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A second-order curvilinear to Cartesian transformation of immersed interfaces and boundaries. Application to ctitious domains and multiphase ows
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A global methodology dealing with ctitious domains of all kinds on orthogonal curvilinear grids is presented. The main idea is to transform the curvilinear workframe and its associated elements (velocity, immersed interfaces...) into a Cartesian grid. On such a grid, many operations can be performed much faster than on curvilinear grids. The method is coupled with a Thread Ray-casting algorithm which work on Cartesian grids only. This algorithm computes quickly the Heaviside function related to the interior of an object on an Eulerian grid. The approach is also coupled with an immersed boundary method (L 2 -penalty method) or with phase advection with VOF-PLIC, VOF-TVD, Front-tracking or Level-set methods. Applications, convergence and speed tests are performed for shape initializations, immersed boundary methods, and interface tracking.

Introduction

Structured Cartesian grids are convenient to use in CFD simulations. However, this kind of mesh structure involves many limitations on the shape of the numerical domain. A rst solution is to use ctitious domain methods (e.g. immersed boundary methods) which enable the immersion of complex boundaries on Cartesian grids. An other solution is to use curvilinear structured grids which couple some advantages of the structured approach (trivial connectivities) with the possibility to deal accurately with complex numerical boundaries and rened boundary layers.

In [START_REF] Thompson | General curvilinear coordinate systems[END_REF], Thompson proposes a general method to work with curvilinear grids. The main idea is to consider a xed square grid in a rectangular transformed region where the numerical calculations are performed with modied operators. This approach can be extended to moving boundaries or interfaces and does not require the eective construction of the transformed domain. Nevertheless, the question of the motion and reconstruction of the mesh (especially the implementation eort and the computational cost), as for the ALE method, is asked. This point is critical for multiphase ows and particularly for dispersed phases or for cases with many moving objects, such as uidized beds. Even if less accurate, the ctitious domain methods seem to be more convenient and fast as the calculation grid can remain xed.

One can found some examples of ctitious domains on curvilinear grids in the literature. An adaptation of the VOF-PLIC method on curvilinear grids can be found in [START_REF] Jang | A study on the extension of a vof/plic based method to a curvilinear co-ordinate system[END_REF]. In [START_REF] Muradoglu | An auxiliary grid method for computations of multiphase ows in complex geometries[END_REF], Muradoglu and Kayaalp use an auxiliary Cartesian grid superimposed with the curvilinear mesh to manage the front tracking operations. Kernel functions are used to interpolate the velocity from one grid to an other. In [START_REF] Huang | Coupled ghost uid/two-pahse level set method for curvilinear body-tter grids[END_REF], Huang et al. extend the Ghost-uid method [START_REF] Fedkiw | A non-oscillatory eulerian approach to interfaces in multimaterial ows (the ghost uid method)[END_REF] to curvilinear grids. In [START_REF] Borazjani | Curvilinear immersed boundary method for simulating uid structure interaction with complex 3d rigid bodies[END_REF][START_REF] Roman | An improved immersed boundary method for curvilinear grids[END_REF], authors perform a uid-structure coupling with an immersed boundary method on curvilinear grids. In these works, the transformation dened by [START_REF] Thompson | General curvilinear coordinate systems[END_REF] is not used.

The present work proposes an optimized approach using the transformation of [START_REF] Thompson | General curvilinear coordinate systems[END_REF] to deal with immobile boundaries while moving interfaces and boundaries are treated with ctitious domain methods. A transformation of the original immersed interface is proposed and its projection onto a volume function is accelerated thanks to the use of the transformed Cartesian space. Contrary to the aforementioned references, immersed boundary methods and phase advection are performed considering only the transformed Cartesian grids with the original ad hoc Cartesian algorithms.

Methodology

The method is presented in 2D. The extension to 3D problems is straightforward. Let us consider a curvilinear orthogonal structured mesh T h covering a numerical domain Ω. Its structured vertices are denoted x c (c denotes the doublet of indexes (i, j)), with 1 i L, 1 j M (and 1 k N in 3D). The mesh cells are denoted K c with x c the south-west vertex of each cell. An embedded domain of complex interface Σ divides Ω in two subdomains Ω 0 and Ω 1 . If uid ows are considered, each subdomain can represent a phase or a solid object. The base principle is to unfold the curvilinear triangulation T h to obtain a Cartesian grid Th of unit space step dening a new computational domain Ω. For this purpose, we dene a bi-continuous bijective operator F : Ω → Ω such as the transformed position of a grid node

x c is F (x c ) = xc = (i, j) T .
Once the Cartesian grid has been built, the immersed interface Σ has to be unfolded too. Numerically, Σ is piecewise linear and can be dened by its vertices denoted by σ l of position x l . In the Cartesian frame, Σ becomes a deformed interface Σ composed of vertices σl . The transformation F is built cell by cell. The restriction of F to K c is the operator

