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We consider the problems of scheduling independent jobs, when a subset of jobs has its own objective

function to minimize. The performance of this subset of jobs is in competition with the performance of

the whole set of jobs and compromise solutions have to be found. Such a problem arises for some practical

applications like ball bearing production problems. This new scheduling problem is positioned within the

literature and the differences with the problems with competing agents or with interfering job set problems

are presented. Classical and regular scheduling objective functions are considered and ε-constraint approach

and linear combination of criteria approach are used for finding compromise solutions. The study focus on

single machine and identical parallel machine environments and for each environment, the complexity of

several problems is established and some dynamic programming algorithms are proposed.
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1. Introduction

Generally in scheduling literature, the quality of a schedule is given by a measure applied to the

whole set of jobs. Indeed, classical models consider all jobs as equivalent and that the quality of the

global schedule is given by applying the same measure to all jobs without distinction. For instance,

the measure may be the maximum completion time of jobs (makespan), the total flow time of jobs

or a measure related to the tardiness like maximum tardiness, total number of tardy jobs, etc.

Introducing distinctions between jobs is generally done by the means of weights. However, in this

case the same measure is still applied to all the jobs in order to quantify the quality of a schedule.

For instance it can be the total weighted completion time, the total weighted tardiness or the

weighted number of tardy jobs.

In a real context, these models are not always reliable. In some practical situations, it can
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be necessary to consider several aspects of the schedule. For instance, both the mean flow time

(equivalent to the total completion time) and the respect of due dates can be of similar importance

for the decision maker. In such cases, more than one objective function is defined and the scheduling

problem enters the field of multicriteria scheduling T’kindt and Billaut (2006) and Hoogeveen

(2005). But again, each objective function is applied to the whole set of jobs.

In some cases, it may happen that the jobs are not equivalent and that applying the same

measure to all the jobs is not relevant. For instance, it is possible to consider a workshop where

jobs have the following particularities: some jobs may have a soft due date with allowed tardiness

(to be minimized); whereas some other jobs may have hard due dates (that must be respected)

and other jobs may have no due date (production for stock). For the first type of job, the decision

maker wants to minimize the maximum delay, for the second type he imposes that there must be

no delayed jobs and for the last type of job he wants to minimize the total flow time. These jobs

are assessed according to different objectives, but these jobs are in competition for the use of the

machines. This is a multicriteria scheduling problem where a new type of compromise has to be

obtained. These problems are called in the literature “interfering job sets” Balasubramanian et

al. (2009), “multi-agent scheduling” Agnetis et al. (2000), Cheng et al. (2006) or “scheduling with

competing agents” Agnetis et al. (2004). In all these studies, the authors consider a partition of

the set of jobs, each subset having its own objective function to optimize.

We consider in this paper a different problem where the performance of the whole set of jobs

has to be minimized, subject to a given performance for a subset of jobs on another objective

function. Such a problem may appear in real life situations. For instance, SKF MDGBB (Medium

Deep Groove Ball Bearings) factories are workshops composed of parallel machines (see Pessan et

al. (2008a,b)). The objective is related to the minimization of the flow time criterion (maximizing

the number of items produced) and concerns the whole set of jobs, denoted by N . Generally, the

jobs to produce daily exceed the production capacity. In order to impose the production of the

remaining jobs (say N1 ⊂N ) during the next day, another performance measure has to be applied,

which is the minimization of the number of tardy jobs (or any other due date related measure).
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The measure concerning N is the total completion time minimization but the number of tardy jobs

among N1 cannot exceed a given threshold. Another example can be found in shampoo packing

systems (Mocquillon et al. (2006)). Shampoo are delivered daily and stored in dedicated storage

area with limited capacity. The problem is to pack shampoo of different types into bottles. A

global objective is to maximize the production (reducing the setup times). At the same time, future

deliveries are known in advance. Thus, each type of product has to be produced daily so that

its quantity never exceeds its storage area. This is a typical problem where the global objective

concerns all the products and where the subset of products are evaluated with another objective.

The rest of the paper is organized as follows. In Section 2 the problem is defined and the

notations are introduced. The state-of-the-art survey is presented and the interest of the study

in comparison with the other models of interfering jobs is proved. Section 3 deals with the single

machine problems: some polynomially solvable cases and some NP-hard problems are identified.

The section terminates with some open problems. Section 4 deals with parallel machine problems.

