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An Efficient Method for the Solution of Schwinger-Dyson equations for propagators

Introduction

In preceding works [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF][START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF], we have shown how to solve Schwinger-Dyson equations for propagators. This allows to compute the β-function in models without vertex divergencies, e.g., the supersymmetric Wess-Zumino model and some version of a six-dimensional theory of a scalar field with cubic interactions. The resolution method in the first of these works [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF] is exact, but does not allow for an easy understanding of the properties of the computed perturbative series. This method is also computationally heavy and would scale badly for Schwinger-Dyson equations with a greater number of propagators.

The approximate differential equations introduced in [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF] have the double advantage of allowing an easy derivations of the asymptotic behavior of the perturbative series and of a complexity which is only quadratic in the perturbative order. However, as can be seen in the second equation proposed for the Wess-Zumino model, this simplicity is lost if we have to get more precise results.

In this work, I propose a procedure which allows to systematically improve the second method, while remaining computationally simple and making the asymptotic behavior of the perturbative series transparent. In particular, I shall derive the dominant singularity of the Borel transform of the perturbative series on the positive axis, through the added precision on the asymptotic behavior of the perturbative series. In this work, I limit myself to the contributions of the dominant poles, which are sufficient for the asymptotic behavior, but the inclusion of additional terms would allow to reach any desired precision, for a fraction of the computational cost of the method used in [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF].

All these computations are based on two techniques, which have been described extensively in [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF][START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF], elaborating on the work of Kreimer and Yeats [START_REF] Kreimer | An etude in non-linear Dyson-Schwinger equations[END_REF]: a renormalization group equation allows to deduce the full propagator from the renormalization group functions and a Mellin transform of the one loop diagram gives the renormalization group functions from the propagators. These results will be freely used here.

In the present paper, we will see in a first step how the contribution of a simple pole in the Mellin transform of the diagram can be computed recursively, allowing the computation of an infinite sum of derivatives of the propagator while sidestepping the computation of the individual derivatives. This is immediately applied in the following section to the solution of the linear Schwinger-Dyson equation for a scalar model in dimension 6 which was first solved in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. The new method surely recovers the same numerical values and is computationally comparable, but it is far superior for the asymptotic analysis of the perturbative series and it prepares for the more complex examples.

In the cases of non-linear Schwinger-Dyson equations, some terms cannot be computed with this first method and I extend it to the case where the denominator depends on the sum of some variables of the Mellin transform. This method is then applied to the supersymmetric Wess-Zumino model. The main result thus obtained is a precise asymptotic study of the perturbative series: beyond the dominant contribution which gives a pole for the Borel transform of the series, the exact nature of the singularity on the positive axis, which was discovered in the numerical computation of [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF], is uncovered. Finally, the scalar model in dimension 6 is studied in the case of a non-linear Schwinger-Dyson equation. Again, a singularity on the positive real axis is predicted, but it would have been difficult to spot numerically, since the non alternating part is smaller by a factor bigger than n 4 . Finally, I conclude on the possible extensions of this work, in particular with respect to the inclusion of higher loop corrections in the Schwinger-Dyson equations. The singularities of the Mellin transforms for higher loop diagrams are poles with denominators of the type envisioned here: the dominant contributions of the high order derivatives of the Mellin transform can be computed by the methods presented here.

Contribution from a simple pole.

We keep the fundamental insight in [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF] that the Taylor series is dominated by the contribution of the singularities near the origin. In the one-loop case, the Mellin transform is expressible through Γ functions and these singularities are single poles. The first case to consider is therefore the one of a simple pole 1/(k + x).