F c = (F 1 c , F 2 c
) T , and we have

F 1 c (x c ) = xc , F 2 c (x c ) = ŷc . Each operator F n is built with a Q 1 polynomial. In 2D, Q 1 (x, y) = a 1 xy + a 2 x + a 3 y + a 4 and in 3D, Q 1 (x, y, z) = a 1 xyz + a 2 xy + a 3 yz + a 4 zx + a 5 x + a 6 y + a 7 z + a 8 .
The coecients of each Q 1 are dened by solving two systems composed of the equations F 1 c (x c,n ) = xc,n , n = 1, 2, 3, 4 and the equations F 2 c (x c,n ) = ŷc,n , n = 1, 2, 3, 4 where x c,n are the positions of the 4 vertices of the cell K c (see Fig. 1). Consequently, 3 systems of 8 equations are solved in 3D for all cells. The analytical solution can be used in 2D while a numerical solver is required in 3D.

The new position of each Lagrangian vertex σ l can be obtained with xl = F (x l ). The cell containing the vertex is found thanks to a search algorithm. The distance between the vertex and a rst Eulerian node is calculated. A new node which is a neighbor of the previous one is chosen such as the distance to the vertex is decreasing. Such a "point-in-cell" operation has to be performed only at the start of the whole calculation as the Cartesian frame is used for the further localizations. As demonstrated below, the computational cost of The discrete binary Heaviside function χ is dened as:

χ(x) =    1 if x ∈ Ω 1 0.5 if x ∈ Σ 0 otherwise (1)
This function is the binary indicator of the presence of an Eulerian point in Ω 1 and is built with a point-in-solid method presented below. An rst-order accurate localization of the interface can be retrieved with χ. This function is obtained with a Ray-casting (RC) method. The principle is to cast a ray from each Eulerian point to innity and to test the number of intersections between the ray and the Lagrangian mesh. If the number of intersections is odd, the Eulerian point is inside the object, and outside otherwise. The RC method can be enhanced by classifying the elements of the Lagrangian mesh with an octree sub-structure [START_REF] Puech | Quadtrees, octrees, hyperoctrees: a unied analytical approach to tree data structures used in graphics, geometric modeling and image processing[END_REF] which recursively subdivides the space in boxes. If a ray does not intersect a box, it does not intersect the triangles inside the box. Some details on the implementation and a short review of point-in-solid strategies can be found in [START_REF] Ogayar | Point in solid strategies[END_REF].

Concerning the standard RC method, its computational cost is generally very expensive as L × M × N × S intersections tests have to be performed, with S the number of elements of the Lagrangian mesh. Acceptable times are reached (with L × M × N × log(S) intersections) with an octree but the implementation eort is non-negligible. A simple optimization, called here the Thread Raycasting (TRC) which is known in the computer graphics community, is used. For the standard RC method, the direction of a ray is indierent. If all rays are launched in the same direction, Ox for instance, many intersection tests are done more than once for a set of points in a same Eulerian mesh row in the Ox direction. Hence, only one ray can be cast per row. If rays are cast in a given direction (the best choice is the one with the greatest number of cells), the computational cost is divided by the number of cells in this direction and we have (L × M × N × S)/ max(L, M, N ) intersections to test. Ideally, this method is coupled with the octree.

It is important to notice that this method works only on Cartesian meshes. The computational cost of the curvilinear to Cartesian transformation is justied by the gain of times between the RC and the TRC.

As F is bi-continuous and bijective, x i,j,k ∈ Ω 1 ⇔ xi,j,k ∈ Ω1 and χ(x i,j,k ) = χ(x i,j,k ). As a consequence, the discrete Heaviside function in structured storage veries χ (i,j,k) = χ(i,j,k) and χ can be computed in the Cartesian frame. This property is however true for the continuous transformation. From a discrete point of view, this property is true for a sucient number S of Lagrangian elements σ l .

