sot =
s) ()-runs of A on

〈
t̃, target(t), ordl (t)

〉
are exactly the

(ordinary) runs ofA on
〈
t̃, target(t)

〉
.

Let k ≥ 2 and t be ak-stack contained with then-stack
s. The stringt̃ must be of the form:

[k [k−1 ~w1]k−1 [k−1 ~w2]k−1 . . . [k−1 ~wl]k−1]k

We say thatthe k-height oft is l.

Lemma 1. Suppose thatA has a (Qn, . . . , Qk+1)-run ρ
on

〈
t̃, target(t), ordl(t)

〉
starting with q and ending with

q′, then there exists ak-stackt′ (residing in ann-stacks′)
of k-height bounded by(|Q| + 1).|Q|2 such thatA has a

(Qn, . . . , Qk+1)-run ρ′ on
〈
t̃′, target(t′), ordl (t′)

〉
starting



with q and ending withq′. Moreover the(k − 1)-stacks
occurring insidet′ all occur insidet as well.

Proof: The runρ must be of the following form:

qp1 ~r1q1p2 ~r2q2 . . . pl−1 ~rl−1qlq
′

wherepi is the state reached upon reading theith occurrence
of [k−1 and qi is the state reached upon reading theith
occurrence of]k−1 for 1 ≤ i ≤ l. Let Ri := {qj : 1 ≤ j <
i}. Observe thatRi ⊆ Ri+1 for every1 ≤ i < l. Since each
Ri ⊆ Q there can be at most|Q|+1 distinctRi (remember
∅) and thus at most(|Q|+1).|Q|2 distinct triples(pi, qi, Ri)
with 1 ≤ i ≤ l.

Let ρ′ be the subsequence ofρ:

ρ′ := qpi1 ~ri1qi1pi2 ~ri2qi2 . . . pim
~imqim

q′

such that:

• i1 is the greatestj such that(pj , qj , Rj) = (p1, q1, ∅)
• For 1 ≤ j′ < l, ij′+1 is the greatestj such thatpj =
pij′+1, qj = qij′+1 andRj = Rj′ ∪ {qij′

}.

We can easily check the following two properties ofρ′:

Property 2. • Given a triple(pj′ , qj′ , Rj′ ) for some1 ≤
j′ ≤ l, there is at most onej such that(pij

, qij
, Rij

) =
(pj′ , qj′ , Rj′)).
Thusl ≤ (|Q| + 1).|Q|2

• Given a1 ≤ j ≤ m, if u ∈ Rij
, there exists a1 ≤

j′ < j such thatu = qij′
. Let us writewitness(u, j)

to denote the position ofu.

The first item is due to the fact that we always select
the right-most element of the sequence that satisfies a
given equality and the second follows immediately from the
definition ofRij

and the way thatRij+1 is generated from
Rij

andqij
.

We now define thek-stackt in terms oft̃′, target(t′) and
ordl (t′) as follows:

• The stringt̃′ is given by:

t̃′ := [k [k−1 ~wi1 ]k−1 [k−1 ~wi2 ]k−1 . . . [k−1 ~wil
]k−1]k

For any positiona′ in t̃′ let us writea to denote the
corresponding position iñt.

• ordl (t′) is the restriction ofordl (t) to t′

• For any stack-alphabet positionγ′ in t′ we have
target(t′)(γ′) = target(t)(γ), if ordl (t′)(γ′) ≤ k− 1.
If ordl (t′)(γ) = k, then target(t′) := witness(u, j)
whereu is the state in positiontarget(t)(γ) in ρ.

Links internal to the(k − 1)-stacks are preserved fromt.
Now consider a positionγ′ in t̃′ (andρ′) which resides in
a wij

(rij
). Since the statep at positiontarget(t)(γ) in ρ

occurs at a position prior toγ in ρ, it must be a stateu := qj′

with j′ < ij . This means thatu ∈ Rij
. By the second item

of Property 2,witness(u, j) is thus well-defined. Moreover,

since this occurs at a]k−1-labelled position,t′ is a correctly
formedk-stack.

We claim that ρ′ is a (Qn, . . . , Qk+1)-run of〈
t̃′, target(t′), ordl (t′)

〉
on A. This is verified by an

easy induction with the hypothesis that an initial segment
of ρ′ is a (Qn, . . . , Qk+1)-run of the corresponding initial

segment of
〈
t̃′, target(t′), ordl (t′)

〉
on A. The induction-

step prevails since the construction ofρ′ together with
the handling of k-links in the definition of target(t′)
ensures that every transition made byA when reading〈
t̃′, target(t′), ordl (t′)

〉
with run ρ′ was made when

reading
〈
t̃, target(t), ordl (t)

〉
with run ρ.

Finally note that the first item of Property 2 tells us that
t hask-height bounded by(|Q| + 1).|Q|2), as required.

Note that the following lemma also holds and is es-
tablished by the standard pumping-argument for finite-
automata. (As links are ignored in(Qn, . . . , Q2)-runsA may
as well be a conventional finite automaton for the purposes
of this lemma):

Lemma 2. If A has a (Qn, . . . , Q2)-run (for some
Qn, . . . , Q2 ⊆ Q) starting in stateq and ending in stateq′

on a 1-stackt contained ins, then it has a(Qn, . . . , Q2)-
run starting in stateq and ending in stateq′ on a 1-stack
t′ with height at most|Q|.

Given an integerk, let us define a sequence of integers
(ψi(k))1≤i by ψ1(k) := k + 2 and ψi+1 := ((k +
1).k2)k−1ψi(k) + 2. As a consequence of the previous two
lemmas we get:

Lemma 3. Let t be ak-stack contained within ann-stack
s (for 1 ≤ k ≤ n) and let Qn, . . . , Qk+1 ⊆ Q. If an
automatonA has a (Qn, . . . , Qk+1)-run from q to q′ on〈
t̃, target(t), ordl (t)

〉
, then it has a(Qn, . . . , Qk+1)-run

from q to q′ on
〈
t̃′, target(t′), ordl(t′)

〉
for somek-stack

t′ such that|t̃| ≤ ψk(|Q|).

Proof: Argue by induction onk. The base case (k = 1)
is given by Lemma 2 (adding2 to the length to account for
the opening and closing brackets[1 and ]1).

For the induction step suppose that the result holds for
k < n. Let t be a(k + 1)-stack contained ins where

t̃ = [k+1 u1 . . . um ]k+1

Suppose further that there is a(Qn, . . . , Qk+2)-run ρ on〈
t̃, target(t), ordl (t)

〉
. We write pi and qi respectively for

the state inρ that arises for entering and exiting thek-stack
si (for 1 ≤ i ≤ m).

Let Ri := {qj : 1 ≤ j ≤ i}. Since(k + 1)-links from
elements in a stacksi must point to the end of a stacksj for
1 ≤ j < i, we have it that there is a(Qn, . . . , Qk+2, Ri)-run
on si starting inpi and ending inqi for each1 ≤ i ≤ m.



The induction hypothesis thus tells us that we can replace
eachsi with a stacku′i such that|s̃′i| ≤ ψk(|Q|).

It follows that there is a(k + 1)-stack t′ containing
k-stacks u with |u| ≤ ψk(|Q|) such that there is a

(Qn, . . . , Qk+2)-run on
〈
t̃′, target(t′), ordl (t′)

〉
. To finish

the induction-step we appeal to Lemma 1.
As a corollary to the previous lemma, taking the case

when k = n, we may conclude that if an automatonA
recognises any stack, then it must accept a small stack:

Lemma 4. Let A be an automaton recognising somen-
stack. It must accept ann-stacks such that|s̃| ≤ ψn(|Q|),
whereQ is the state-space ofA.

Sinceψn(x) is a polynomial it follows that an automaton
A recognising some stack must have a witness to this fact
that is polynomial in the size ofA. Since membership can
be decided in linear-time, it follows that the stack-emptiness
problem is indeed in NP.

B. The lower-bound

Now we show NP-hardness. We do this by reducing3-
SAT to the emptiness problem.

We say that a propositional formulaϕ is in 3-conjunctive
normal form (3-CNF) if it is of the form:

(x1 ∨ y1 ∨ z1) ∧ (x2 ∨ y2 ∨ z2) ∧ · · · ∧ (xk ∨ yk ∨ zk)

wherexi, yi andzi (for 1 ≤ i ≤ k) are either propositional
atoms or negations of propositional atoms. The problem3-
SAT takes as input a propositional formula in3-CNF and
asks whether there is a valuation satisfying it. It is well
known that this problem is NP-complete.

Consider an alphabetΓ:

Γϕ := {tt, ff, ◦1, •1, . . . , ◦k, •k}

. Take a propositional formulaϕ in 3-CNF. Without loss
of generality we may assume that every conjunctive clause
containsexactly three atoms – if need be we can repeat
a (negation of an) atom in a disjunctive clause without
affecting satisfiability. So we have:

ϕ = (x1 ∨ y1 ∨ z1) ∧ (x2 ∨ y2 ∨ z2) ∧ · · · ∧ (xk ∨ yk ∨ zk)

Let p1, . . . , pm be the propositional variables occurring in
ϕ. Let v be a valuation assigning a boolean value to each of
the pi. We now define a stringΓ(ϕ, v) ∈ Γ∗ together with
a partial functiontarget(ϕ, v) from positions inΓ(ϕ, v) to
other positions therein:

Γ(ϕ, v) = v1 . . . vmx
′
1y

′
1z

′
1 . . . x

′
ky

′
kz

′
k

where:

• vi = v(pi) for each1 ≤ i ≤ m.
• x′i = ◦j if xi = pj andx′i = •j if xi = ¬pj

• y′i = ◦j if yi = pj andy′i = •j if yi = ¬pj

• z′i = ◦j if zi = pj andz′i = •j if zi = ¬pj

• target(ϕ, v)(x′i) := vj wherexi is the atompj or the
negation of the atompj (and similarly fory′i and z′i)
for 1 ≤ i ≤ k.

Remark 8. It should be clear thatv satisfiesϕ just in case
for every1 ≤ i ≤ k at least one of the following holds of
Γ(ϕ):

• x′i = ◦ and target(ϕ, v)(x′i) = tt
or x′i = • and target(ϕ, v)(x′i) = ff

• y′i = ◦ and target(ϕ, v)(y′i) = tt
or y′i = • and target(ϕ, v)(y′i) = ff

• z′i = ◦ and target(ϕ, v)(z′i) = tt
or z′i = • and target(ϕ, v)(z′i) = ff

Remark 9. We can easily build a (not-necessarily
constructible) 2-CPDA stack sϕ,v over the stack-
alphabet Γ such that 〈s̃ϕ,v, target(sϕ,v)〉 encodes
〈Γ(ϕ, v), target(ϕ, v)〉 in a trivial manner. Where

Γ(ϕ, v) = v1 . . . vmx
′
1y

′
1z

′
1 . . . x

′
ky

′
kz

′
k

we takes̃ϕ,v to be:

[2[1v1]1 . . . [1vm]1[1x
′
1y

′
1z

′
1 . . . x

′
ky

′
kz

′
k]1]2

andtarget(sϕ,v) to be derived fromtarget(ϕ, v) by shifting
each target one step to the right to point to a]1 position.

Bearing in mind that this is possible, we will continue to
use the string with pointers〈Γ(ϕ, v), target(ϕ, v)〉 as this
carries less baggage than〈s̃ϕ,v, target(sϕ,v)〉.

We now construct an automatonA that recognise strings
encoding valuations satisfyingϕ. The pointers allow us to
build such an automaton with only a polynomial number
of states as they provide non-local access to the values
assigned to atoms by a valuation. We thus do not need to
have this information to hand locally, which would require
an exponential number of states to represent all possible
truth-value assignments.

We define:

Aϕ = 〈Qϕ,Γ, q0, δϕ, Fϕ〉

where

• Qϕ := {q0, qtt
1 , q

ff
1 , . . . , q

tt
m, q

ff
m, r

tt
1 , r

ff
1 , s

tt
1 , s

ff
1 , t

tt
1 , . . . ,

rtt
k , r

ff
k , s

tt
k, s

ff
k , t

tt
k , fail}

• Fϕ := {tttk}
• We state once and for all that we only allow a transition

to ri whilst reading a symbol◦j if xi = pj . Likewise
we only allow a transitionto ri whilst reading a symbol
•j if xi = ¬pj . A similar restriction applies tosi

with yi andti with zi. We do not re-state below these
restrictions explicitly to assist with readability.

