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Abstract
A global methodology dealing with �ctitious domains of all kinds on

orthogonal curvilinear grids is presented. The main idea is to transform
the curvilinear workframe and its associated elements (velocity, immersed
interfaces...) into a Cartesian grid. On such a grid, many operations
can be performed much faster than on curvilinear grids. The method is
coupled with a Thread Ray-casting algorithm which work on Cartesian
grids only. This algorithm computes quickly the Heaviside function related
to the interior of an object on an Eulerian grid. The approach is also
coupled with an immersed boundary method (L2-penalty method) or with
phase advection with VOF-PLIC, VOF-TVD, Front-tracking or Level-set
methods. Applications, convergence and speed tests are performed for
shape initializations, immersed boundary methods, and interface tracking.

1 Introduction
Structured Cartesian grids are convenient to use in CFD simulations. How-
ever, this kind of mesh structure involves many limitations on the shape of the
numerical domain. A �rst solution is to use �ctitious domain methods (e.g.
immersed boundary methods) which enable the immersion of complex bound-
aries on Cartesian grids. An other solution is to use curvilinear structured grids
which couple some advantages of the structured approach (trivial connectivi-
ties) with the possibility to deal accurately with complex numerical boundaries
and re�ned boundary layers.

In [18], Thompson proposes a general method to work with curvilinear grids.
The main idea is to consider a �xed square grid in a rectangular transformed
region where the numerical calculations are performed with modi�ed operators.
This approach can be extended to moving boundaries or interfaces and does
not require the e�ective construction of the transformed domain. Nevertheless,
the question of the motion and reconstruction of the mesh (especially the im-
plementation e�ort and the computational cost), as for the ALE method, is
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asked. This point is critical for multiphase �ows and particularly for dispersed
phases or for cases with many moving objects, such as �uidized beds. Even if
less accurate, the �ctitious domain methods seem to be more convenient and
fast as the calculation grid can remain �xed.

One can found some examples of �ctitious domains on curvilinear grids in
the literature. An adaptation of the VOF-PLIC method on curvilinear grids can
be found in [6]. In [10], Muradoglu and Kayaalp use an auxiliary Cartesian grid
superimposed with the curvilinear mesh to manage the front tracking operations.
Kernel functions are used to interpolate the velocity from one grid to an other.
In [5], Huang et al. extend the Ghost-�uid method [4] to curvilinear grids. In
[3, 14], authors perform a �uid-structure coupling with an immersed boundary
method on curvilinear grids. In these works, the transformation de�ned by [18]
is not used.

The present work proposes an optimized approach using the transformation
of [18] to deal with immobile boundaries while moving interfaces and boundaries
are treated with �ctitious domain methods. A transformation of the original
immersed interface is proposed and its projection onto a volume function is ac-
celerated thanks to the use of the transformed Cartesian space. Contrary to
the aforementioned references, immersed boundary methods and phase advec-
tion are performed considering only the transformed Cartesian grids with the
original ad hoc Cartesian algorithms.

2 Methodology
The method is presented in 2D. The extension to 3D problems is straightforward.
Let us consider a curvilinear orthogonal structured mesh Th covering a numerical
domain Ω. Its structured vertices are denoted xc (c denotes the doublet of
indexes (i, j)), with 1 6 i 6 L, 1 6 j 6 M (and 1 6 k 6 N in 3D). The mesh
cells are denoted Kc with xc the south-west vertex of each cell. An embedded
domain of complex interface Σ divides Ω in two subdomains Ω0 and Ω1. If
�uid �ows are considered, each subdomain can represent a phase or a solid
object. The base principle is to unfold the curvilinear triangulation Th to obtain
a Cartesian grid T̂h of unit space step de�ning a new computational domain
Ω̂. For this purpose, we de�ne a bi-continuous bijective operator F : Ω 7→ Ω̂
such as the transformed position of a grid node xc is F (xc) = x̂c = (i, j)T .
Once the Cartesian grid has been built, the immersed interface Σ has to be
unfolded too. Numerically, Σ is piecewise linear and can be de�ned by its
vertices denoted by σl of position xl. In the Cartesian frame, Σ becomes a
deformed interface Σ̂ composed of vertices σ̂l. The transformation F is built
cell by cell. The restriction of F to Kc is the operator Fc = (F 1