The corresponding contribution to the γ-function is:

(1)

1 k + x = 1 k ∞ p=0 -x k p -→ I = 1 k ∞ p=0 -1 k p γ p
In this expression, γ p is the p th derivative with respect to the logarithm of the impulsion L of the correction to the propagator G(L). However, the seemingly local sum of derivatives in equation ( 1) can be given an equivalent integral form:

(2)

I k = 0 -∞ G(L)e kL dL
If k is negative, the integral has to be taken from 0 to +∞. For k = 1, we recover the integral

µ 2 0 G(p 2 )d(p 2 ),
which appeared in the work of Broadhurst and Kreimer [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF].

The point is that I can be efficiently evaluated through the use of the renormalization group. The action of γ + β∂ a on G(L) gives its derivative with respect to L;

(3) (γ + βa∂ a )I k = 0 -∞ ∂ L G(L)e kL dL = G(0) -kI k
The last equality comes from an integration by part. Equation ( 3) can be used to obtain an efficient recursive computation of the perturbative expansion of I.

The linear case.

As a first application, let us go back to the linear Schwinger-Dyson equation for a 6-dimensional scalar field first studied in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. The one-variable Mellin transform is a rational function and a simple solution method was presented in [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF]. This amounts to acting on the Schwinger-Dyson equation with an adequate differential operator in the logarithm of the momentum L to reduce the right-hand side to a constant. In [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF], I proposed to act with a simpler differential operator. This allowed in particular to more easily account for the asymptotic behavior of the perturbative solution, but the truncated right-hand side precluded an exact solution.

With the insight of the preceding section, it is possible to obtain the exact solution in a form which allows for an easy asymptotic analysis. Indeed, through the use of I 2 and I 3 which represent the effect of the propagator on the single poles 1/(2 + x) and 1/(3 + x), equation (10) of [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF] can be written:

(4) γ + γ(2a∂ a -1)γ = a(I 2 -I 3 ).
The recursive evaluation of I 2 and I 3 through the use of equation ( 3), completed by the identity β = 2γ, allows for a rapid evaluation of the perturbative series for γ. The result coincides with the one stemming from the partial differential equation of [START_REF] Broadhurst | Exact solutions of Dyson-Schwinger equations for iterated one-loop integrals and propagator-coupling duality[END_REF], providing a check of the computation. It is then easy to obtain from equation (4) the asymptotic behavior of the perturbative series. Let us fix the notation for the perturbative coefficients of γ, I 2 and I 3 :

(5) γ = ∞ n=1 c n a n , I 2 = ∞ n=0 d n a n , I 3 = ∞ n=0 f n a n .
It is convenient to convert the term bilinear in γ to the form (a∂ a -1)γ 2 , so that with the first values c 1 = 1/6 and c 2 = -11/6 3 , equation (4) gives the following relation:

(6) c n+1 ≃ - 2n 6 c n + 22(n -1) 6 3 c n-1 + d n -f n .
In the equation ( 3), the dominant components come from the cases where either γ or I k is of maximal order, so that one obtains:

d n ≃ - 1 4 c n - 2n -1 12 d n-1 (7) f n ≃ - 1 9 c n - 2n -1 18 f n-1 (8)
Now, it is consistent to suppose that d n and f n are proportional to c n and replace c n-1 in the right hand side of the previous equations by the its approximate value -3 n c n to solve for the unknown factor. One obtains:

(9)

d n ≃ - 1 2 c n , f n ≃ - 1 6 c n .
Putting all together, one obtains the following asymptotic relation:

(10) c n+1 ≃ - n 3 + 23 36 c n ,
which is well verified on the exact solution. By considering additional terms in the expansion of γ 2 and the recursive definition of d n and f n , one could obtain additional terms in the expansion in 1 n of the ratio of c n over c n-1 . 4. General poles.

When studying non-linear Schwinger-Dyson equations, Mellin transforms with many variables must be used. However, the obtained singularities are really simple, since they correspond to the divergences appearing when some subgraph becomes scale invariant: the singularities are simple poles whose denominators only depend on the sum of the Mellin variables associated to the subgraph.