– δϕ(qi, tt) := qtt
i+1 andδϕ(qi, ff) := qff

i+1

for 0 ≤ i ≤ m− 1.
– δϕ(qm, ◦j , q

tt
j ) := rtt

1 andδϕ(qm, •j , q
ff
j ) := rtt

1

– δϕ(qm, ◦j , q
ff
j ) := rff

1 andδϕ(qm, •j , q
tt
j ) := rff

1



– δϕ(rtt
i , a, q

b
j) := stt

i with a ∈ {◦j, •j} andb ∈ {tt, ff}
for each1 ≤ j ≤ m and1 ≤ i ≤ k.

– δϕ(stt
i , a, q

b
j) := ttti with a ∈ {◦j, •j} andb ∈ {tt, ff}

for each1 ≤ j ≤ m and1 ≤ i ≤ k.
– δϕ(ttti , ◦j, q

tt
j ) := rtt

i+1 andδϕ(ttti , •j , q
ff
j ) := rtt

i+1 for
1 ≤ i ≤ k − 1 and1 ≤ j ≤ m.

– δϕ(ttti , ◦j, q
ff
j ) := rff

i+1 andδϕ(ttti , •j , q
tt
j ) := rff

i+1 for
1 ≤ i ≤ k − 1 and1 ≤ j ≤ m.

– δϕ(rff
i , ◦j , q

tt
j ) := stt

i and δϕ(rff
i , •j , q

ff
j ) := stt

i for
1 ≤ i ≤ k and1 ≤ j ≤ m.

– δϕ(sff
i , ◦j , q

tt
j ) := ttti and δϕ(sff

i , •j , q
ff
j ) := ttti for

1 ≤ i ≤ k and1 ≤ j ≤ m.
– δϕ(rff

i , ◦j , q
ff
j ) := sff

i and δϕ(rff
i , •j, q

tt
j ) := sff

i for
1 ≤ i ≤ k and1 ≤ j ≤ m.

– δϕ(sff
i , ◦j , q

ff
j ) := fail and δϕ(sff

i , •j , q
tt
j ) := fail for

1 ≤ i ≤ k and1 ≤ j ≤ m.
– Everywhere else the transition function is defined to

map tofail

Lemma 5. The (j + 1)th state in a run ofAϕ on
〈Γ(ϕ, v), target(ϕ, v)〉 is qv(pj)

j for 1 ≤ j ≤ m.

Proof: An easy induction onm.

Lemma 6. The automatonAϕ reaches the statetttj when
reading 〈Γ(ϕ, v), target(ϕ, v)〉 iff v satisfies all clauses
(xi, yi, zi) for 1 ≤ i ≤ j.

Proof: Given Remark 8 and Lemma 5 this is a straight-
forward induction on the length of the runs ending intttj .

The special case of Lemma 6 whenj = k gives the
following:

Lemma 7. The automatonAϕ recognises the language:

Lϕ = {〈Γ(ϕ, v), target(ϕ, v)〉 : v satisfiesϕ}

.

Note thatL is non-empty iffϕ is satisfiable. Moreover
note that|Qϕ| ≤ 4.|ϕ| and so (taking into account the size
of δϕ) the size ofAϕ isO(|Qϕ|3) and so can be constructed
in polynomial time. Given Remark 9 this thus reduces the
polynomial-time reduction of 3-SAT to the regular stack
emptiness problem, thereby showing it to be NP-hard.

Let us first recall the statement of Theorem 3.

Theorem 3. Given an order-n CPDAA with a state-setQ
and an automatonB (that takesA-configurations as input),
there exist an order-n CPDA A[B] with a state-setQ′, a
subsetF ⊆ Q′ and a mappingχ : Q′ → Q such that:

(i) restricted to the reachable configurations, the respec-
tive ε-closures ofG(A) andG(A[B]) are isomorphic

(ii) for any configuration(q, s) of A[B], the correspond-
ing configuration ofA has stateχ(q) and belongs toL(B)
if and only if q ∈ F .

Proof:

Fix an order-n CPDAA and an automatonB. We wish to
construct a new order-n CPDA A[B] that computesA and
B in parallel.

LetQ be the state set ofB. Let S be an order-n stack. Fix
an internalk-stacks of S. Readingpopks, the automatonB
induces a run (for some technical reason we do not care of
top (k−1) stack ins). We want to associate withs a function
describing its behaviour. However, if one simply extractss
from S, there may be some “dangling link” of order greater
thank. To define the transformations induces onQ, we need
to know theQ-state that should be attached to the target of
each of these links. Thuss gives rise to a mappingτk :
Qn−k ×Q→ Q that, given a tuple(qn, · · · , qk+1), defines
a transformation fromQ to Q. We use statesqn, · · · , qk+1

to define the value of the states attached to the respective
targets of the links (of ordern, · · · , k+1 respectively) ins:
for n-links, we consider the run induced by readingS (we
stop whens is reached) starting fromqn (this give the value
for the respective targets of then-links), for (n − 1)-links,
we consider the run induced by readingtopn(S) (we stop
whens is reached) starting fromqn−1, . . . ; and for(k+1)-
links, we consider the run induced by readingtopk+2(S)
(again we stop whens is reached) starting fromqk+1. We
refer the reader to Table B for an illustration in the case
wheres is the topk-stack (this is actually the only relevant
case in the following as we will maintain the validity of the
information on theτi only in that case) where we have more
formally:

- τ0[xn, · · · , x2](x1) is the function fromQ toQ induced
by reading (the segment of)S starting fromtop2(S) (with
state given by the inputx1 to the function), and stopping just
after readingtop1(S). (For eachk ≥ 2, the targets of the
k-links emanating from the segment are attachedQ-states
according to the run induced by readingS starting from
topk+1(S) with statexk.)

- For each1 ≤ i ≤ n− 2, τi[xn, · · · , xi+2](xi+1) is the
function fromQ toQ induced by reading (the segment of)S
starting fromtopi+2(S) (with state given by the inputxi+1

to the function) and stopping just before readingtopi+1(S).
- τn−1(xn) is the function fromQ to Q induced by

readingS (with state given by the inputxn to the function),
and stoping just before readingtopn(S).

A stack symbol of the CPDAA[B], is a pair, consisting
of a symbola, which is a stack symbol ofA, and ann-tuple
of the form t = (τn−1, · · · , τ0) where theτis are as above
(i.e. τi is associated with thetop i-stack).

For further use, we defineτ+
0 [xn · · ·x2](x1) to be the

same asτ0[xn · · ·x2](x1); and for each0 ≤ k ≤ n− 3,

τ+
k+1[xn · · ·xk+3](xk+2)

:= τ+
k [xn · · ·xk+2](τk+1[xn · · ·xk+3](xk+2)).

Thus eachτ+
k is a function fromQ toQ induced by reading

(the segment of)S starting fromtopk+2(S) (with state given
by the inputxk+1 to the function), and stopping just after



readingtop1(S), as indicated in Table B(ii). As eachτ+
k

can be obtained from theτis we assume that we can access
them directly on reading thetop1 element of the stack. Note
that, consideringτ+

n applied to the initial state ofB we
deduce whether the current stack is accepted byB: hence
this information will be maintained in the control state of
A[B] and is used to defineF . The functionΞ is the one
erasing all auxiliary information used byA[B] in its control
state.

Now supposetop1(Ŝ) = (a, (τn−1, · · · , τ0)). For each
order-n stack actionθ of A, we define the corresponding
stack action ofA[P ], θ̂, in Table B(iii). This complete the
description ofA[B].

Correctness: The only case that are not trivial are
p̂opk and ̂collapse (actually they are rigorously iden-
tical, hence we only prove the first one). Suppose
top1(Ŝ) = (a, (τn−1, · · · , τ0)) and top1(popk(Ŝ)) =
(a′, (τ ′n−1, · · · , τ

′
0)). Note that for each0 ≤ i ≤ k − 1,

we haveτ ′i is correct because it is preserved bypushj , for
eachj ≥ k + 1. For eachk ≤ i ≤ n− 1, we haveτi = τ ′i
as required, becausepopk+1(Ŝ) = popk+1(popkŜ).

We give here a fully detailed proof of Theorem 4:

Theorem 4. Let G be ann-CPDA parity game. Then the
winning region forÉloı̈se (resp. for Abelard) is a regular set
than can be effectively constructed.

In the sequel,n-CPDA are used exclusively for defining
games and therefore, we will omit initial state and final states
when defining ann-CPDA, i.e.denote ann-CPDA as a tuple
〈A,Γ, Q, δ 〉 (hence considering it as a process defining an
infinite graph rather than an accepting device).

Mainly for technically and to improve readability, we
consider a version of CPDA in which we can rewrite the
top1 element5. Hence the statement of Theorem 4 is to be
understood in this (richer) setting. Formally, ifs is a stack
with links, then the stackrewβ

1 s is the one obtained by
replacing thetop1 element ofs by β without modifying the
link from this element.

Example 6. Take the following 3-stack

s = [[[α]] [[][αβ γ]]]

then

rewβ
1 s = [[[α]] [[][αβ β]]]

C. First step: making a CPDA rank aware

Fix an n-CPDA A = 〈A,Γ, Q, δ〉, a partitionQE ∪ QA

of Q and a colouring functionρ : Q → C ⊂ N. Denote by
G the induced parity game.

5This can be simulated in the original model (mainly by pushing the new
version of a symbol) thanks toε-moves.

A partial play Λ is a non-empty sequence of configura-
tions v0v1 . . . vm such that for alli ∈ [m − 1], there is an
edge inG from vi to vi+1. Note that we do not requirev0
to be the initial configuration.

We first define a generalisation ofn-stacks,indexedn-
stacks, in which every internalk-stack (for0 < k < n), i.e.
ak-stack that is not the currenttopk stack, is labelled with a
natural number. Theerasureof an indexedn-stack is then-
stack obtained by erasing all the indices of its internal stacks.
An indexed configuration is a pair formed by a control state
and an indexed stack. We extend the notion of erasure to
indexed configuration in the obvious way.

With any playΛ = v0v1 · · · we inductively associate a
sequence of indexed configurationsΛ′ = v′0v

′
1 · · · such that

the erasure ofΛ′ equalsΛ (the erasure of a sequence of
indexed configurations being defined as the sequence of the
respective erasures).

The initial configurationv′0, is obtained by indexing every
internal stack by0. Assume now thatv′1 · · · v

′
m has been

constructed, then we have the following cases.
- A pushk operation is applied at configurationvm in Λ.

Then all indices of the existing internal stacks are simply
inherited; and indices for the new internal stacks are
defined as follows. The indices of the internal stacks in
the top (k − 1)-stack of configurationvm+1 are copied
from the former top(k − 1)-stack (hence one can think
of this as a generalization ofpushk to indexed stacks);
and, for each relevanti, the indices of thetopi(popk(s))
stacks (wheres denotes the stack inv′m+1) are assigned
index (m+ 1).

- A pusha,k
1 operation is applied at configurationvm in Λ.

Then all previous indices are inherited and no new indices
are needed.

- A popk operation or acollapse operation is applied at
configuration vm in Λ. Then all indices are inherited
(except those corresponding to thetopi stacks inv′m+1

which have now disappeared).
In the sequel,Λ′ will denote the indexed version ofΛ.

Then the following holds:
- The erasure ofΛ′ equalsΛ.
- For any indexed configurationv′m, for anyk-stacks inside

the indexedn-stack associated withv′m, the index ofs, if
defined, is greater or equal to all indices of thej-stacks
(j < k) contained ins.
The following proposition is crucial to the rest of the

proof. In particular, it means that if we store some infor-
mation on the stack, the index gives the ”expiry date” of
the stored information, that is the step in the computation
starting from which the information has no longer been
updated.