c , F 2
c )T , and

we have F 1
c (xc) = x̂c, F 2

c (xc) = ŷc. Each operator Fn is built with a Q1

polynomial. In 2D, Q1(x, y) = a1xy + a2x + a3y + a4 and in 3D, Q1(x, y, z) =
a1xyz + a2xy + a3yz + a4zx + a5x + a6y + a7z + a8. The coe�cients of each Q1

are de�ned by solving two systems composed of the equations F 1
c (xc,n) = x̂c,n,

n = 1, 2, 3, 4 and the equations F 2
c (xc,n) = ŷc,n, n = 1, 2, 3, 4 where xc,n are the

positions of the 4 vertices of the cell Kc (see Fig. 1). Consequently, 3 systems
of 8 equations are solved in 3D for all cells. The analytical solution can be used
in 2D while a numerical solver is required in 3D.

The new position of each Lagrangian vertex σl can be obtained with x̂l =
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F (xl). The cell containing the vertex is found thanks to a search algorithm.
The distance between the vertex and a �rst Eulerian node is calculated. A new
node which is a neighbor of the previous one is chosen such as the distance to
the vertex is decreasing. Such a "point-in-cell" operation has to be performed
only at the start of the whole calculation as the Cartesian frame is used for
the further localizations. As demonstrated below, the computational cost of

Figure 1: Notations in 2D for original and transformed cells

this transformation is negligible. The Fig. 2 shows an initial interface in a
curvilinear mesh and its transformed shape in the Cartesian frame.

Figure 2: The original and transformed meshes Th and T̂h and the related
immersed interfaces Σ and Σ̂

2.1 Construction of volume functions
2.1.1 Heaviside function
The discrete binary Heaviside function χ is de�ned as:

χ(x) =





1 if x ∈ Ω1

0.5 if x ∈ Σ
0 otherwise

(1)

This function is the binary indicator of the presence of an Eulerian point in
Ω1 and is built with a point-in-solid method presented below. An �rst-order
accurate localization of the interface can be retrieved with χ. This function is
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obtained with a Ray-casting (RC) method. The principle is to cast a ray from
each Eulerian point to in�nity and to test the number of intersections between
the ray and the Lagrangian mesh. If the number of intersections is odd, the
Eulerian point is inside the object, and outside otherwise. The RC method can
be enhanced by classifying the elements of the Lagrangian mesh with an octree
sub-structure [12] which recursively subdivides the space in boxes. If a ray does
not intersect a box, it does not intersect the triangles inside the box. Some
details on the implementation and a short review of point-in-solid strategies can
be found in [11].

Concerning the standard RC method, its computational cost is generally
very expensive as L×M ×N ×S intersections tests have to be performed, with
S the number of elements of the Lagrangian mesh. Acceptable times are reached
(with L×M ×N × log(S) intersections) with an octree but the implementation
e�ort is non-negligible. A simple optimization, called here the Thread Ray-
casting (TRC) which is known in the computer graphics community, is used.
For the standard RC method, the direction of a ray is indi�erent. If all rays
are launched in the same direction, Ox for instance, many intersection tests are
done more than once for a set of points in a same Eulerian mesh row in the
Ox direction. Hence, only one ray can be cast per row. If rays are cast in a
given direction (the best choice is the one with the greatest number of cells),
the computational cost is divided by the number of cells in this direction and we
have (L×M ×N ×S)/ max(L,M,N) intersections to test. Ideally, this method
is coupled with the octree.

It is important to notice that this method works only on Cartesian meshes.
The computational cost of the curvilinear to Cartesian transformation is justi�ed
by the gain of times between the RC and the TRC.

As F is bi-continuous and bijective, xi,j,k ∈ Ω1 ⇔ x̂i,j,k ∈ Ω̂1 and χ̂(x̂i,j,k) =
χ(xi,j,k). As a consequence, the discrete Heaviside function in structured storage
veri�es χ(i,j,k) = χ̂(i,j,k) and χ can be computed in the Cartesian frame. This
property is however true for the continuous transformation. From a discrete
point of view, this property is true for a su�cient number S of Lagrangian
elements σl.