The formulation of the pairing between propagator and Mellin transform appears quite dissymmetric, but it is in fact totally symmetric. The evaluation of a function of the propagator G(L) can be reduced to the following pairing of G(L) with the Mellin transform H(x):

(11) ∞ n=0 1 n! ∂ n L G(L)| L=0 ∂ n x H(x)| x=0
For simple enough Mellin transforms H, it will be more convenient therefore to write this duality in reverse order, i.e., as some differential operator acting on the propagator G(L). The structure will simply be:

(12) H(∂ L )G(L),
since for an analytic H, the Taylor series gives the value of the function. The situation becomes more interesting when there are many variables, since a sum of derivatives with respect to L i can be converted to a simple derivative if we identify the different variables. The methods of section 2 can then be applied to evaluate the effect of a simple pole.

However, one must pay special attention to the numerator: if in one variable, any numerator can be reduced to a scalar, it is not the case in a multidimensional setting. It is even possible, if we start from a multiloop diagram, that the numerator itself be a meromorphic function with poles. The identification of the different variables L i has therefore to be done after the application of the differential operator corresponding to the part of the numerator which depends on the variables in the denominator. The final result is that we can evaluate easily the following type of pairings:

(13) I = 1 k + n j=1 ∂ L j N (∂ L 1 , . . . , ∂ Ln ) n j=1 G(L j ) L 1 =•••=Ln=0
We obtain an equation similar to eq. ( 3), apart that the anomalous dimension γ is multiplied by the number of fields n and that G(0) is replaced by an expression involving N .

(

) k + nγ + βa∂ a I = N (∂ L 1 , . . . , ∂ Ln ) n j=1 G(L j ) L 1 =•••=Ln=0 5. Wess-Zumino model. 14 
Equipped with these new tools, let us consider the supersymmetric Wess-Zumino model. It is now possible to compute additional terms of the asymptotic behavior of the perturbative series. In particular, I shall obtain the exact nature of the singularity on the positive real axis. The aim is to include all the poles at unit distance from the origin, that is to use the approximation of the Mellin transform introduced in equation ( 21) of [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF], corrected to have the exact xy term:

(15) h(x, y) = (1 + xy)

1 1 + x + 1 1 + y -1 + 1 2 xy 1 -x -y + 1 2 xy.
To solve the Schwinger-Dyson equation with this approximate Mellin transform, we need two functions in addition to γ itself: F , the sum of the γ n associated to 1/(1 + x) and H, the function associated to the term xy/(1xy).

For the same approximation, the differential equation obtained in section 3.4 of [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF] is very complex. The renormalization group yields to the following functional equations for F and H:

F = 1 -γ(3a∂ a + 1)F, ( 16 
)
H = γ 2 + γ(3a∂ a + 2)H. ( 17 
)
Using the approximate Mellin transform (15), the Schwinger-Dyson equation then takes the form:

(18) γ = 2aF -a -2aγ(F -1) + 1 2 a(H -γ 2 )
The three equations (16,17,18) can be converted in recursion equations for the perturbative expansions of the functions γ, F and G.

The numerical solution is easy. Compared with the complete calculations of [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF], the obtained precision is good, with errors which are always less then 1 percent and are asymptotically of the order of half a percent. This divides the error by a factor 10 with respect to the cruder approximation of [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF] and moreover capture the non-alternating part in the development of γ: an asymptotic analysis of this system of equations will allow to obtain the exact nature of the singularity on the positive axis in the Borel transform of the series for γ.