Proposition 6. Let Λ andΛ′ be as above. For any indexed
configuration v′m, for any internal k-stack s inside the
indexedn-stack associated withv′m let x be the index of



(i) Illustration of τk [xn, · · · , xk+2](xk+1)

[n · · · · · ·

τ3[xn,··· ,x5](x4)
z }| {
[4 · · · · · · [3 · · ·]3

τ2[xn,··· ,x4](x3)
z }| {
[3 · · · · · · [2 · · ·]2

τ1[xn,··· ,x3](x2)
z }| {
[2 · · · · · · [1 · · ·]1 [1 · · · a

| {z }
τ0[xn,··· ,x2](x1)

]1]2]3 · · ·]n

(ii) Illustration of τ+
k [xn, · · · , xk+2](xk+1)

[n · · · · · ·

τ
+
3

[xn,··· ,x5](x4)
z }| {

[4 · · · · · · [3 · · ·]3 [3 · · · · · · [2 · · ·]2

τ
+
1

[xn,··· ,x3](x2)
z }| {
[2 · · · · · · [1 · · · ]1 [1 · · · a

| {z }

τ
+
0

[xn,··· ,x2](x1)
| {z }

τ
+
2

[xn,··· ,x4](x3)

]1]2]3 · · · ]n

(iii) Definition of bθ. Notation. Let t and t′ be triples. We writerw t′ for the action of replacing the top-of-stack element(a, t), say, by(a, t′); and let
2 ≤ k ≤ n.

θ bθ

pushk pushk ; rw (τn−1, · · · , τk , t, τk−2, · · · , τ0)

where t[xn, · · · , xk+1](xk) := δ(τ+
k−1[xn, · · · , xk+1](xk), ]1 · · ·]k−1)

push
b,k
1 push

(b, (τn−1,··· ,τ1,t)),k
1

where t[xn, · · · , x2](x1) := δ(τ+
0 [xn, · · · , x2](x1), b, τk+1[xn, · · · , xk+3](xk))

popk popk ; rw (τn−1, · · · , τk+1, τk, τ ′

k−1, · · · , τ ′

0)

wheretop1(popk(S)) = (a′, (τ ′

n−1, · · · , τ ′

0))

collapse collapse ; rw (τn−1, · · · , τk+1, τk, τ ′

k−1, · · · , τ ′

0)

wheretop1(collapse(S)) = (a′, (τ ′

n−1, · · · , τ ′

0))

whereδ is the transition function of the automatonB.

Table I
ILLUSTRATIONS AND DEFINITIONS.

s. If x 6= 0, thentopk+1(vx−1) = s. In particular one also
has thattop1(vx−1) = top1(s).

We now introduce the notion ofk-ancestor. Fix a partial
play Λ = v0v1 · · · vm, let vm = (q, s) be some configuration
in Λ and lets′ be some internalk-stack ins. Then thek-
ancestorof s′ is the configurationvi where i is the index
of s′ in the indexed version ofvm.

We now introduce the notion ofcollapse rank. Fix a
partial play Λ = v0v1 · · · vm and assume that thetop1

element ofvm has a(k + 1)-link for some k. Then the
collapse rank invm is the smallest colour visited since the
k-ancestor of the pointedk-stack.

Finally, we give a notion ofpop rank. Fix a partial play
Λ = v0v1 · · · vm and a configurationvm = (q, s) in Λ. Then
the pop rank fork (for any1 ≤ k ≤ n), when defined, is the
smallest colour visited since thek-ancestor ofpopk(s). In
particular, the pop rank forn is the smallest colour visited
since the stack has height at least the height ofs.

Consider a partial playΛ = v0v1 · · · vm in G ending in
a configurationvm = (q, s) such thattop1(s) has ann-
link (if the link is a k-link for somek < n the following
concepts are not relevant). Thelink ancestorof vm is the

configurationvj where the original copy of then-link in
top1(s) was created, orv0 if the link was present in the
stack of the configurationv0. The link rank of vm is the
minimum colour of a state occurring inΛ betweenvm and
its link ancestorvj (inclusive) i.e. min{ρ(vj), · · · ρ(vm)}.

Definition 1. An n-CPDA equipped with a colouring func-
tion is rank-aware from a configurationv0 if there exist
functionsColRk : Γ → N and LinkRk : Γ → N such
that for any partial playΛ = v0v1 · · · vℓ, the collapse
rank and the link rank (if defined) of the configuration
vℓ = (q, s) are respectively equal toColRk(top1(s)) and
LinkRk(top1(s)). In other words, the collapse rank and the
link rank are stored in thetop1-element of the stack.

Remark 10. In the current setting, if the collapse ancestor
(respthe pop ancestor / the link ancestor) refers to a stack
that was internal in the initial configuration (i.e. the k-
ancestor isv0) then the collapse rank (resp the pop rank
/ the link rank) is simply the smallest priory seen since the
beginning of the play. Hence, it does not make much sense
but it permits the construction to remain uniform.

The next lemma shows that we can restrict our attention



to CPDA games where the underlying CPDA is rank-aware.

Lemma 8. For any n-CPDA A and any parity gameG
on it, one can construct ann-CPDAArk and an associated
parity gameGrk such that there exists a mappingν1 from the
configurations ofA to that ofArk satisfying the following
conditions:

• for any configurationv0 of A, Ark is rank-aware from
ν1(v0);

• Éloı̈se has a winning strategy inG from some config-
uration v0 iff she has a winning strategy inGrk from
ν1(v0).

• both ν1 and ν−1
1 preserve regular sets of configura-

tions;

The proof is a non-trivial generalisation of [19, Lemma
6.3] (which concerns 2-CPDA) to the general setting ofn-
CPDA and starting from an arbitrary configuration, and it
occupies the rest of the section.

Fix an n-CPDA A = 〈A,Γ, Q, δ 〉, a partitionQE ∪QA

of Q and a colouring functionρ : Q → C ⊂ N. Denote
by G the induced parity game. We define a rank-aware (to
be proven)n-CPDA Ark = 〈A,Γrk, Qrk, δrk〉 〉 such that
Q× C ⊂ Qrk and

Γrk = Γ × (C ∪ {	}) × (C ∪ {	, †})× (C{1,...,n} ∪ {	})

The main configurations((q, θ), s) of Ark (by main we
mean a configuration that is reached after simulating a transi-
tion ofA: indeed simulating one transition ofA need several
steps inArk, hence goes through intermediate configurations
that we do not care about when stating our invariant) will
satisfy the following invariant. First,θ is the minimal colour
visited from the beginning of the path/run/play. Second, if
top1(s) = (α,mc,ml, τ) then the following holds.

- mc is the collapse rank.
- ml is the link rank if it makes sense (i.e. there is ann-link

in the current top symbol) or is† otherwise.
- τ is the pop rank, that is, for everyi = 1, · · · , n, τ(i) is

the pop rank fori.

Let us now explain when one uses the	 symbol and how
ν1 is defined. Let(q, s) be some configuration inA. Then
ν1(q, s) = ((q, ρ(q), s′) wheres′ is obtained by:

• Replacing every internal symbolγ (i.e. that is not the
top1-element) by(γ,	,	,	) if it has ann-link and
by (γ,	, †,	) otherwise.

• Replacing thetop1 elementγ by (γ, ρ(q), ρ(q), ρ(q))
if it has ann-link and by (γ, ρ(q), †, ρ(q)) otherwise.

Hence at the beginning of the run the invariant holds.
The transition function ofArk mimics that of A and

updates the ranks as explained below. First, let us explain
the meaning of symbols	. Such symbols will never be
created using apush ,k

1 action: hence they can only be
duplicated (usingpushk) from symbols originally in the

stack. The meaning of a symbol	 is that the corresponding
object (collapse rank, link rank or pop rank) has not been
yet settled. However, it can be very easily computed as it
necessarily equals the smallest colour visited so far (as noted
in Remark 10): this is why we made the computation of the
minimal colour visited so far in the control state ofArk.

In order to save space and to make the construction
more understandable, we do not formally describeδrk but
rather explain howArk is supposed to behave. It should be
clear thatδrk can be formally described to fit this informal
description (and that some extra control states are actually
needed). Note that the following description also contains
the inductive proof of its validity, namely thatmc, ml andτ
are as stated above. To avoid case distinction on whether the
link rank is defined or not, we take the following convention
that min(†, i) = † for every i ∈ N.

AssumeArk is in some configuration((q, θ), s) with
top1(s) = (α,mc,ml, τ) and letv0v1 · · · vℓ be the begin-
ning of the run ofArk where we denotevi = ((qi, θi), si)
(henceqℓ = q and sℓ = s). The following behaviours are
those allowed in((q, θ), s).

1) For everyδ(q, α, a) = (q′, popk) with 1 ≤ k ≤ n, let
popk(s) = s′ and lettop1(s

′) = (α′,m′
c,m

′
l, τ

′). Then
on readinga, Ark goes to the configuration((q′, θ′), s′′)
whereθ′ = min(θ, ρ(q′)) and s′′ is obtained froms′

by replacingtop1(s
′) by

a) (α′, θ′, θ′, (θ′, . . . , θ′)) if m′
c =	, m′

l =	 andτ ′ =
(	, . . . ,	).

b) (α′, θ′, †, (θ′, . . . , θ′)) if m′
c =	, m′

l = † and τ ′ =
(	, . . . ,	).

c) (α′,min(m′
c, τ(k), ρ(q

′)),min(m′
l, τ(k), ρ(q

′)), τ ′′),
with

τ ′′(i) =

{
min(τ ′(i), τ(k), ρ(q′)) if i ≤ k

min(τ(i), ρ(q′)) if i > k

Cases(a) and (b) correspond to the case where one
reach (possibly a copy) of a symbol that was in the
stack from the very beginning and that never appeared
as atop1 element: then the value of the collapse rank,
link rank (if defined this is case(a) otherwise it is case
(b)) and pop ranks are all equal toθ′.
We now explain case(c). Let vx be the k-ancestor
of topk(popk(s)). Then x > 0 as we would be
otherwise in case(a) or (b). By Proposition 6, it follows
that topk(popk(s)) = topk(sx−1), and by induction
hypothesis, at step(x − 1), m′

c, m′
l and τ ′ had the

expected meaning. Lety be the index of the pointed
stack ins′: y is also the index of the pointed stack in
sx−1, and moreovery < x. The collapse rank invℓ+1

is min{ρ(qy), . . . , ρ(qx−1), ρ(qx) . . . , ρ(qn), ρ(q′)} =
min{m′

c, τ(k), ρ(q
′)}. Similarly, when defined, the link

ancestor ofs′ is the same as the one insx−1: hence
the pop rank invℓ+1 is min{m′

l, τ(k), ρ(q
′)}.



For any i ≤ k, topi(popi(s
′)) = topi(sx−1) and

therefore the pop rank fori in vℓ+1 is obtained by
updating τ ′(i) to take care of the minimum colour
seen sincevx which (as for the collapse rank) is
min{τ(k), ρ(q′)}: therefore the pop rank fori in vℓ+1

equalsmin{τ ′(i), τ(k), ρ(q′)}.
For any i > k, popi(s

′) = popi(s) and thus
topi(popi(s

′)) = topi(popi(s)). Therefore the pop rank
for i in vℓ+1 is obtained by updating the one invℓ to
take care of the new visited colourρ(q′): hence the pop
rank for i in vℓ+1 equalsmin{τ(i), ρ(q′)}.

2) For everyδ(q, α, a) = (q′, pushj) with 2 ≤ j ≤ n, let
pushj(s) = s′ and lettop1(s

′) = (α,mc,ml, τ) (note
that	 does not appear intop1(s

′)). Then, on readinga,
Ark can go to the configuration((q′, θ′), s′′) whereθ′ =
min(θ, ρ(q′)) ands′′ is obtained froms′ when replac-
ing top1(s

′) by (α,min(mc, ρ(q
′)),min(ml, ρ(q

′)), τ ′)
with

τ ′(i) =

{
min(τ(i), ρ(q′)) if i 6= j

ρ(q′) if i = j

Indeed, the ancestor of the pointed stack in the new
configuration is the same as the one ins. As by
induction hypothesismc is the collapse rank invℓ, the
collapse rank invℓ+1 is obtained by updatingmc to
take care of the new visited colour, namely by taking
min{mc, ρ(q

′)}. Similarly, if defined, the link ancestors
in vℓ and vℓ+1 are identical and then the link rank in
vℓ+1 is min{mc, ρ(q

′)}.
For any i 6= j, as popi(s) = popi(s

′), the i-ancestor
of topi(popi(s)

′) and thei-ancestor oftopi(popi(s
′))

are the same. Again using the induction hypothesis one
directly gets that the pop rank fori in vℓ+1 equals
min{τ(i), ρ(q′)}.
The index of thej-ancestor oftopj(popj(s

′)) is by
definition ℓ+ 1. Hence as the only colour visited since
vℓ+1 is ρ(q′) it equals the pop rank forj.