2.1.2 The Level-set function
The level-set (LS) function φ is

φ(x) =
{ −distΣ(x) if x ∈ Ω1

distΣ(x) otherwise (2)

with distΣ(x) = infp∈Σ ‖x − p‖. The unsigned distance is computed geomet-
rically and the sign is obtained from χ. If the distance is calculated for all
Eulerian nodes (a simple optimisation is to compute the distance only near the
interface), this operation is generally expensive as L × M × N × S distance
tests have to be performed. Details on implementation and optimisations can
be found in [7]. In 1D, the LS function gives the exact location of the interface.
For higher dimensions, a second-order localization of the interface can be ob-
tained by taking φ = 0. The normal n and the curvature κ of the LS function
are obtained with

n =
∇φ

‖∇φ‖ , κ = ∇ ·
( ∇φ

‖∇φ‖
)

(3)
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Theses quantities are wrong in the curvilinear domain if the Level-set function
is computed in the Cartesian domain. However, the interface normal n in the
curvilinear frame can be retrieved from φ̂ computed in the Cartesian frame with

n =

(
1

∆ξ , 1
∆η , 1

∆ζ

)T

∇̂ · φ̂

‖
(

1
∆ξ , 1

∆η , 1
∆ζ

)T

∇̂ · φ̂‖
(4)

with ξ, η, ζ the curvilinear coordinates,∆ξ, ∆η, ∆ζ the local mesh steps and ∇̂
the Cartesian gradient operator. Using n, the curvature can be computed with
the curvilinear divergence operator.

2.1.3 The VOF function
The volume-of-�uid (VOF) function C, also called the color or phase function,
is the volume ratio of a given phase in an elementary volume (generally the
�nite volume cell).

This function is typically used to localize a �uid phase in multiphase �ows
and is the base of the 1-�uid model [8]. This function can be computed from
the values of the Level-set function near the interface with the formula of [17]:

C(x) ≈





0 if φ < −ε
1
2

(
1 +

φ

ε
− 1

π
sin(πφ/ε)

)
if |φ| 6 ε

1 if φ > ε

(5)

with ε the interface width. An alternative method is proposed in [16] and does
not required χ. The following Poisson equation is solved:

∇2C = ∇ ·
∫

Σ

nδ(x− xi)dΓ (6)

where n is the unit normal to the interface, δ a smoothed Dirac function, x
a position on the Eulerian grid and xl a marker (vertex) position on Σ. The
original interface is recovered in C = 0.

2.2 Immersed boundary method
A L2-penalty method is used to impose an immersed Dirichlet boundary con-
dition on Σ. A penalty term χ

ε (u − ul) is added to the initial conservation
equation. As ε ¿ 1, the initial equation is negligible where χ = 1 (i.e. in Ω1).
To reach a second order of accuracy, the sub-mesh penalty method (SMPM)
[15] is used. The penalty term is discretized as χ

ε (Piu− ul) where Pi is a local
interpolator of the solution from both sides of the interface. Polynomials are
used to construct Pi. As the interface location is required to build the penalty
term, the intersections between Σ and the mesh lines are used. These points
can be found with a geometric intersection test, or using the Level-set and VOF
functions. Both gives an implicit representation of the interfacer through their
isosurfaces (φ = 0 and C = 0.5). As demonstrated later, choosing one or an
other impacts on the accuracy of the SMPM.

5



2.3 Phase advection
The advection of phases can be performed using the Cartesian frame. The initial
advection equation is written

∂C

∂t
+ u · ∇C = 0 (7)

with ∇ the curvilinear gradient operator. One can write

∇ = (
∂

∂ξ
,

∂

∂η
,

∂

∂ζ
)T = (

∂x

∂ξ
,
∂y

∂η
,
∂z

∂ζ
)T (

∂

∂x
,

∂

∂y
,

∂

∂z
)T (8)

Consequently,
∂C

∂t
+ u · ∇C =

∂C

∂t
+ û · ∇Ĉ = 0 (9)

with the transformed velocity in the Cartesian frame û =
(

uξ

∆ξ ,
uη

∆η ,
uζ

∆ζ

)T

and

the Cartesian gradient operator ∇̂ =
(

∂
∂x , ∂

∂y , ∂
∂z

)T

. For each cell, ∂x
∂ξ ,

∂y
∂η and

∂z
∂ζ are replaced by the ratios of the local space steps (with ∆x = ∆y = ∆z = 1).
If we consider in 1D the initial position x0 of a characteristic curve, its evolution
in the curvilinear frame is given by x(t) = x0 + ut. If the characteristic curve
covers a cell in a time T with a velocity u in the original frame, one can see that
a velocity u∆x/∆ξ is required to cover a transformed cell in the same time.