Some complexity results are given and a general dynamic programming formulation offering optimal

problem solutions is given. This general DP algorithm is presented for some two-parallel machine

problems. The paper is concluded in Section 5.

2. Preliminaries

2.1. Problem definition and notations

A set N of n jobs has to be scheduled on a single machine or on m identical parallel machines

(m≥ 2). We assume that all the jobs are available at time 0; preemption is not allowed; processing

times are known, deterministic and integer, pj denotes the processing time of job j, 1 ≤ j ≤ n;

machines are always available and can process only one job at a time.

N1 denotes a subset of N . We denote by n1 the number of jobs in N1. These jobs are numbered

from 1 to n1. The remaining jobs of N are numbered from n1 + 1 to n. One objective function is

associated toN and the other one is associated toN1. We denote by Cj the completion time of job j.

∑

Cj is the total flow time and
∑

wjCj is the total weighted flow time. Cmax denotes the maximum
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completion time (makespan) and Lmax denotes the maximum lateness Lmax = max1≤j≤n(Cj − dj).

In the following, Uj is equal to 1 if job j is tardy, and 0 otherwise.
∑

Uj denotes the number of

tardy jobs and
∑

wjUj the weighted number of tardy jobs.

We denote by Z(S) the measure Z applied to the set S of jobs. Referring to the three-field

notation for multicriteria scheduling in T’kindt and Billaut (2006) we consider the following two

types of objective functions:

• ε
(

Z1(S)/Z2(S
′)
)

denotes the ε-constraint approach, i.e. the minimization of Z1(S) subject to

the constraint that Z2(S
′) ≤ ε (with (S,S ′) ∈ {(N ,N1), (N1,N )}). In the following, we consider

that the objective is to minimize an objective function on N subject to a bound on the objective

function on N1: ε
(

Z1(N )/Z2(N1)
)

. Notice that if the two objective functions are bounded, we are

in the case of goal programming approaches. The decision problem associated to the ε-constraint

version of an optimization problem and the decision problem associated to the goal programming

version are the same.

• Fℓ

(

Z1(S),Z2(S
′)
)

denotes the linear combination of Z1(S) and Z2(S
′).

2.2. State-of-the-art survey

The literature contains very few results on these scheduling problems. In HuynhTuong et al. (2008)

the authors consider a two-machine flow shop with interfering jobs. The objective is the mini-

mization of the makespan subject to the constraint that the completion time of the last job of

N1 does not exceed a given bound. The problems are denoted by F2||ε
(

Cmax(N )/Cmax(N1)
)

and

F2||ε
(

Cmax(N1)/Cmax(N )
)

. The problem is proved ordinary NP-hard and the authors propose a

pseudo-polynomial time dynamic programming algorithm for the determination of a non domi-

nated solution. Notice that this problem is more general than the multi-agent scheduling problem

presented in Agnetis et al. (2004) and that their algorithm can also solve this problem. Schedul-

ing interfering jobs on parallel machines is presented in Soukhal et al. (2008). In this paper, the

authors minimize the total completion time of the jobs of N subject to a bound on the total

completion time of the jobs of N1. The authors show that the problem is ordinary NP-hard and



Huynh Tuong et al.: New scheduling problems with interfering and independent jobs

Article submitted to Journal of Scheduling; manuscript no. (Please, provide the mansucript number!) 5

propose a pseudo-polynomial time dynamic programming algorithm for finding a non-dominated

solution. In Agnetis et al. (2000), the authors consider a two-job job shop scheduling problem

with two subsets of jobs N1 and N2, one job per subset (N1∪N2 =N , N1∩N2 = ∅ in the following).

They give a polynomial time algorithm for finding compromise schedules to simplify negotiations

between agents. In Agnetis et al. (2004) the authors consider the single machine, flow shop and

open shop problems with two subsets of jobs N1 and N2. They consider the minimization of an

objective function for one subset of jobs subject to a bound for the other subset of jobs. They give

some complexity results and dynamic programming algorithms for the single machine problem.

The single machine problem is also considered in Baker and Smith (2003). The authors

consider several regular objective functions (Cmax,
∑

wjCj,Lmax) and propose an algorithm for the

minimization of a linear combination of the objective functions. Complexity results are given and

some polynomially solvable cases are identified. Yuan et al. (2005) propose some complementary

results on these problems. Figure 1 summarizes the results presented in Baker and Smith (2003)

and Yuan et al. (2005).