3) For everyδ(q, α, a) = (q′, pushβ,k
1 ) with 1 ≤ k ≤

n, and β ∈ (Γ \ {⊥}), on readinga, Ark goes
to (q′, θ′), where θ′ = min(θ, ρ′(q′)), and applies
push

(β,m′

c,m′

l,τ
′),k

1 where m′
c = min(τ(k), ρ(q′)),

m′
l = ρ(q′) if k = n and m′

l = † otherwise,
and τ ′(i) = min(τ(i), ρ(q′)) for every i ≥ 2 and
τ(1) = ρ(q′).
Indeed, the pointed stack ins′ is topk(popk(s)) and
therefore the collapse rank invℓ+1 is the minimum of
the pop rank fork in s and of the new visited colour
ρ(q′), that ismin{τ(k), ρ(q′)}.
If k = n, the link ancestor ofvℓ+1 is vℓ+1 itself
and hence the link rank is the colour of the current
configuration, namelyρ(q′).
For any i ≥ 2, as popi(s) = popi(s

′) one also
has topi(popi(s

′)) = topi(popi(s)) and therefore the

pop rank for i in vℓ+1 equals the minimum of the
one in vℓ with the new visited colourρ(q′), that is
min{τ(i), ρ(q′)}. Finally as the1-ancestor ofpop1(s

′)
is vℓ then the pop rank for1 is the current colour,
namelyρ(q′).

4) For everyδ(q, α, a) = (q′, collapse), let collapse(s) =
s′ and lettop1(s

′) = (α′,m′
c,m

′
l, τ

′). Then, on reading
a, Ark goes to the configuration((q′, θ′), s′′) where
θ′ = min(θ, ρ(q′)) and s′′ is obtained froms′ by
replacingtop1(s

′) by

a) (α′, θ′, θ′, (θ′, . . . , θ′)) if m′
c =	, m′

l =	 andτ ′ =
(	, . . . ,	).

b) (α′, θ′, †, (θ′, . . . , θ′)) if m′
c =	, m′

l = † and τ ′ =
(	, . . . ,	).

c) (α′,min(m′
c,mc, ρ(q

′)),min(m′
l,mc, ρ(q

′)), τ ′′)
with

τ ′′(i) =

{
min(τ ′(i),mc, ρ(q

′)) if i ≤ k

min(τ(i), ρ(q′)) if i > k

Cases(a) and (b) correspond to the case where one
reach (possibly a copy) of a symbol that was in the
stack from the very beginning and that never appeared
as atop1 element: then the value of the collapse rank,
link rank (if defined this is case(a) otherwise it is case
(b)) and pop ranks are all equal toθ′.
We now explain case(c). Let x be the index of the
pointed stack in(q, s). Then x > 0 as we would be
otherwise in case(a) or (b). By induction hypothesis,
m′

c andτ ′ give the collapse rank / link rank / pop ranks
in vx−1. Moreover thek-ancestor of the target of the
top link in s′ is the same as the one invx−1. Therefore
the collapse rank is obtained by taking the minimum
of the one invx−1 with min{ρ(qx), . . . ρ(qn), ρ(q′)} =
min{mc, ρ(q

′)}. Similarly (if defined) the link ancestor
in s′ being the same as the one invx−1, the link rank
is obtained by taking the minimum of the one invx−1

with min{ρ(qx), . . . ρ(qn), ρ(q′)} = min{mc, ρ(q
′)}.

Let i ≤ k. The i-ancestor of topi(popi(s
′)) is

the same as thei-ancestor of topi(popi(sx−1)).
Therefore the pop rank fori in vℓ+1 is obtained
by taking the minimum of the one invx−1 with
min{ρ(qx), . . . ρ(qn), ρ(q′)} = min{mc, ρ(q

′)}.
Let i > k. Then thei-ancestor oftopi(popi(s

′)) is
the same as thei-ancestor oftopi(popi(sn)): indeed
the collapse also modified thattopk stack. Therefore
the pop rank fori in vℓ+1 is obtained by taking the
minimum of the one invℓ with the new visited colour
ρ(q′).

5) For every δ(q, α, a) = (q′, rewβ
1 ) with β ∈ (Γ \

{⊥}), on readinga Ark goes in state(q′, θ′) where
θ′ = min(q, θ) and appliesrew(β,m′

c,m′

l,τ
′)

1 where
m′

c = min(mc, ρ(q
′)), m′

l = min(ml, ρ(q
′)) and

τ ′(k) = min(τ(k), ρ(q′)) for every 1 ≤ k ≤ n, if



we let top1(s) = (α,mc,ml, τ).
This case is trivial as we just need to update all in-
formation by considering the colour of the new control
state.

From the previous description (and the included inductive
proof) we conclude that, for any configurationv0 of A, Ark

is rank-aware fromν1(v0).

Remark 11. Note that building a rank-awaren-CPDA from
a non-aware one increases the stack alphabet byCn+3 and
the state set byCn+1 (recall that we need extra states, that
where hidden in the previous description, mainly to storeτ ).

Now, in order to proof the second point of Lemma 8, one
considers the parity gameGrk on Ark defined by

• using a similar partition as the one inG from Q:
QrkE = QE × C (the control states inQrk \ Q × C
inducing configurations with exactly one successor can
be controlled by any player),

• and extendingρ to Qrk by lettingρ((q, θ)) = ρ(θ) and
assigning the maximal colour to states inQrk \Q×C
(hence not modifying the winner).

It is immediate thatÉloı̈se has a winning strategy inG
from some configurationv0 iff she has a winning strategy
in Grk from ν1(v0).

Finally, the fact that bothν1 and ν−1
1 preserve regular

sets of configurations is immediate: for this one basically
needs to simulate an automaton on the image byν1 (or ν−1

1 )
that can be computed on-the-fly (except for the very last
steps ofν1 where one needs to know the control state before
deducing thetop1 stack element as it as information on the
colour of the control state. However, this is not a problem
to have a slight — finite — delay in the final steps of the
simulation).

D. Second step: fromGrk to Glf . Removing then-links

Let Ark = 〈Ark,Γrk, Qrk, δrk 〉 be the (rank-aware)n-
CPDA generating the gameGrk obtained in the previous
step

Consider the following informal description of a new
gameGlf defined fromGrk. The new games mimicsGrk

except that whenever a player wants to perform apushγ,n
1

action on the stack, this is replaced by the following nego-
tiation between the players:

• Éloı̈se has to provide a vector
−→
R = (R0, · · ·Rd) ∈

(2Qrk)d+1 — hereQrk are the control states ofArk —
whose intended meaning is the following: she claims
that she has a strategy such that if the newly created link
(or a copy of it) is eventually used by some collapse
then it leads to a state inRi where i is the smallest
colour visited since the original copy of the link was
created.

• Abelard has two choices. He can agree withÉloı̈se’s
claim, pick a stateq in someRi and perform apopn

action whilst going to stateq (through an intermediate
dummy vertex coloured byi): this is the case where
Abelard wants to simulate a collapse involving the link.
Alternatively Abelard can decide to push the symbol
(γ,

−→
R ) without appending a link to it.

Later in the play, if thetop1-element is of the form(γ,
−→
R ),

and if the player controlling the current configuration wants
to simulate a move to stateq that collapses the stack, then
this move is replaced by one that goes to a dead end vertex
which is winning for Éloı̈se iff q ∈ Ri where i is the
link rank found on the currenttop1-element and which
corresponds to the smallest colour visited since the original
copy of symbol(γ,

−→
R ) was pushed onto the stack (recall

that Ark is rank-aware). The intuitive idea is that, when
simulating a collapse (involving an order-n link), Éloı̈se
wins iff her initial claim on the possible reachable states
by following the link was correct. Otherwise she loses.

There are now two tasks. The first one is to prove that the
previous simulation game can be generated by ann-CPDA
with the extra property that it never createsn-links. The
second one is to prove that this game correctly simulates
the original one (i.e. Éloı̈se wins inGrk from some vertexv
iff she wins in theGlf from the configurationν2(v) for some
mappingν2 — to be defined — transforming vertices of the
first game into vertices of the second one). The first task (see
Section D1) is simple as the initialn-CPDA definingGrk

is rank aware and therefore comes with a functionLinkRk
as in Lemma 8. The second task (see Section D2) is more
involved because we have to defineν2 and to prove that it
preserves (arbitrary) winning configurations.

1) The simulation game:Glf : As in Grk the player that
control the current vertex has to make a move,i.e. apply
a transition of then-CPDA. In case this player wants to
simulate a transition going toq and performing apushγ,n

1

action on the stack, the play goes as follows.

- The CPDA goes in a new control stateqγ and no operation
on the stack is performed.

- From qγ , Éloı̈se has to move to a new control stateq?

and can push any symbol of the form(γ,
−→
R ) where

−→
R =

(R0, · · ·Rd) ∈ (2Q)d+1. Here we assume that the symbol
comes with no links (alternatively, we could add a dummy
link and state that no collapse can be performed from a
configuration withtop1 element being of the form(γ,

−→
R ).

- From q?, Abelard has to play and choose one of the two
possible options: either go to stateq and perform no action
on the stack, or pick any stateq in someRi, go to an
intermediate new stateqi (of colour i) without changing
the stack and from this new configuration go to stateq
and finally perform apopn action.

The intended meaning of such a decomposition of the
pushγ,n

1 operation is the following: when choosing the sets
in

−→
R , Éloı̈se is claiming that she has a strategy such that

if the n-link created by pushingγ is eventually used for



collapsing the stack then the control state after collapsing
will belong toRi wherei is meant to be the smallest colour
from the creation of the link to the collapse of the stack
(equivalently it will be the link rank — as computed in
Ark — the just before collapsing). Note thatRi are sets
because of the fact that we have a game and henceÉloı̈se
has not a full control of the play. Then Abelard is offered
to simulate the collapse (here stateqi is only used for going
through a state of colouri). If he does not want to simulate
a collapse then one stores

−→
R for possibly checking its truth

later.
Later, in case some player wants to simulate a collapse

transition involving ann-link and going to stateq, the
top1 element is necessarily of the form(γ,

−→
R ). Then the

simulation is done by going to a dead-end vertex that is
winning for Éloı̈se iff q ∈ RLinkRk(γ), i.e. Éloı̈se wins iff

her former claim on
−→
R was correct.

For all other kind of transitions (popk, pushk, rew or
collapse involving < n links), the simulation is immediate
(either the top element is a single letter fromΓ or it is an
element fromΓ×(2Q)d+1 in which case one simply ignores
the (2Q)d+1 component).

Formally we setAlf = 〈Alf ,Γlf , Qlf , δlf 〉 with

- Alf = Ark ∪ (2Qrk)d+1 ∪ {qi | q ∈ Qrk, 0 ≤ i ≤ d} ∪
{go, tt, ff}

- Γlf = Γrk ∪ Γrk × (2Qrk)d+1

- Qlf = Qrk ∪ {qa | q ∈ Qrk, a ∈ Γrk} ∪ {q? | q ∈
Qrk} ∪ {qi | q ∈ Qrk, 0 ≤ i ≤ d} ∪ {tt, ff}

- δlf is defined as follows.

– ∀q ∈ Qrk, ∀γ ∈ Γrk, ∀a ∈ A if δ(q, γ, a) = (q′, op)
is such thatop is neither of the formpushβ,n

1 nor
rewβ

1 nor a collapse using ann-link, then δ(q, γ, a) =

δ(q, (γ,
−→
R ), a) = (q′, op).

– ∀q ∈ Qrk, ∀γ ∈ Γrk, ∀a ∈ A if
δ(q, γ, a) = (q′, rewβ

1 ), then δ(q, γ, a) = (q′, rewβ
1 )

andδ(q, (γ,
−→
R ), a) = (q′, rew

(β,
−→
R )

1 ).
– ∀q ∈ Qrk, ∀γ ∈ Γrk, ∀a ∈ A if δ(q, γ, a) =

(p, pushβ,n
1 ) then δ(q, γ, a) = δ(q, (γ,

−→
R ), a) =

(pβ , id)

– ∀p ∈ Qrk, ∀γ ∈ Γlf , ∀
−→
R ∈ (2Qrk)d+1, δ(pβ, α,

−→
R ) =

(p?, push
(β,

−→
R),1

1 ). Note here that we create a1-link as
we do not permit in the definition ofn-CPDA to push
symbol without link: however this link being never used,
one can safely forget it.