2.4 Other applications
As the Cartesian frame has a unit space step, any point (xl, yl, zl) of the Carte-
sian space belongs to the cell K̂bxlc,bylc,bzlc. This property saves computational
time for point-in-cell operations, e.g. when a quantity has to be extrapolated
from the Eulerian grid to a Lagrangian point. In [20], the 3D simulation of the
hydroplaning of a tire is performed on a irregular mesh and the present algo-
rithms are used to deal with multiphase �ows and the calculation of the forces
exerted by the �uid on the tire. The pressure and stress tensor are extrapolated
on the Lagrangian surface of the tire in order to determine the drag and lift
forces. For each surface element, the extrapolation requires to pick 3 points in
the �uid and to interpolate a quantity from the Eulerian nodes to these La-
grangian nodes. The same occurs for the Euler-Lagrange advection methods,
such as the VOF-SM method [21], which requires many coupling between La-
grangian and Eulerian informations. For each interpolations from the Cartesian
grid to a Lagrangian point, a unique simple Q1 interpolation is used.

2.5 Parallelism
As these operations are generally independently performed with respect to Eule-
rian or Lagrangian elements, the present algorithms are easy to parallelize with
OpenMP or GPGPU approaches. Concerning domain decomposition, for MPI
approaches, the interface Σ is not always entirely inside or outside the compu-
tational domain treated by a processor. The present algorithms generally works
in this case, except for the LCR VOF construction (6) (the resolved equation
requires the surface to be entirely inside the domain), and the curvilinear to
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Cartesian transformation. If a Lagrangian vertex σl is not inside an Eulerian
cell, its transformation cannot be determined (eventually approximated for some
curvilinear grids with irregular mesh steps and straight boundaries). For both
cases, the solution is to cut Σ and to close it with parts of the segments which
de�nes the boundaries of the Eulerian grid.

3 Results
3.1 Computational time
Speed tests have been performed on a P4 2.4 GHz for several meshes with
and without the octree. Three Lagrangian meshes are used, a sphere (18000
triangles, regular), the Stanford bunny (Fig. 3, 10122 triangles, irregular) and
the Lascaux cave ([9], 271136 triangles, irregular).

Figure 3: The Stanford bunny

The Tab. 1 shows computational times for these three Lagrangian meshes
coupled with a 1003 Eulerian mesh, for three operations: Transf. is the curvi-
linear to Cartesian transformation, TRC the Thread Ray-casting method and
LS the computation of the Level-set function. The computational time of the
standard Ray-casting method is not measured here but is supposed to be 100
times higher than for the TRC. Hence, even if the transformation is longer to
perform than the TRC, the total cost is negligible compared to the RC. As
expected, all the routines are faster with the octree. The gain for the curvi-
linear to Cartesian projection is between 1.35 and 1.73 only. For this case, a
derivation of the octree for point-in-cell operations, a kD-tree [2], is used. For
the Ray-casting, the gain is smaller than 2 on small meshes, and more than 10
for the Lascaux cave, where an octree with more subdivisions can be used. For
the computation of the Level-set, the gain ratio is from 35 to 75.

The most important result is that the maximum computational time for the
whole method is shorter than a minute on a P4 2.4 GHz. This time is generally
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Mesh Method Transf. TRC LS

Sphere
Standard 2.06 0.536 270
Octree 1.37 0.332 5.79
Ratio 1.50 1.61 46.6

Bunny
Standard 1.19 0.172 123
Octree 0.88 0.132 1.63
Ratio 1.35 1.30 75.5

Lascaux
Standard 45.4 35.9 1970
Octree 26.1 3.32 56.1
Ratio 1.73 10.8 35.1

Table 1: Duration in second and performance ratio for three di�erent meshes
with and without the octree

negligible against the computational time required to solve the linear system
resulting from the discretization of a conservation equation with a 1003 mesh.