In Cheng et al. (2006) the authors consider a single machine problem with m disjoint subsets

of jobs N1, . . . ,Nm (∪m
i=1Ni =N ). To each job is associated a deadline. Each subset is measured

by the total number of tardy jobs. The authors consider a goal programming problem that can

be denoted by 1||GP
(
∑

wjUj(N1), . . . ,
∑

wjUj(Nm)
)

or 1|
∑

wjUj(N1) ≤ ε1, . . . ,
∑

wjUj(Nm) ≤

εm|−. The authors prove that the problem is strongly NP-hard. When the number of agents (m)

is fixed they show that the problem can be solved in pseudo-polynomial time and give a fully

polynomial approximation scheme. If additionally the weights are equal to 1, the problem can

be solved in polynomial time. In Cheng et al. (2008) the authors consider the single machine

multi-agent scheduling problem with m objective functions of type min-max. The authors consider

the same goal programming approach and prove that the feasibility problem can be solved in

polynomial time, even if jobs are subject to precedence constraints. The authors show that the

problems 1||
∑m

i=1

(

Lmax(Ni)
)

, 1||
∑m

i=1

(

Tmax(Ni)
)

and 1||
∑m

i=1

(
∑

wjCj(Ni)
)

are NP-hard. Some

polynomially solvable cases are identified. In Agnetis et al. (2007), the authors consider the single
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machine two-agent scheduling problems indicated in Figure 1. Two approaches are considered: (1)

the “decision problem” to find a solution such that all the criteria are bounded (goal programming

approach denoted by GP ) and (2) the “Pareto-optimization problem” where the aim is to find the

set of all non-dominated solutions (denoted by “#” in T’kindt and Billaut (2006)). Some results

are also given for some single machine multi-agent scheduling problems.

Problem Complexity Reference

1||Fl

(

Cmax(N1),Cmax(N2)
)

Polynomial Baker and Smith (2003)
1||Fl

(

Lmax(N1), Lmax(N2)
)

Polynomial Baker and Smith (2003),Yuan et al. (2005)
1||Fl

(
∑

wjCj(N1),
∑

wjCj(N2)
)

Polynomial Baker and Smith (2003)
1||Fl

(

Cmax(N1), Lmax(N2)
)

Polynomial Baker and Smith (2003)
1||Fl

(

Cmax(N1),
∑

wjCj(N2)
)

Polynomial Baker and Smith (2003)
1||Fl

( ∑

Cj(N1), Lmax(N2)
)

Polynomial Yuan et al. (2005)
1||Fl

(
∑

wjCj(N1), Lmax(N2)
)

Strongly NP-hard Baker and Smith (2003)
1||Fl

(

Cmax(N1), Lmax(N2),
∑

wjCj(N3)
)

Strongly NP-hard Baker and Smith (2003)
1||

∑

i

(

Lmax(Ni)
)

Binary NP-Hard Cheng et al. (2008)
1||

∑

i

(

Tmax(Ni)
)

Binary NP-Hard Cheng et al. (2008)
1||

∑

i

(

maxwjCj(Ni)
)

Strongly NP-Hard Cheng et al. (2008)
1||ε

(

fmax(N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)
1||ε

(∑

wjCj(N1)/Cmax(N2)
)

Binary NP-Hard Agnetis et al. (2004)
1||ε

(∑

wjCj(N1)/Lmax(N2)
)

Strongly NP-Hard Ng et al. (2006)
1||ε

(
∑

wjCj(N1)/
∑

Uj(N2)
)

Strongly NP-Hard Ng et al. (2006)
1||ε

(
∑

Cj(N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)
1||ε

(
∑

Uj(N1)/fmax(N2)
)

Polynomial Agnetis et al. (2004)
1||ε

(
∑

Uj(N1)/
∑

Uj(N2)
)

Polynomial Agnetis et al. (2004)
1||ε

(
∑

Cj(N1)/
∑

Uj(N2)
)

Open*
1||ε

(
∑

wjCj(N1)/
∑

Uj(N2)
)

Binary NP-Hard Agnetis et al. (2004)
1||ε

(∑

Cj(N1)/
∑

Cj(N2)
)

Binary NP-Hard Agnetis et al. (2004)
F2||ε

(

Cmax(N1)/Cmax(N2)
)

Binary NP-Hard Agnetis et al. (2004),HuynhTuong et al. (2008)
O2||ε

(

Cmax(N1)/Cmax(N2)
)