– ∀p ∈ Qrk, ∀β ∈ Γrk, ∀
−→
R ∈ (2Qrk)d+1,

δ(p?, (β,
−→
R ), go) = (p, id).

– ∀p ∈ Qrk, ∀β ∈ Γrk, ∀
−→
R ∈ (2Qrk)d+1, ∀qi ∈ Alf ,

δ(p?, (β,
−→
R ), qi) = (qi, id) providedq ∈ Ri (otherwise

δ is undefined).
– ∀qi ∈ Qlf , ∀(β,

−→
R ) ∈ Γlf , δ(qi, (β,

−→
R ), ε) =

(q, popn).
– ∀q ∈ Qrk, ∀(α,

−→
R ) ∈ Γlf , if there exists some

a ∈ Ark such thatδ(q, α, a) = (p, collapse) and p ∈

RLinkRk(α) thenδ(q, (α,
−→
R ), tt) = (tt, id) (otherwiseδ

is undefined).
– ∀q ∈ Qrk, ∀(α,

−→
R ) ∈ Γlf , if there exists some

a ∈ Ark such thatδ(q, α, a) = (p, collapse) and p /∈

RLinkRk(α) then δ(q, (α,
−→
R ), ff) = (ff, id) (otherwise

δ is undefined).

In order to define a game graphGlf out of Alf we let
QlfE = QrkE ∪ {qγ | q ∈ Qrk, γ ∈ Γrk} ∪ {qi | q ∈
Qrk, 0 ≤ i ≤ d} ∪ {ff}. Finally to define a corresponding
n-CPDA parity gameGlf we extendρ by letting ρ(qγ) =
ρ(q?) = d for any q ∈ Q (has one cannot loop forever in
such states, it means that they have no influence on the parity
condition) andγ ∈ Γ andρ(qi) = i for every0 ≤ i ≤ d.

Note thatAlf never createn-link, hence the gameGlf is
as expected.

2) Correctness of the simulation:Consider some config-
uration v = (p, s) in Grk. We explain now how to define
an ”equivalent” configurationν2(v) in Glf (here equivalent
is in the sense of Theorem 6). The transformation simply
replace any occurrence of a stack letter (call itγ) with an
n-link in s by another letter of the form(γ,

−→
R ). Let s′ be

the stack obtained by popping every element aboveγ, and
let S = {q | Éloı̈se wins inGrk from (q, collapse(s′))}.
Then one sets

−→
R = (R, · · · , R).

Example 7. Assume we are playing a two-colour parity
game. Let

s = [[[ a]] [[][ a b c]] [[][ a b c]]],

R = {r | (r, [[[a]]]) is winning for Éloı̈se inGrk} and
−→
R =

(R,R). Then

ν2(s) = [[[ a]] [[][ a b (c,
−→
R )]] [[][ a b (c,

−→
R )]]].

In this section we prove the following result stating the
validity of the previous construction:

Theorem 6. Éloı̈se wins inGrk from some configurationv
if and only if she wins inGlf from ν2(v).

Proof: In the following, we intensively work with
strategy (both inGrk andGlf ). When defining the value of
such a strategy on some partial play we may alternatively
define it as a vertex (which respects the definition of a
strategy as we gave it) or as a pair(q, op) formed by a
control state and a stack operation. In the latter, one has to
understand this as the strategy that goes to the configuration
(q, op(s)) if s denotes the stack in the current configuration.

Assume that the configurationv = (p0, s) is winning for
Éloı̈se inGrk, and letΦ be a winning strategy for her. Using
Φ, we define a strategyϕ for Éloı̈se inGlf from ν2(v). The
strategyϕ stores a partial play inGrk, that is an element
in V ∗

rk (whereVrk denotes the set of vertices ofG). This
memory will be denotedΛ. At the beginningΛ is initialized
to the vertex(p0,⊥). At any moment in the play, if the



current vertex hastop1 symbolα and control statep, then
the last vertex ofΛ has control statep and top1 symbol
α or (α,

−→
R ) (in this case there is ann-link from the top1

symbol).
We first describeϕ, and then we explain howΛ is updated.

Choice of the move.Assume that the play is in some vertex
(p, s) with p ∈ QE. The move given byΦ depends onϕ(Λ)
(we shall later argue thatΦ is well defined while proving
that it is winning):
- If Φ(Λ) = (q, op), with op being somepopk, pushk,

pushα,i
1 with i < n, or collapse involving an< n-link

thenÉloı̈se goes to(q, op(s)).
- If Φ(Λ) = (q, rewα

1 ), then Éloı̈se goes to(q, rewα
1 (s))

if top1(s) = b for some b ∈ Γ and she goes to

(q, rew
(α,

−→
R )

1 (s)) if top1(s) = (β,
−→
R ).

- If Φ(Λ) = (q, collapse) then Éloı̈se goes to(tt, s). We
shall later see that this move is always valid

- If Φ(Λ) = (q, pushα,n
1 ) thenÉloı̈se goes to(qα, s).

In this last case, or in the case wherep ∈ QA and Abelard
goes to(qα, s), we also have to explain hoẃEloı̈se behaves
from (qα, s).

She has to provide a vector
−→
R ∈ P(Q)d+1 that describes

which states can be reached if then-link created by pushing
α (or a copy of it) is used for collapsing the stack, depending
on the smallest visited colour in the meantime. In order to
define

−→
R , Éloı̈se considers the set of all possible continua-

tions of Λ · (q, pushα,n
1 (σ)) (where(p, σ) denotes the last

vertex of Λ) where she respects her strategyΦ. For each
such play, she checks whether some configuration of the
form (r, popnσ) is eventually reached by collapsing using
(possibly a copy of the)n-link created bypushα,n

1 . If it is
the case, she considers the smallest colouri visited from the
moment where the link was created to the moment collapse
is performed (i.e. the link rank before collapsing). For every
i ∈ {0, . . . d}, Ri, is defined to be the set of statesr ∈ Q
such that the preceding case happens. More formally,

Ri = {r | ∃ Λ·(q, pushα,n
1 (σ))v0 · · · vk ·vk+1 · · · play in

G whereÉloı̈se respectsΦ and s.t.vk+1 = (r, popn(σ))

is obtained by applying a collapse fromvk, and

configuration(q, pushα,n
1 (σ)) is the link ancestor ofvk}

Finally, we set
−→
R = (R0, . . . , Rd) and Éloı̈se moves to

(q?, push
(α,

−→
R ),1

1 (s))

Update of Λ. The memoryΛ is updated after each visit to
a configuration with a control state inQ. We have five cases
depending on the transition:
- If the transition is of the form(q, op) with op being some
popk, pushk, pushα,i

1 with i < n, or collapse involving
an < n-link, then we extendΛ by applying the same
transition. That is, if(p, σ) denotes the last configuration
in Λ, then the updated memory isΛ · (q, op(σ)).

- If the transition is of the form(q, rewα
1 ) or (q, rew

(α,
−→
R )

1 )
and if (p, σ) denotes the last configuration inΛ, then the
updated memory isΛ · (q, rewα

1 (σ)).
- If the transition is of the form(tt, id) or (ff, id), the play

is in a dead end. ThereforeΛ needs not to be updated.
- If the last transitions form a sequence of the form(qα, id)·

(q?, push
(α,

−→
R ),1

1 ) · (q, id), then the updated memory is
Λ · (q, pushα,n

1 (σ)), where (p, σ) denotes the last con-
figuration inΛ.

- If the last transitions form a sequence of the form(qα, id)·

(q?, push
(α,

−→
R ),1

1 ) · (ri, id) · (r, popn), then we extendΛ
by a sequence of actions (consistent withΦ) that starts
by performing transition(q, pushα,n

1 ) and ends up by
collapsing (possibly a copy of) the link created at this first
step and goes to stater while visiting i as a minimal colour
in the meantime. By definition of

−→
R such a sequence

always exists. More formally, if(p, σ) denotes the last
configuration inΛ, then the updated memory is now a
play in Grk, Λ · (q, pushα,n

1 (σ))v0 · · · vk · vk+1, where
Éloı̈se respectsΦ and such thatvk+1 = (r, popn(σ)) is
obtained by applying a collapse fromvk, and configuration
(q, pushα,n

1 (σ)) is the link ancestor ofvk.
Therefore, with any partial playλ in Glf in which Éloı̈se

respects her strategyϕ, is associated a partial playΛ in
Grk. An immediate induction shows thatÉloı̈se respectsΦ
in Λ. The same arguments works for an infinite playλ, and
the corresponding playΛ is therefore infinite, starts from
ν2(p0, s) andÉloı̈se respectsΦ in that play. Therefore it is
a winning play.

Moreover, if λ is an infinite play, it easily follows from
the definitions ofϕ andΛ that the smallest infinitely visited
colour inλ is the same as the one inΛ. Hence, any infinite
play in Glf starting fromν2(p0,⊥n) whereÉloı̈se respects
ϕ is winning from her.

Now, considering finite plays (i.e. plays ending either
in state tt or ff ). Reaching a dead-end is necessarily by
simulating a collapse from some configuration withtop1

of the form (α,
−→
R ). We should distinguish between those

elements(α,
−→
R ) that are ”created” before (i.e. by thenu2

function) or during the play (býEloı̈se). For the second
ones, one may note that wheneverÉloı̈se wants to simulate
a collapse, she can safely goes to statett (meaningϕ is
well defined): indeed, if this was not the case, it would
contradict the way

−→
R was defined when simulating the

original creation of the link. For the same reason, Abelard
can never reach stateff providedÉloı̈se respects her strategy
ϕ. Now consider an element(α,

−→
R ) created byν2 and

assume that one player wants to simulate a collapse from
some configuration with such atop1 element. Callλ the
partial play just before and callΛ the associated play inG.
Then in Λ, Éloı̈se respects her winning strategyΦ. If she
has to play next inΛ, strategyΦ indicates to collapse; if
it is Abelard’s turn to play it can collapse. In both case, it



means that the configuration that is reached after collapsing
is winning for Éloı̈se (it is a configuration visited in a
winning play). Hence its control state belongs toR where
−→
R = (R, · · · , R) by definition ofν2 and therefore, from the
current vertex inGlf , there are no transition toff and there
is at least one tott. Therefore finite plays inGlf are won by
Éloı̈se (provided she respectsϕ).

Hence, any finite play inGlf starting fromν1(p0, s) where
Éloı̈se respectsϕ is winning from her.

Altogether, it proves thatϕ is a winning strategy foŕEloı̈se
in Glf from (pin,⊥n).

Let us now prove the converse implication Assume that
the configurationν2((p0, s)) is winning for Éloı̈se in Glf ,
and letϕ be a winning strategy for her. Usingϕ, we define
a strategyΦ for Éloı̈se in Grk from (p0, s). Recall how
ν2((p0, s)) is defined: it replaces every symbolα in s with
ann-link by a pair(α, (R, . . . , R)) whereR is the collection
of statesr such thatÉloı̈se wins from(r, s′) where s′ is
the stack obtained by removing every symbol (and stacks)
aboveα and then performing collapse. We can therefore
assume that we have a collection of winning strategies for all
those configurations(r, s′). Then, during a play wheréEloı̈se
respectsΦ, if one eventually visits such a configuration
(r, s′), the strategyΦ will mimic the winning strategy from
that point and therefore the resulting play will be winning
for Éloı̈se. Then in the rest of this description we mainly
deal with the case of plays where this phenomenon is not
happening.

The strategyΦ stores a partial play inGlf . This memory
will be denotedλ. At the beginningλ is initialized to the
vertexν2((p0, s)). At any moment in the play, if the current
vertex hastop1 symbolα and control statep, then the last
vertex ofΛ has control statep and top1 symbolα. At any
moment in the play, if the current vertex hastop1 symbol
(α,

−→
R )) and control statep, then the last vertex ofΛ has

control statep andtop1 symbolα with ann-link; moreover
if (possibly a copy of) this link is eventually used in a
collapse, then the state that will be reached after collapsing
will belongs toRi wherei would be the link rank just before
collapsing.

We first describeΦ and then we explain howλ is updated.
Recall that we switch to a known winning strategy in case
we apply a collapse from (possibly a copy of) ann-link that
was already ins0.