Concerning the computational time of the SMPM, the construction of the
penalty term is negligible when volume functions are used. When the La-
grangian elements are used, the method takes roughly the same time as the
TRC.

3.2 Immersed boundary method
The SMPM coupled with diverse surface representations is tested here. The
accuracy of the surface representations can be deduced from the accuracy of
the SMPM for each representation. The Laplace equation is solved with two
curvilinear grids (see Fig. 4). A circular interface is considered and a Dirichlet
boundary condition is imposed on the circle with the SMPM [15]. This method
has a second order of space accuracy and requires the accurate location of the
boundary. The computational mesh is a curvilinear converging pipe. Fig. 5 left
shows a spatial convergence study for the L2 and L∞ error norms. The interface
is located either with Σ̂ (GI), the curvilinear Level-set function (LS-CURVI), the
Cartesian Level-set function (LS), the Sussman Heaviside reconstructed function
(SUS) 5 and the VOF function from the Front-Tracking method (FT). As can be
seen, the GI, LS-CURVI and LS methods allow the SMP method to almost keep
its second order. The expected loss of accuracy between the LS-CURVI and the
LS methods is too slight to disqualify the use of the Cartesian grid. The SUS
method shows lower performances due to its construction using a sinus function
(with a linear reconstruction, the same accuracy as with the LS is found). The
FT shows a good convergence for the �rst meshes (with a second order) but is
globally the less accurate function and does not converge for the �nest meshes.
An implementation error or a saturation e�ect could be involved.

3.3 Multiphase �ows
The methodology is used with VOF-PLIC [22], Level-Set [17], VOF-TVD [19]
and LCR Front-Tracking [16] advection methods. The Fig. 5 right shows a
cross-shaped phase advected at a front positive speed on a curvilinear grid with
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Figure 4: A and B meshes

Figure 5: Relative L2 and L∞ errors for meshes A and B

a Front-Tracking method. The shape and mass of the initial phase are well con-
served if only the Lagrangian markers are considered (which is not the case for
the 1-�uid model where the VOF function is used). Fig. 7 shows the convergence
of the error on the mass conservation. As expected, a regular second-order of
convergence is found for the LS and FT methods. Concerning the VOF-PLIC
and VOF-TVD methods, the transformation removes their ability to exactly
conserve the phase volume and the conservation depends on the accuracy of the
interface advection. It is known for the VOF-PLIC method that the convergence
order of the interface position decreases with the mesh [13, 1]. Whatsoever, the
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VOF-PLIC and VOF-TVD methods remain globally more accurate than the two
other methods. For the FT method, the error on the advection of the Lagrangian
markers is negligible against the error on the LCR operation 6. Contrary to the
test in section 3.2, the saturation is not reached and a similar second order is
obtained. However, the reconstruction of the VOF function using the method
of [16] could be replaced by a more accurate method. Concerning the TVD
method, good results are obtained but the cause of its irregular convergence has
to be investigated.

Figure 6: Advection of a cross-shaped phase with a Front-tracking method

Figure 7: Relative error on the mass conservation

4 Conclusion
A new second-order methodology to work with �ctitious domains on curvilin-
ear grids has been drawn here. It allows methods implemented on Cartesian
grids to be easily extended to curvilinear grids saving implementation e�orts
and computational cost. The Thread Ray-casting is used on curvilinear grids
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and greatly improves the performances of the Heaviside construction. Used with
many implicit and explicit interface representations, a second-order immersed
boundary method keeps its convergence order. Concerning the phase advec-
tion, a transformed velocity �eld has been coupled with the Cartesian frame to
perform the advection for curvilinear cases with Cartesian algorithms. Future
works will be devoted to �nd a way to retrieve the volume conservation prop-
erty for the VOF-TVD and VOF-PLIC methods. Higher-orders curvilinear to
Cartesian transformations for the mesh will be studied too. Concerning the FT
method (for all kinds of meshes), the initialisation of [16] will be replaced by
the TRC and a more accurate reconstruction of the VOF function (using the
Level-set function or a geometrical calculation of the volume ratio).
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