The Level-set function

The level-set (LS) function φ is

φ(x) = -dist Σ (x) if x ∈ Ω 1 dist Σ (x) otherwise (2) 
with dist Σ (x) = inf p∈Σ x -p . The unsigned distance is computed geometrically and the sign is obtained from χ. If the distance is calculated for all Eulerian nodes (a simple optimisation is to compute the distance only near the interface), this operation is generally expensive as L × M × N × S distance tests have to be performed. Details on implementation and optimisations can be found in [START_REF] Jones | 3d distance elds: A survey of techniques and applications[END_REF]. In 1D, the LS function gives the exact location of the interface. For higher dimensions, a second-order localization of the interface can be obtained by taking φ = 0. The normal n and the curvature κ of the LS function are obtained with

n = ∇φ ∇φ , κ = ∇ • ∇φ ∇φ ( 3 
)
Theses quantities are wrong in the curvilinear domain if the Level-set function is computed in the Cartesian domain. However, the interface normal n in the curvilinear frame can be retrieved from φ computed in the Cartesian frame with

n = 1 ∆ξ , 1 ∆η , 1 ∆ζ T ∇ • φ 1 ∆ξ , 1 ∆η , 1 ∆ζ T ∇ • φ (4) 
with ξ, η, ζ the curvilinear coordinates,∆ξ, ∆η, ∆ζ the local mesh steps and ∇

the Cartesian gradient operator. Using n, the curvature can be computed with the curvilinear divergence operator.

The VOF function

The volume-of-uid (VOF) function C, also called the color or phase function, is the volume ratio of a given phase in an elementary volume (generally the nite volume cell). This function is typically used to localize a uid phase in multiphase ows and is the base of the 1-uid model [START_REF] Kataoka | Local instant formulation of two-phase ow[END_REF]. This function can be computed from the values of the Level-set function near the interface with the formula of [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF]:

C(x) ≈        0 if φ < - 1 2 1 + φ - 1 π sin(πφ/ ) if |φ| 1 if φ > (5) 
with ε the interface width. An alternative method is proposed in [START_REF] Shin | Modelling three-dimensional multiphase ow using a level contour reconstruction method for front tracking without connectivity[END_REF] and does not required χ. The following Poisson equation is solved:

∇ 2 C = ∇ • Σ nδ(x -x i )dΓ ( 6 
)
where n is the unit normal to the interface, δ a smoothed Dirac function, x a position on the Eulerian grid and x l a marker (vertex) position on Σ. The original interface is recovered in C = 0.

Immersed boundary method

A L 2 -penalty method is used to impose an immersed Dirichlet boundary condition on Σ. A penalty term χ ε (u -u l ) is added to the initial conservation equation. As ε 1, the initial equation is negligible where χ = 1 (i.e. in Ω 1 ). To reach a second order of accuracy, the sub-mesh penalty method (SMPM) [START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase ows interacting with complex objects[END_REF] is used. The penalty term is discretized as χ ε (P i u -u l ) where P i is a local interpolator of the solution from both sides of the interface. Polynomials are used to construct P i . As the interface location is required to build the penalty term, the intersections between Σ and the mesh lines are used. These points can be found with a geometric intersection test, or using the Level-set and VOF functions. Both gives an implicit representation of the interfacer through their isosurfaces (φ = 0 and C = 0.5). As demonstrated later, choosing one or an other impacts on the accuracy of the SMPM.

Phase advection

The advection of phases can be performed using the Cartesian frame. The initial advection equation is written

∂C ∂t + u • ∇C = 0 (7) 
with ∇ the curvilinear gradient operator. One can write

∇ = ( ∂ ∂ξ , ∂ ∂η , ∂ ∂ζ ) T = ( ∂x ∂ξ , ∂y ∂η , ∂z ∂ζ ) T ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) T (8)
Consequently,

∂C ∂t + u • ∇C = ∂C ∂t + û • ∇ Ĉ = 0 (9) 
with the transformed velocity in the Cartesian frame û = If we consider in 1D the initial position x 0 of a characteristic curve, its evolution in the curvilinear frame is given by x(t) = x 0 + ut. If the characteristic curve covers a cell in a time T with a velocity u in the original frame, one can see that a velocity u∆x/∆ξ is required to cover a transformed cell in the same time.