Choice of the move.Assume that the play is in some vertex
(p, s) with p ∈ QE. The move given byΦ depends onϕ(Λ)
(we shall later argue thatϕ is well defined while proving
that it is winning):

- If ϕ(Λ) = (q, op), with op being somepopk, pushk,
pushα,i

1 with i < n, or collapse (necessarily involving
an< n-link) then Éloı̈se goes to(q, op(s)).

- If ϕ(Λ) = (q, rewα
1 ) or ϕ(Λ) = (q, rew

(α,
−→
R )

1 ) thenÉloı̈se
goes to(q, rewα

1 (s)).
- If ϕ(Λ) = (tt, id) then Éloı̈se goes to(r, collapse) for

somer ∈ Ri where we letσ be the stack in the last con-
figuration of Λ, top1(σ) = (α,

−→
R ) and i = LinkRk(α).

Note that in this case, the collapse involves ann-link.
- If ϕ(Λ) = (qα, id) thenÉloı̈se goes to(q, pushα,n

1 (s)).

Update of λ. The memoryλ is updated after each move
(by any player). We have four cases depending on the last
transition:

- If the transition is of the form(q, op) with op being some
popk, pushk, pushα,i

1 with i < n, or collapse involving
an < n-link, then we extendλ by applying the same
transition. That is, if(p, σ) denotes the last configuration
in λ, then the updated memory isλ · (q, op(σ)).

- If the transition is of the form(q, rewα
1 ) then we extendλ

by mimicking the same transition. That is, if(p, σ) denotes
the last configuration inλ, then the updated memory is
λ · (q, rewα

1 (σ)) if top1(s) = bβ for someβ ∈ Γ and it is

λ · (q, rew
(α,

−→
R )

1 (σ)) if top1(s) = (β,
−→
R ).

- If the transition is of the form(q, pushα,n
1 ) then, if (p, σ)

denotes the last configuration inλ, the updated memory

is λ · (qα, σ) · (q?, push
(α,

−→
R ),1

1 (σ)) · (q, push
(α,

−→
R ),1

1 (σ))

whereϕ(λ · (qα, σ)) = (q?, push
(α,

−→
R ),1

1 (σ)).
- If the last transition is of the form(r, collapse) involving

ann-link, then we have two cases. Either the collapse was
following (possibly a copy of) ann-link that was already
in s0 in case we claim (and prove later) that we end up
in a winning configuration and switch to a corresponding
winning strategy as already explained. Either we follow
ann-link that was created during the play and we letλ =
v0 · · · vm and letvi be the link ancestor ofvm

6. Then the
updated memory is obtained by backtracking insideλ until
reaching the configuration where the (simulation of the)
collapsedn-link was created (this configuration being the
link ancestor) and then extend it by a choice of Abelard
consistent with the collapse. That is, ifλ = v0 · · · vm,
and if vi = (p?, σ) is the link ancestor ofvm, then the
updated memory isv0 · · · vi · (ri, popn(σ)) · (r, popn(σ))
wherei denotes the link rank in the configurationΛ was
just before collapsing.

Therefore, with any partial playΛ in Grk in which Éloı̈se
respects her strategyϕ, is associated a partial playλ in
Glf . Note that if we end up in a configuration that is
known to be winning,λ is no longer extended. This also

6Here we implicitly extends the notion of link ancestor as follows. In
Glf instead of creatingn-link one pushes symbol of the form(α,

−→
R ):

hence whenever doing apush
(α,

−→
R),1

1 one attached to the vector
−→
R the

index of the current configuration. Then if thetop1 element ofvn is some
(α,

−→
R ) then the link ancestor ofvm is defined to bevi where i is the

indexed attached with
−→
R . Note in particular that the control state in the

link ancestor is of the formp?.



implies that when collapsing ann-link that was already
in s0 one necessarily ends up in a winning configuration.
Indeed assume the contrary and letλ be the constructed
play before collapsing: then eitheŕEloı̈se has to play and
therefore moves tott (and therefore the configuration in
Λ after collapsing is winning by definition ofν2, leading
a contradiction) of Abelard could move toff (leading a
contradiction withϕ being winning). Therefore from now
on we restrict our attention to the case where then-links
(and their copies) ins0 are never used to collapse.

An immediate induction shows thatÉloı̈se respectsϕ in
λ. The same arguments works for an infinite playΛ, and
the corresponding playλ is therefore infinite, starts from
(pin,⊥n) andÉloı̈se respectsϕ in that play. Therefore it is
a winning play.

Now, in order to conclude that any playΛ in Grk in which
Éloı̈se respects her strategyϕ is winning for her, one needs
to relate the sequence of colours inΛ and in λ. For this,
we introduce a notion of factorisation of a partial play in
Λ = v0v1 · · · vm (we should later note that it trivially extend
to infinite plays). A factor will be a nonempty sequence of
vertices of the following kind:
(1) it is a sequencevh · · · vk such that the transition from

vh−1 to vh is a pushn,α
1 , the transition fromvk−1 to

vk is collapse involving ann-link, and vh is the link
ancestor ofvk.

(2) or it is a single vertex;
Then the factorisation ofΛ denotedFact(Λ) is a sequence
of factors inductively defined as follows (we bracket factors
to make them explicit):
Fact(Λ) = [v0 · · · vk], Fact(vn+1 · · · vn) if there exists

somek such thatv0 · · · vk is a in (1) above, andFact(Λ) =
[v0], Fact(v1 · · · vn) otherwise.

In the following, we refer to thecolour of a factoras the
minimal colour of its elements.

Note that the previous definition is also valid for infinite
plays. Now we easily get the following proposition (the
result is obtained by reasoning on partial play using a simple
induction combined with a case analysis. Then it directly
extends to infinite plays):

Proposition 7. Let Λ be some infinite play inGrk starting
from (p0, s) where Éloı̈se respectsΦ and assume that it
never collapses (possibly a copy of) ann-link in s. Let λ
the associated infinite play inGlf constructed fromΦ. Let
Λ0,Λ1, · · · be the factorisation ofΛ and, for everyi ≥ 0,
let ci be the colour ofΛi.

Then the sequence(ci)i≥0 and the sequence of colours
visited in λ (ignoring the dummy colours of states of the
form qα q?) are equals.

The previous proposition directly implies thatΦ is a
winning strategy forÉloı̈se from(p0, s) in Grk.

3) Regularity of sets of winning positions is preserved:
We established in Theorem 6 thatÉloı̈se wins inGrk from

some configurationv if and only if she wins inGlf from
ν2(v). It remains now to prove that regular sets of winning
positions are preserved by inverse image byν2.

Proposition 8. Assume that we have an automatonBlf that
recognises the set of winning configurations inGlf . Then,
one can compute an automatonBrk that recognises the set
of winning configurations inGrk.

Proof: We can safely assume that any control state of
Blf is of the form(p,R) with R ⊆ Qlf and such that, after
reading some input stacks (possibly with some pending
parenthesis)Blf is in a state of the form(p,R) with R =
{r | Blf accepts(r, s′)} wheres′ is the stack obtained from
s by closing the pending parenthesis (i.e. s′ = s]k for some
k ≤ n).

On input (p, s) the automatonBrk simultaneously com-
putes on-the-fly the image byν2((p, s)) and simulatesBlf on
it. In order to computeν2((p, s)), Brk needs to retrieve the
states that are winning for the stack obtained by collapsing
the link.This is simple as it is given by the2Qlf component of
Blf (recall thatBrk simulatesBlf ) and hence the automaton
can access it by definition of the model of automata. Indeed,
the information is correct before reading the first letter with
ann-link, and by induction on the number ofn links, if it is
correct after reading thek first n-links, on reading the(k+1)
n-link, the information is still correct as it was correct for
the prefix read so far and thereforeBrk correctly simulated
Blf on this prefix.

E. Third step: fromGlf to G′. Reducing the order

The contain of Section E reuse many of the ideas
and results developed in [8]: abstract pushdown
automata, automata with oracles, description of the
winning region by mean of automata with oracles.
Our only contribution in this section is to show
that the approach can be used for our purpose of
describing the winning region in Glf . A minor change
is that we use deterministic CPDA instead of collapsi-
ble pushdown processes (which are CPDAs without
input, hence somehow non deterministic which is not
an issue when dealing with game graphs).
Therefore, the main result, Theorem ?? comes with
no proof and we refer the reader to the long version
of [8] for this.
1) Abstract pushdown automata:We situate the tech-

niques developed here in a general and abstract framework
of (order-1) pushdown processes whose stack alphabet is a
possibly infiniteset.

An abstract pushdown automatonis a tuple A =
〈A,Q,Γ, δ 〉 where A is a finite input alphabet,Q is a
finite set of states,Γ is a (possibly infinite) set called an
abstract pushdown alphabetand containing a bottom-of-
stack symbol denoted⊥ ∈ Γ, and

δ : Q× Γ ×A→ Q× {rew(γ), pop, push(γ) | γ ∈ Γ}



is the transition function. We additionally require that∀q ∈
Q, ∀γ 6= ⊥, ∀a ∈ A, δ(q, γ, a) /∈ {(q′, push(⊥)) | q′ ∈
Q} ∪ {(q′, rew(⊥)) | q′ ∈ Q} and δ(q,⊥, a) /∈ {(q′, pop) |
q′ ∈ Q} ∪ {(q′, rew(γ)) | q′ ∈ Q andγ 6= ⊥}, i.e. the
bottom-of-stack symbol can only occur at the bottom of the
stack, and is never popped or rewritten.

An abstract pushdown contentis a word inSt = ⊥(Γ \
{⊥})∗. A configuration ofA is a pair(q, σ) with q ∈ Q and
σ ∈ St. Note that the top stack symbol in some configuration
(q, σ) is the rightmost symbol ofσ.

Remark 12. In general an abstract pushdown automaton is
not finitely describable, as the domain ofδ is infinite and
no further assumption is made onδ.

Example 8. A pushdown automaton is an abstract push-
down automaton whose stack alphabet is finite.

An abstract pushdown automatonA = 〈A,Q,Γ, δ 〉
induces a (possibly infinite) graph, called anabstract push-
down graph,denotedG(A) = (V,E), whose vertices are
the configurations ofA (i.e. pairs fromQ× St), and edges
E ⊆ V ×A×V are induced by the transition functionδ, i.e.,
from a vertex(p, σγ) one has, providedδ(p, γ, a) is defined,
an a-labeled edge to:

- (q, σγ′) wheneverδ(p, γ, a) = (q, rew(γ′)).
- (q, σ) wheneverδ(p, γ, a) = (q, pop).
- (q, σγγ′) wheneverδ(p, γ, a) = (q, push(γ′)).

Example 9. n-CPDAs that does not createn-links (asAlf )
are special cases of abstract pushdown automata. Letn > 1
and consider such ann-CPDA A = 〈A,Q,Σ, δ〉. SetΓ to
be the set of all order-(n− 1) stacks with links overΣ, and
for everyp ∈ Q, γ ∈ Γ with σ = top1γ and a ∈ A, we
defineδ(p, γ, a) to be

- (q, pop) if δ(q, σ, a) = (q, popn);
- (q, push(γ)) if δ(q, σ, a) = (q, pushn);
- (q, rew(op(γ))) if δ(q, σ, a) = (q, op) wherek < n and
op is an order-k action.

- undefined otherwise.

It follows that the abstract pushdown automaton
〈A,Q,Γ, δ′〉 andA have isomorphic transition graphs.

Consider now a partitionQE ∪QA of Q betweenÉloı̈se
and Abelard. It induces a natural partitionVE∪VA of V by
settingVE = QE × St andVA = QA × St. The resulting
game graphG = (VE, VA, E) is called anabstract pushdown
game graph. Let ρ be a colouring function fromQ to a finite
set of coloursC ⊂ N. This function is easily extended to a
function fromV toC by settingρ((q, σ)) = ρ(q). Finally, an
abstract pushdown parity gameis a parity game played on
such an abstract pushdown game graph where the colouring
function is defined as above.