Let us write γ = c n a n , F = f n a n and H = h n a n . It is easy to show that c 1 = 1, c 2 = -2, f 2 = 1. With the rapid growth of all the coefficients, one obtains the following asymptotic forms of the equations (16,17):

f n+1 ≃ -(3n + 1)f n + 2(3n -2)f n-1 -c n+1 , (19) h n+1 ≃ 2c n -4c n-1 + (3n + 2)h n -2(3n -1)h n-1 + 8c n-1 . (20)
In the first of these equations, (3n -2)f n-1 and c n+1 are respectively proportional to -f n and 2f n , yielding the asymptotic relation:

(21) f n+1 ≃ -(3n + 5)f n .
Remarking that the dominant term in c n is 2f n-1 , one recovers the dominant asymptotic relation for c n , c n+1 ≃ -(3n + 2)c n , observed in [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF] and proved in [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF]. For h n , one obtains similarly the asymptotic relation

(22) h n+1 ≃ 3nh n .
This term is non-alternating and is the dominant contribution to the singularity of the Borel transform on the positive real axis. The ratio of the growth of f n and g n is in absolute value 1-5/3n. This translates in a ratio n -5/3 between the absolute values of these two contributions: this ratio coincides nicely with the numeric results and confirm the subleading character of the c n term in eq. ( 20).

6. The φ 3 6 model. In this case, one considers the action of ∂ L + ∂ 2 L on the Schwinger-Dyson equation. The left-hand side is then

(23) γ + γ(3a∂ a -1)γ,
and the right-hand side is based on the following Mellin transform:

(24) H(x, y) = Γ(2 + x)Γ(2 + y)Γ(1 -x -y) Γ(1 -x)Γ(1 -y)Γ(4 + x + y)
I approximate H with the contributions from the poles for x or y equal to -2 or -3 and the one for 1x-y = 0. For y = -2, the residue is (1x)(1-x/2) and is converted to (1+xy/2)(1+xy/4) not to mar the low order terms. For y = -3, the residue has two more factors and is

-(1 + x)(1 -x)(1 -x/2)(1 -x/3
). For 1x-y = 0, the residue is xy/12(1+ xy/2). We therefore will use the following approximation of H:

h(x, y) = (1 + xy 2 )(1 + xy 4 ) 1 2 + x + 1 2 + y - 1 2 -(1 - xy 3 )(1 + xy 3 )(1 + xy 6 )(1 + xy 9 ) 1 3 + x + 1 3 + y - 1 3 + 1 12 xy(1 + xy 2 ) 1 1 -x -y - 5 216 xy. (25) 
The last term in this equation adjust the coefficient of xy to the exact value, so that the cubic term in γ is exact. Most remarkably, this coefficient appears as the sum of the contributions from poles more distant from the origin, with poles in k + x giving negative contributions and the poles in kxy giving positive contributions. For the terms in x 2 y or xy 2 where both contributions add up, the remainder is larger.

For the asymptotic analysis, these additional terms do not matter. We need three functions in addition to the anomalous dimension γ, I 2 and I 3 as in the case of the linear Schwinger-Dyson equation and a function H associated to the term xy(1 + xy/2)/(1xy). We have similar equations for I 2 and I 3 than in the linear case:

2I 2 = 1 -γ(1 + 3a∂ a )I 2 , (26) 3I 3 = 1 -γ(1 + 3a∂ a )I 3 . (27) 
The recursion equation for H just has additional source terms with respect to the Wess-Zumino case, due to the more complex numerator:

(28) H = γ 2 + 1 2 γ 2 2 + γ(2 + 3a∂ a )H. Finally, using the approximate form of the Mellin transform (25) and neglecting terms divisible by (xy) 3 which are subdominant, one obtains the following equation:

γ + γ(3a∂ a -1)γ = a(2I 2 -1 2 ) + a 3 4 γ(2I 2 -1 -1 4 γ) + a 1 8 γ 2 (2I 2 -1 -1 2 γ) -a(2I 3 -1 3 ) -5 18 aγ(2I 3 -2 3 -1 9 γ) + 5 54 aγ 2 (2I 3 -2 3 -2 9 γ) + 1 12 aH -5 216 aγ 2 . ( 29 
)
This gives the first two non-zero coefficients of γ, c 1 = 1 6 , c 2 = -11 108 . The dominant contribution for c n+1 comes from the second term of the left-hand side and is proportional to n/2. The dominant terms for I 2 and I 3 are in fact exactly the same than in the case of the linear Schwinger-Dyson equation, since the changes from 2n to 3n in the recursions for c n and in equations (26,27) have compensating effects. Eq. ( 9) remains valid at the dominant level. At the next to leading order, we have therefore:

(30) c n+1 ≃ -(3n + 1)(c 1 c n + c 2 c n-1 ) + 2d n -2f n ≃ -( n 2 + 13 9 )c n .
The recursion operation for H (28) will differ from the Wess-Zumino case through the values of the first coefficients of γ. The source terms are not important for the non-alternating component of H. We obtain (31)

h n+1 ≃ 1 6 (3n + 2)h n - 11 108 (3n -1)h n-1 ≃ ( n 2 - 5 18 )h n .
The absolute values of the factors in the recursions for h n and c n are in the ratio 1 -31/(9n), meaning that the absolute value of h n is smaller by a power 31/9 = 3, 444 . . . of n than c n . Compounded with the fact that h n intervenes only in c n+1 , this non-alternating component in c n could easily have been missed in a numerical study. In a sense, the situation is even worse, since the γ 2 term in equation (28) will give a larger contribution, so that h n itself is dominated by this alternating component. However, this is not really a problem since the asymptotic recurrence relations are linear and the full solution will be a superposition of the particular solution proportional to c n-1 and a solution of the equation (31).

Conclusion.

In this work, the solution of Schwinger-Dyson equations for propagators has made a new step forward: I reach not only the leading asymptotic behavior of the perturbative terms, but the subleading, "wrong sign" contribution, as well as systematic corrections in powers of 1/n. These computations can be made easily more precise through the inclusion of additional poles of the Mellin transform or the adjunction of a few monomials: a suitable combination of the two methods should allow to obtain the solution of the Schwinger-Dyson equations with very high precision for a fraction of the computational cost of the methods of [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF]. However, such a full precision computation is not really useful since the Schwinger-Dyson equations I consider here are but the first approximation to the full system of Schwinger-Dyson equations.

In the computation of higher order corrections to the Schwinger-Dyson equations, the power of the present methods should be precious. Indeed, in a higher loop primitively divergent diagram, the number of individual propagators is higher and the full evaluation through the straightforward methods of [START_REF] Bellon | Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras[END_REF], much more complex. For a Mellin transform in k variables, the number of different derivatives up to total order n scales as n k-1 , with the evaluation of each of these terms at perturbative order 2n again implying approximatively n k-1 operations. Some time for space bartering could reduce somewhat this growth by reusing partial products, but in any case, this complexity would make any computation, whether explicit or asymptotic, very complex, even if the evaluation of the derivatives were not difficult per se.

In the approach presented here, the situation is much more manageable: the pole structure of the Mellin transform, which is linked to the divergences of subdiagrams, is of the form analyzed in section 4 and their contributions can be computed in linear time. Furthermore, one can identify the residues which are important for the asymptotic behavior of the perturbative series and focus the analytical evaluations on them. This will be the subject of a forthcoming publication [START_REF] Marc | Higher loop corrections to Schwinger-Dyson equations[END_REF]. If, up to now, these works have dealt only with Schwinger-Dyson equations for propagators, the efficiency of the methods introduced here should be important in the more challenging cases of systems including Schwinger-Dyson equations for vertices.

In the spirit of [START_REF] Marc | Approximate Differential Equations for Renormalization Group Functions in Models Free of Vertex Divergencies[END_REF], we could also deduce systems of differential equations for the anomalous dimension and some auxiliary functions, with the hope of obtaining information on the asymptotic behavior of the anomalous dimension at large coupling. However, the singularity of the Borel transform on the positive axis indicates that the Borel resummation is not uniquely defined. It is therefore a challenge to determine whether such a system of differential equations, which would be determined from purely perturbative considerations, can be given a non-perturbative meaning.