Other applications

As the Cartesian frame has a unit space step, any point (x l , y l , z l ) of the Cartesian space belongs to the cell K x l , y l , z l . This property saves computational time for point-in-cell operations, e.g. when a quantity has to be extrapolated from the Eulerian grid to a Lagrangian point. In [START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase ows interacting with moving solids. Application to hydroplaning ows interacting with real tire tread patterns[END_REF], the 3D simulation of the hydroplaning of a tire is performed on a irregular mesh and the present algorithms are used to deal with multiphase ows and the calculation of the forces exerted by the uid on the tire. The pressure and stress tensor are extrapolated on the Lagrangian surface of the tire in order to determine the drag and lift forces. For each surface element, the extrapolation requires to pick 3 points in the uid and to interpolate a quantity from the Eulerian nodes to these Lagrangian nodes. The same occurs for the Euler-Lagrange advection methods, such as the VOF-SM method [START_REF] Vincent | Eulerian-lagrangian multiscale methods for solving scalar equations -application to incompressible two-phase ows[END_REF], which requires many coupling between Lagrangian and Eulerian informations. For each interpolations from the Cartesian grid to a Lagrangian point, a unique simple Q 1 interpolation is used.

Parallelism

As these operations are generally independently performed with respect to Eulerian or Lagrangian elements, the present algorithms are easy to parallelize with OpenMP or GPGPU approaches. Concerning domain decomposition, for MPI approaches, the interface Σ is not always entirely inside or outside the computational domain treated by a processor. The present algorithms generally works in this case, except for the LCR VOF construction (6) (the resolved equation requires the surface to be entirely inside the domain), and the curvilinear to Cartesian transformation. If a Lagrangian vertex σ l is not inside an Eulerian cell, its transformation cannot be determined (eventually approximated for some curvilinear grids with irregular mesh steps and straight boundaries). For both cases, the solution is to cut Σ and to close it with parts of the segments which denes the boundaries of the Eulerian grid.

3 Results

Computational time

Speed tests have been performed on a P4 2.4 GHz for several meshes with and without the octree. Three Lagrangian meshes are used, a sphere (18000 triangles, regular), the Stanford bunny (Fig. 3, 10122 triangles, irregular) and the Lascaux cave ([9], 271136 triangles, irregular).

Figure 3: The Stanford bunny

The Tab. 1 shows computational times for these three Lagrangian meshes coupled with a 100 3 Eulerian mesh, for three operations: Transf. is the curvilinear to Cartesian transformation, TRC the Thread Ray-casting method and LS the computation of the Level-set function. The computational time of the standard Ray-casting method is not measured here but is supposed to be 100 times higher than for the TRC. Hence, even if the transformation is longer to perform than the TRC, the total cost is negligible compared to the RC. As expected, all the routines are faster with the octree. The gain for the curvilinear to Cartesian projection is between 1.35 and 1.73 only. For this case, a derivation of the octree for point-in-cell operations, a kD-tree [START_REF] Louis | Multidimensional binary search trees used for associative searching[END_REF], is used. For the Ray-casting, the gain is smaller than 2 on small meshes, and more than 10 for the Lascaux cave, where an octree with more subdivisions can be used. For the computation of the Level-set, the gain ratio is from 35 to 75.

The most important result is that the maximum computational time for the whole method is shorter than a minute on a P4 with and without the octree negligible against the computational time required to solve the linear system resulting from the discretization of a conservation equation with a 100 3 mesh.

Concerning the computational time of the SMPM, the construction of the penalty term is negligible when volume functions are used. When the Lagrangian elements are used, the method takes roughly the same time as the TRC.

Immersed boundary method

The SMPM coupled with diverse surface representations is tested here. The accuracy of the surface representations can be deduced from the accuracy of the SMPM for each representation. The Laplace equation is solved with two curvilinear grids (see Fig. 4). A circular interface is considered and a Dirichlet boundary condition is imposed on the circle with the SMPM [START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase ows interacting with complex objects[END_REF]. This method has a second order of space accuracy and requires the accurate location of the boundary. The computational mesh is a curvilinear converging pipe. Fig. 5 left shows a spatial convergence study for the L 2 and L ∞ error norms. The interface is located either with Σ (GI), the curvilinear Level-set function (LS-CURVI), the Cartesian Level-set function (LS), the Sussman Heaviside reconstructed function (SUS) 5 and the VOF function from the Front-Tracking method (FT). As can be seen, the GI, LS-CURVI and LS methods allow the SMP method to almost keep its second order. The expected loss of accuracy between the LS-CURVI and the LS methods is too slight to disqualify the use of the Cartesian grid. The SUS method shows lower performances due to its construction using a sinus function (with a linear reconstruction, the same accuracy as with the LS is found). The FT shows a good convergence for the rst meshes (with a second order) but is globally the less accurate function and does not converge for the nest meshes. An implementation error or a saturation eect could be involved.