2) Automata with oracles.:We now define a class of
automata to accept the winning positions in an abstract
pushdown game. Anautomaton with oraclesis a tuple

B = (S, Q,Γ, δ, sin,O1 · · ·On, Acc) whereS is a finite set
of control states,Q is a set of input states,Γ is a (possibly
infinite) input alphabet,sin ∈ S is the initial state,Oi are
subsets ofΓ (called oracles) and δ : S × {0, 1}n → S
is the transition function. FinallyAcc is a function from
S to 2Q. Such an automaton is designed to accept in a
deterministicway configurations of an abstract pushdown
automaton whose abstract pushdown content alphabet isΓ
and whose control states areQ.

Let B = (S, Q,Γ, δ, sin,O1 · · · On, Acc) be such an
automaton. With everyγ ∈ Γ we associate a Boolean vector
π(γ) = (b1, · · · bn) where

bi =

{
1 if γ ∈ Oi

0 otherwise.

The automaton reads a configurationC = (q, γ1γ2 · · · γℓ)
from left to right. A run overC is the sequences0, · · · , sℓ+1

such thats0 = sin and si+1 = δ(si, π(γi)) for every i =
0, · · · , ℓ. Finally the run isacceptingif and only if q ∈
Acc(sℓ+1).

Remark 13. When the input alphabet is finite, it is easily
seen that automata with oracles behave as (standard) deter-
ministic finite automata.

We are going to use automata with oracles to accept sets
of configurations ofn-CPDA that does not haven-links.
As seen in Example 9 for an order-n CPDA that does not
haven-links, we takeΓ to be the set of all order-(n − 1)
stacks with links. The sets of configurations of an order-
n CPDA without n-links accepted by automata using, as
oracles, regular sets of order-(n− 1) stacks are easily seen
to be regular.

Proposition 9. Fix an order-n CPDAA and consider an au-
tomatonB with oraclesO1, . . . ,On respectively accepted by
automataB1, . . . ,Bn (hence working on order-(n−1) stacks
with links). LetC be the set of configurations ofA accepted
by B. Then we can construct an automaton (hence working
on order-n stacks with links), of sizeO(|B||B1| · · · |Bn|),
accepting the setC.

Proof: It mainly suffices to mimic the behaviour ofB
and to run in parallel theBi to compute the value of the
oracles.

3) Conditional games and winning regions of abstract
pushdown game:From now on, let us fix an abstract
pushdown automatonA = 〈A,Q,Γ, δ〉 together with a
partitionQE ∪QA of Q and a colouring functionρ using a
finite set of coloursC. Denote respectively byGabs = (V,E)
andGabs the associated abstract pushdown game graph and
abstract pushdown parity game.

We can define an automaton with oracles that accepts
Éloı̈se’s winning region of the gameGabs. The oracles of
this automaton are defined using conditional games. For



every subsetR of Q the gameGabs(R) played overG is the
conditional game induced byR overG. A playΛ in Gabs(R)
is winning for Éloı̈se iff one of the following happens:

• In Λ no configuration with an empty stack (i.e. of
the form (q,⊥)) is visited, andΛ satisfies the parity
condition.

• In Λ a configuration with an empty stack is visited and
the control state in the first such configuration belongs
to R.

More formally, the winning condition inGabs(R) is

[Ωpar \ V
∗(Q× {⊥})V ω] ∪ V ∗(R × {⊥})V ω

For any stateq, any stack letterγ 6= ⊥, and any subset
R ⊆ Q it follows from Martin’s Determinacy theorem that
eitherÉloı̈se or Abelard has a winning strategy from(q,⊥γ)
in Gabs(R). We denote byR(q, γ) the set of subsetsR for
which Éloı̈se wins inGabs(R) from (q,⊥γ):

R(q, γ) = {R ⊆ Q | (q,⊥γ) is winning for Éloı̈se inGabs(R)}

Then one has the following characterisation of the set
of winning positions inGabs in terms of automaton with
oracles.

Theorem 7. [8] Let Gabs be an abstract pushdown parity
game induced by an abstract pushdown automatonA =
〈A,Q,Γ, δ〉. Then the set of winning positions inGabs

for Éloı̈se (respectively for Abelard) is accepted by an
automaton with oraclesA = (S, Q,Γ, δ, si,O1 · · ·On, Acc)
such that

• S = 2Q;
• si = ∅.
• There is an oracleOp,R for everyp ∈ Q andR ⊆ Q,

and γ ∈ Op,R iff R ∈ R(p, γ) and γ 6= ⊥.
• There is an oracleO⊥ and γ ∈ O⊥ iff γ = ⊥
• Using the oracles,δ is designed such that:

– From state ∅ on reading ⊥, A goes to {p |
(p,⊥) is winning for Éloı̈se inGabs}.

– From stateS on readingγ, A goes to{p | S ∈
R(p, γ)}.

• Acc is the identity function.

4) Solving the abstract pushdown game:In [8] one
proved the following result.

Theorem 8. [8] Let Gabs be an abstract pushdown parity
game induced by an abstract pushdown automatonA =
〈A,Q,Γ, δ〉. Then one can effectively construct a new game
G′ such that the following holds:

1) A configuration(pin,⊥) is winning for Éloı̈se in G if
and only if (pin,⊥, (∅, . . . , ∅), ρ(pin)) is winning for
Éloı̈se in G̃.

2) For everyq ∈ Q, γ ∈ Γ andR ⊆ Q,R ∈ R(q, γ) if and
only if (q, γ, (R, . . . , R), ρ(q)) is winning forÉloı̈se in
G̃.

Moreover in caseGabs aims at coding an order-n CPDA
that does not usen-links, the resulting gameG′ is an order-
(n− 1) CPDA game.

Proof: We refer the reader to [8] for the first part of
the statement. The fact that in caseGabs aims at coding an
order-n CPDA that does not usen-links, the resulting game
G′ is an order-(n− 1) CPDA game, is simply by observing
the shape ofG′.

F. Conclusion

We are ready to conclude. For this we reason by induction
on the order-n of G. If n = 1 (i.e. G is a pushdown game),
it is a well known result that the winning region is regular
(seee.g. [15]).

Assume the result holds for some ordern − 1. Now
consider an order-n CDPA gameG. Following the transfor-
mationsG → Grk → Glf ≃ Gabs → G′ one ends up with
an order-(n − 1) gameG′. Hence the winning regions in
G′ is recognised by an automaton by induction hypothesis.
Then, using Proposition 9 one gets an automaton recognising
the winning region inGlf , using Proposition 8 one gets
an automaton recognising the winning region inGrk, and
finally using Lemma 8 one gets an automaton recognising
the winning region inG.

Concerning complexity, going from ordern to order
(n−1) cost an exponential blow up in the size of automata.
Hence constructing an automaton recognising the winning
regions isn-EXPTIME-complete (completeness come from
the fact that deciding whether the initial configuration is
winning is already complete forn-EXPTIME [6]) and the
resulting automaton isn times exponential in the size of the
n-CPDA describingG.

We start with the full proof of Corollary 2.

Corollary 2. Let t be a Σ-labelled tree gererated by an
order-n recursion schemeS and let ϕ(x) be an MSO-
formula.

(i) There is an algorithm that transforms(S, ϕ) to an
order-n CPDAA such thatL(A) = ||t||ϕ.

(ii) There is an algorithm that transforms(S, ϕ) to an
order-n recursion scheme that generatestϕ.

Proof: We only concentrate on(2) as it implies(1).
We denote byt, u |= ϕ(x) the fact that a nodeu of t satis-

fiesϕ(x). For any nodeu, we lettu be the tree obtained from
t by marking the nodeu (and no other node). Consider now
the MSO formulaψ(y) = root(y)∧∃x, marked(x)∧ϕ(x)
(here root and marked are predicates respectively true at
the root and at a marked node). Then for any nodeu,
t, u |= ϕ(x) iff tu, ε |= ψ(y). Using the well-known
equivalence between MSO logic and automata (seee.g.
[17]), one can construct a parity tree automatonB that
acceptstu iff tu, ε |= ψ(y) iff t, u |= ϕ(x).

In order to constructtϕ, we first annotatet with informa-
tions on the behaviour ofB on the subtrees oft. We mark



t by µ-calculus definable sets to obtain an enriched tree
denoted̄t. With each pair(q, d) ∈ Q×Dir(Σ), we associate
a formulaψq,d such thatt, u |= ψq,d iff the d-son ofu exists
andB has an accepting run ont[ud] starting fromq (here
t[u] is the subtree oft rooted atu). Existence ofψq,d is due
to the strong relations betweenµ-calculus and tree automata
(seee.g. [12]). By (successive applications of) Theorem 2,
t̄ can be generated by a order-n collapsible automaton.

Let Σ′ be the alphabet of̄t. Using the annotations on̄t,
for any nodeu one can decide, only considering the path
from the root tou, whetherB acceptstu. More precisely,
there exists a regular words languageL over Σ′ ∪ Dir(Σ′)
such that a nodeu of t satisfiesϕ if and only if the word
obtained by reading in̄t the labels and directions from the
root to the nodeu belongs toL. Indeed given a noden of t̄,
a stateq of B and a directiond one can compute the set of
statesp of B that may appear in a run ofB over tu where:

• B is in stateq in noden.
• the continuations of the run from every nodend′ with
d′ 6= d are accepting provided no marked node appear
in the subtrees.

• p is the state innd.

Indeed it suffices to know whether there is a transition of
B that, fromq on readingt(n), goes toqdi

for directiondi

and such thatt, n |= ψqdi
,di

for all di 6= d and qd = p.
Doing a subset construction, one gets a deterministic finite
automaton reading the path from the root tou in t̄, and
computing the set of possible states ofB in u on the prefix
of some accepting run overtu. Finally to decide whether
this prefix of run can be prolongated into an accepting run
in caseu is marked, it suffices to check whether there is a
transition ofB that fromq on readingt(n) goes toqdi

for
directiondi and such thatt, n |= ψqdi

,di
for all di.

Finally an order-n collapsible automaton acceptingtϕ
is obtained by taking a synchronisation product between
an order-n collapsible automaton acceptinḡt and a finite
deterministicautomaton recognisingL: a note is marked iff
the associated control state in the automaton recognisingL
is finite.

Now to constructA as in (1), it suffices to consider an
n-CPDA A generatingtϕ: a noden belongs to||t||ϕ if the
configuration reached on readingn byA is marked. Hence it
suffices to take as final states forA the one that are marked.

Corollary 3. Let t be aΣ-labelled tree given by some order-
n recursion schemeS and let I be a well-formed MSO-
interpretation. The unfolding ofI(t) from any vertexu can
be generated by an order-(n+ 1) recursion scheme.

Proof:
Let t be aΣ-labelled tree given by some order-n recursion

schemeS and letI be a well-formed MSO-interpretation
given by formulasϕδ(x), ϕσ(x) for each σ ∈ Σ and
ϕℓ(x, y) for each directionℓ ∈ Dir(Σ). Let u be a node

of t and lett′ be the tree obtained by unfoldingI(t) from
u7. We want to show thatt′ is the solution of some order-
(n + 1) scheme. By Theorem 1, it is enough to show that
I(t) restricted to the vertices reachable fromu is isomorphic
to theε-closure of the transition graph of some order-(n+1)
CPDA A restricted to the reachable configurations.

Before proceeding with the construction of such a CPDA,
we need to fix some notations on MSO logic and on tree
automata.

We denote byt, u, v |= ϕ(x1, x2) the fact t satisfies
ϕ(x1, x2) whenx1 is interpreted asu andx2 asv. For all
Σ-labelled treet, all nodesu andv of t, let tu,v be the tree
obtained fromt by marking the pair(u, v). Formally,tu,v is
the(Σ×2{1,2})-labelled tree such thatDom(tu,v) = Dom(t)
and forw ∈ Dom(tu,v), tu,v(w) = (t(w), X) where1 ∈ X
iff w = u and2 ∈ X iff w = v.

Similarly we definet•,v (resp. tu,•, resp. t•,•) for • 6∈
Dom(t) as the tree obtained by markingv by 2 (respu by
2, resp no node).I.e • means here that no node is marked
with the corresponding index (1 and / or2).

Using the well-known equivalence between MSO logic
and automata (seee.g. [17]), one can construct for any
formulaϕ(x1, x2) a parity tree automatonBϕ that accepts
tu,v iff t, u, v |= ϕ(x1, x2).

For all ℓ ∈ Dir(Σ), we writeBℓ the parity tree automaton
corresponding to the formulaϕℓ(x, y) of I. Let Qℓ be its
fine set of states and let∆ℓ be its set of transitions.

Annotation oft by MSO-definable sets:The first step
of the construction ofA is to annotatet with information
concerning essentially the behaviour of the automataBℓ

on the subtrees oft. The resulting annotated version oft
is denotedt̄. More precisely the annotated treēt has for
each nodeu satisfying ϕδ(x) on t, the following finite
information:

• the uniqueσ ∈ Σ such thatt, u |= ϕσ(x). Unicity is
by definition of a well-formed interpretation.

• d↑ ∈ Dir(Σ)∪{•} which is the direction from the father
of the curent node to the current node (i.e. u is of the
form u′d↑ for someu′ ∈ Dom(t)) and• if the current
node is the root.

• for eachℓ ∈ Dir(Σ), we have:

– iℓ ∈ {↑, ↓,	,⊥} such that

∗ iℓ = ⊥ iff there are nov such thatt, u, v |=
ϕℓ(x, y),

∗ iℓ =↑ iff there is a uniquev such thatt, u, v |=
ϕℓ(x, y) which does not lay belowu,

∗ iℓ =↓ iff there is a uniquev such thatt, u, v |=
ϕℓ(x, y) which is belowu,

∗ iℓ =	 iff t, u, u |= ϕℓ(x, y).

– the setRℓ of statesq ∈ Qℓ such that there exists
a partial accepting run ofBℓ on t deprived of the
nodes belowu which assigns the stateq to u,

7We assume thatt, u |= ϕδ(x).



– the setSℓ of pairs (d, q) ∈ Dir(Σ) × Qℓ such that
there exists an accepting run ofBℓ starting fromq
on the subtree oft•,• rooted atud,

– the setTℓ of pairs (d, q) ∈ Dir(Σ) × Qℓ such that
there exists a nodev′ below ud s.t. Bℓ has an
accepting run on the subtree oft•,v′ rooted atud
starting in stateq.

Let Σ′ be the resulting labelling alphabet of̄t. As the
information annotated on̄t is MSO-definable int, we know
from Corollary 2 that t̄ is the solution of some order-n
scheme.

Replacing MSO-formulas ont by tree-walking au-
tomata working on̄t.: Fix a directionℓ ∈ Dir(Σ). Thanks
to the extra information available on̄t, it is possible to
decide if a pair of nodes(u, v) satisfies the formulaϕℓ(x, y)
on t using a deterministic tree-walking automaton running
on t̄. Intuitively a tree-walking automaton is a finite state
automaton that can navigate through the tree.

Formally, adeterministic tree-walking automatonworking
on Σ-labelled trees is a tupleW = (Q, q0, F, δ) whereQ
is the finite set of states,q0 ∈ Q is the initial state,F is
the set of final states andδ is the transition function. The
transition function associates to a pair(p, σ) ∈ Q × Σ –
corresponding respectively to the current state and node label
– a pair(q, a) ∈ Q× ({↑, ε} ∪ Dir(Σ)) whereq is the new
state anda is action to perform. Intuitivelyε corresponds
to ”staying in the current node”,↑ to ”going to the parent
node” andd ∈ Dir(Σ) corresponds to ”going to thed-son”.

We say thatW accepts a pair of nodes(u, v) if it can
reachv in a final state starting fromu in the initial state.

We claim that there exists a deterministic tree-walking
automatonWℓ such for any pair(u, v) of nodes oft, we
have:

Wℓ accepts(u, v) in t̄ iff t, u, v |= ϕℓ(x, y).

The automatonWℓ works in two phases: during the first
phase the automaton only goes up in the tree (or stay in
the current node) and during the second phase it only goes
down in the tree (or stay in the current node). Both phases
can potentially be empty. In fact, to accept a pair(u, v) the
automaton will first go up to the greatest common ancestor
of u andv and down to thev.

Assume thatWℓ started at a nodeu and denote byv the
unique node (if it exists) such thatt, u, v |= ϕℓ(x, y).

Initialisation.: The automaton is in its initial stateq0
at nodeu and reads a label(σ, d↑, (ik, Rk, Sk, Tk)k∈Dir(Σ)).
The automaton checks in which of the following cases, we
are:
The nodev does not exists (i.e.iℓ = ⊥): No transition is

defined.
The nodev is equal tou (i.e. iℓ =	 : The automaton goes

to the accepting state.
The nodev is not belowu (i.e. iℓ =↑): The automaton be-

gins the first phase while memorising the setX of state

q ∈ Qℓ such thatBℓ admits an accepting run on the
subtree oftu,• rooted atu. This set can be computed
from ∆ℓ andSℓ.

The nodev is belowu (i.e. iℓ =↓): The automaton begins
the second phase. It computes the unique directiond
and the setY of statesq ∈ Qℓ such that:

– Bℓ admits an accepting run on the treetu,• deprived
of the nodes belowud and assigning statesq to ud,

– (q, d) ∈ S′
ℓ.

First phase.: The automaton is at some nodew and
stores the setX of statesq ∈ Qℓ such thatBℓ admits an
accepting run on the subtree oftu,• rooted atw. The label of
the nodew is (σ, d↑, (ik, Rk, Sk, Tk)k∈Dir(Σ)). The automa-
ton goes up in the tree (while rememberingd↑ andX) to
a nodew′ whose label is(σ′, d′↑, (i

′
k, R

′
k, S

′
k, T

′
k)k∈Dir(Σ)).

Let d1, . . . , dm be the set of directions ofσ′. Let j be the
index of d↑ in this enumeration.
There are now there cases:

The nodev is the current node. This is the case iff there
exists a stateq ∈ R′

ℓ and a transition in∆ℓ starting
in stateq with σ × {2} as label and associating states
qi to thedi-son such that:

– qj belongs toX ,
– for all i 6= j, (di, qi) ∈ S′

ℓ.

In this case, the automaton goes to the accepting state.
The nodev is belowd-son ofw for somed ∈ Dir(Σ).

This is the case iff there exists a stateq ∈ R′
ℓ and a

transition in∆ℓ starting in stateq with σ × ∅ as label
and associating statesqi to the di-son such that there
existsj′ 6= j ∈ [m] s.t.

– qj belongs toX ,
– for all i 6= j, (di, qi) ∈ S′

ℓ,
– (dj′ , qj′) ∈ T ′

ℓ.

In this case, the automaton begins the second phase
while memorising the sets of allY of all state qj′
matching this definition together with the directiondj′ .8

the accepting state.
The nodev is not beloww. This is the case when the two

previous cases do not apply. The automaton update the
new setX using d↑, ∆ℓ and the old value ofX and
goes to the beginning of the first phase.

The second phase:The automaton is at some nodew
and stores a directiond and the setY of statesq ∈ Qℓ such:

• Bℓ admits an accepting run on the treetu,• deprived of
the nodes belowwd and assigning statesq to wd

• there exists a nodev′ belowwd such thatBℓ admits an
accepting run on the subtree oft•,v′ rooted atwd and
starting in stateq.

8Due to the restriction imposed onϕℓ(x, y) by the fact thatI is a
well-formed MSO-interpretation, there cannot be two different directions.
Otherwise, we would havev 6= v′ such that t, u, v |= ϕ(x, y) and
t, u, v′ |= ϕ(x, y).



The automaton goes down in directiond (while
remembering Y ) to a node w′ whose label is
(σ′, d′↑, (i

′
k, R

′
k, S

′
k, T

′
k)k∈Dir(Σ)). Let d1, . . . , dm be

the set of directions ofσ′.
There are two cases:

The nodev is below thed′-son ofw′ for somed′ ∈ Dir(Σ).
This is the case iff there exists a stateq ∈ Y and a
transition in∆ℓ starting in stateq with σ × ∅ as label
and associating statesqi to the di-son such that there
existsj ∈ [m] s.t.

– for all i 6= j, (di, qi) ∈ S′
ℓ,

– (dj′ , qj′) ∈ T ′
ℓ.

In this case, the automaton return at the beginning of
the second phase and update the setY with all stateqj
matching this condition. It also stores the directiondj .

The nodev is the current node. This is precisely when the
previous case does not hold. The automaton moves to
an accepting state.

Construction of the order-(n+ 1) CPDAB.: By The-
orem 1, there exists an order-n CPDA C = 〈Dir(Σ) ∪
{ε},Γ, Q, δ, q0, F 〉, and a mappingρ : Q → Σ′ such that̄t
is the tree generated byC andρ.

Hence for every nodeu = d1 · · ·dm ∈ Dom(t),
there exists a unique sequence of configuration
(q0, s0), . . . , (qm, sm) of C such that:

• there exists a path inG(C) labelled byε∗ from the
initial configuration to(q0, s0),

• for all i ∈ [0,m], (qi, si) does not have out-goingε-
labelled arcs inG(C),

• for all i ∈ [0,m − 1], there exists a path labelled in
di+1ε

∗ from (qi, si) to (qi+1, si+1) in G(C).

Such a sequence can be coded as order-(n+ 1) stacksu

– recall that thesi are order-n – in the following way:

su = [s̃0, s̃1, . . . , ˜sm−1, push
qm,1
1 (sm)]

where for alli ∈ [0,m−1], s̃i = push
di+1,1
1 (pushqi,1

1 (si)).
The stack alphabet contains both the stacks alphabet ofC
and its set of states.

The automatonB works on stacks corresponding to some
su for some u ∈ Dom(t). The states ofC include a
distinguished stateq⋆ and the states of all the tree-walking
automata(Wℓ)ℓ∈Dir(Σ) which we assumed to be disjoint.
The configurations ofB that are source of non-ε-labelled
arcs will be of the form(q⋆, su) for someu ∈ Dom(t).
The intended behaviour ofB is that for someℓ ∈ Dir(Σ),
t, u, v |= ϕℓ(x, y) then B can go from the configuration
(q⋆, su) to the configuration(q⋆, sv) by a path labelled by
ℓε∗.

FirstB moves byℓ-labelled transition to the configuration
(qℓ

0, su) where qℓ
0 is the initial state of the tree-walking

automatonWℓ. Recall that the existence of the vertexv is
annotated inρ(top1(su)).

In a configuration of the form(p, su) with p a state of
Wℓ, B simulates the behaviour ofWℓ on t̄ at nodeu in state
p by a sequence ofε-transitions. As̄t(u) = ρ(top1(su)), B
can compute the transition taken by the automatonWℓ on t̄
at nodeu in statep. The behaviour ofB will be such that
if Wℓ goes from(p, u) to (q, u′) in one step thenB will go
through a series ofε-transitions from(p, su) to (q, su′).

We distinguish several cases depending on the action
performed byWℓ.

• Wℓ stays in the current node in stateq. ThenB changes
its state toq by anε-transition.

• Wℓ goes to its parent node in stateq (i.e. u = u′d
and Wℓ ends up inu′ in state q). Then B performs
popn+1 followed by apop1 and moves to stateq. The
configuration ofB is now (q, pop1(popn+1(su))) =
su′ .

• Wℓ goes to itsd-son in stateq (i.e. u = u′d andWℓ

ends up inud in stateq). Assume thatsu is equal to:

[s̃0, s̃1, . . . , ˜sm−1, push
qm,1
1 (sm)]

and thatsud is of the from:

s̃0, s̃1, . . . , push
d,1
1 (pushqm,1

1 (sm)), push
qm+1,1
1 (sm+1)

By definition, there exists a pathπ in G(C) from
(qm, sm) and (qm+1, sm) labelled bydε∗.
Then B starts by performing apushd,1

1 followed by
pushn+1 andpop1. At this point the stack is:

[s̃0, s̃1, . . . , push
d,1
1 (pushqm,1

1 (sm)), pushqm,1
1 (sm).]

B pops the stateqm and simulates the order-n opera-
tions of C along the pathπ using ε-transitions. When
no ε-transition of C can be applied,B goes to state
qm+1.

Eventually B will reach a configuration of the form
(qℓ

f , sv) whereqℓ
f is the accepting state ofWℓ. It then goes

to the stateq⋆.
From its initial configuration,B deterministically build

the stacksu0
(which correspond to the vertexu0 from which

I(t) is unfolded) by using sequence ofε-transitions and goes
to the stateq⋆.

By construction, we have that theε-closure ofB restricted
to the vertices reachable from its initial configuration is
isomorphic toI(t) restricted to the vertices reachable from
u0. The isomorphism simply maps a configuration(q⋆, su) ∈
G(B) to u ∈ Dom(t).