Multiphase ows

The methodology is used with VOF-PLIC [START_REF] Youngs | Time-dependent multimaterial ow with large uid distortion[END_REF], Level-Set [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase ow[END_REF], VOF-TVD [START_REF] Vincent | Ecient solving method for unsteady incompressible interfacial ow problems[END_REF] and LCR Front-Tracking [START_REF] Shin | Modelling three-dimensional multiphase ow using a level contour reconstruction method for front tracking without connectivity[END_REF] advection methods. The Fig. 5 right shows a cross-shaped phase advected at a front positive speed on a curvilinear grid with a Front-Tracking method. The shape and mass of the initial phase are well conserved if only the Lagrangian markers are considered (which is not the case for the 1-uid model where the VOF function is used). Fig. 7 shows the convergence of the error on the mass conservation. As expected, a regular second-order of convergence is found for the LS and FT methods. Concerning the VOF-PLIC and VOF-TVD methods, the transformation removes their ability to exactly conserve the phase volume and the conservation depends on the accuracy of the interface advection. It is known for the VOF-PLIC method that the convergence order of the interface position decreases with the mesh [START_REF] Rider | Reconstructing volume tracking[END_REF][START_REF] Aulisa | Interface reconstruction with least-squares t and split advection in three-dimensional cartesian geometry[END_REF]. Whatsoever, the VOF-PLIC and VOF-TVD methods remain globally more accurate than the two other methods. For the FT method, the error on the advection of the Lagrangian markers is negligible against the error on the LCR operation 6. Contrary to the test in section 3.2, the saturation is not reached and a similar second order is obtained. However, the reconstruction of the VOF function using the method of [START_REF] Shin | Modelling three-dimensional multiphase ow using a level contour reconstruction method for front tracking without connectivity[END_REF] could be replaced by a more accurate method. Concerning the TVD method, good results are obtained but the cause of its irregular convergence has to be investigated. A new second-order methodology to work with ctitious domains on curvilinear grids has been drawn here. It allows methods implemented on Cartesian grids to be easily extended to curvilinear grids saving implementation eorts and computational cost. The Thread Ray-casting is used on curvilinear grids and greatly improves the performances of the Heaviside construction. Used with many implicit and explicit interface representations, a second-order immersed boundary method keeps its convergence order. Concerning the phase advection, a transformed velocity eld has been coupled with the Cartesian frame to perform the advection for curvilinear cases with Cartesian algorithms. Future works will be devoted to nd a way to retrieve the volume conservation property for the VOF-TVD and VOF-PLIC methods. Higher-orders curvilinear to Cartesian transformations for the mesh will be studied too. Concerning the FT method (for all kinds of meshes), the initialisation of [START_REF] Shin | Modelling three-dimensional multiphase ow using a level contour reconstruction method for front tracking without connectivity[END_REF] will be replaced by the TRC and a more accurate reconstruction of the VOF function (using the Level-set function or a geometrical calculation of the volume ratio).
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 1 Figure 1: Notations in 2D for original and transformed cells
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 2 Figure 2: The original and transformed meshes T h and Th and the related immersed interfaces Σ and Σ

  operator ∇ = ∂ ∂x , ∂ ∂y , ∂ ∂z T . For each cell, ∂x ∂ξ , ∂y ∂η and ∂z ∂ζ are replaced by the ratios of the local space steps (with ∆x = ∆y = ∆z = 1).
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 4 Figure 4: A and B meshes
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 5 Figure 5: Relative L 2 and L ∞ errors for meshes A and B
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 6 Figure 6: Advection of a cross-shaped phase with a Front-tracking method
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 7 Figure 7: Relative error on the mass conservation

  

Table 1 :

 1 2.4 GHz. This time is generally Duration in second and performance ratio for three dierent meshes

	Mesh	Method	Transf. TRC	LS
		Standard	2.06	0.536 270
	Sphere	Octree	1.37	0.332 5.79
		Ratio	1.50	1.61	46.6
		Standard	1.19	0.172 123
	Bunny	Octree	0.88	0.132 1.63
		Ratio	1.35	1.30	75.5
		Standard	45.4	35.9 1970
	Lascaux	Octree	26.1	3.32	56.1
		Ratio	1.73	10.8	35.1
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