Binary NP-Hard Agnetis et al. (2004)
1||GP

(

fmax(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||GP

(
∑

wjCj(N1), fmax(N2)
)

Binary NP-hard Agnetis et al. (2007)
1||GP

(
∑

Cj(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||GP

(
∑

Uj(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||GP

(
∑

Uj(N1),
∑

Uj(N2)
)

Polynomial Agnetis et al. (2007)
1||GP

(∑

Cj(N1),
∑

Uj(N2)
)

Open
1||GP

(∑

wjCj(N1),
∑

Uj(N2)
)

Binary NP-hard Agnetis et al. (2007)
1||GP

(∑

Cj(N1),
∑

Cj(N2)
)

Binary NP-hard Agnetis et al. (2007)
1||GP

(
∑

Uj(N1), . . . ,
∑

Uj(Nm)
)

Polynomial Cheng et al. (2006)
1||GP

(
∑

wjUj(N1), . . . ,
∑

wjUj(Nm)
)

Binary NP-hard Cheng et al. (2006)
1||GP

(
∑

wjUj(N1), . . . ,
∑

wjUj(Ni), . . .
)

Strongly NP-hard Cheng et al. (2006)
1||#

(

fmax(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(
∑

wjCj(N1), fmax(N2)
)

Exponential Agnetis et al. (2007)
1||#

(
∑

Cj(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(∑

Uj(N1), fmax(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(∑

Uj(N1),
∑

Uj(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(∑

Cj(N1),
∑

Uj(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(
∑

wjCj(N1),
∑

Uj(N2)
)

Polynomial Agnetis et al. (2007)
1||#

(
∑

Cj(N1),
∑

Cj(N2)
)

Exponential Agnetis et al. (2007)
J |n = 2|#

(

g(N1), g(N2)
)

Polynomial Agnetis et al. (2000)

- with fmax a regular function of type maxj(fj(Cj))
- with g a non regular function
(*) The problem is NP-Hard under high multiplicity encoding Ng et al. (2006)

Figure 1 Some complexity results on multi-agent scheduling problems
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2.3. Interest of the study

We denote by F the optimization problem with two objective functions f1(N1) and f2(N2) con-

cerning two disjoint job sets N1 and N2 (N1 ∩ N2 = ∅ and N1 ∪ N2 = N ). We denote by G the

optimization problem with two objective functions g1(N ) on the whole set of jobs and g2(N1) on N1

(N1⊂N ). If f1 is of the type min-sum it is denoted by sf1 and by mf1 if it is of the type min-max

(same notation for f2, g1 and g2). We have sf1 ∈ {
∑

Cj,
∑

wjCj ,
∑

Tj,
∑

wjTj ,
∑

Uj ,
∑

wjUj} and

mf1 ∈ {Cmax,Lmax, Tmax} (the same for f2, g1 and g2).

We are going to explain the difference between problems F and G. We distinguish in this sec-

tion two possible approaches: the minimization of a linear combination and a goal programming

approach (same decision problem as for the ε-constraint approach).

Notice that we have sg1(N ) = sg1(N1) + sg1(N2) and mg1(N ) = max(mg1(N1),mg1(N2)).

We have the following (simple) preliminary results: if f1 6≡ g2 (’f1 not similar to g2’, i.e. sf1 6= sg2

if they are of type min-sum and mf1 6= mg2 if they are of type min-max) or f2 6≡ g1 then problems F

and G are not comparable. Furthermore, if f2 is of the type mf2, then F and G are not comparable.

In the following, we assume that f1 ≡ g2 (sf1 = sg2 or mf1 = mg2) and sf2 = sg1.

There remain only two cases to consider:

1. sf1 = sg2 and sf2 = sg1

2. mf1 = mg2 and sf2 = sg1

We distinguish the linear combination of criteria and the goal programming approach.

• Case of a linear combination approach for sf1 = sg2 and sf2 = sg1.

The objective function of problem F is Min Z = α
∑

f1(N1) + β
∑

f2(N2) and for problem G

Min Z ′ = α′
∑

g1(N )+β′
∑

g2(N1) = α′
∑

f2(N )+β′
∑

f1(N1). Thus, we have Z ′ = α′
∑

f2(N2)+

α′
∑

f2(N1) + β′
∑

f1(N1). If sf1 and sf2 are not identical, it is not possible to compare the

objective functions and problems are not comparable. However, if sf1 = sf2 (and thus = sg2 = sg1),

then Z ′ = α′
∑

f1(N2) + (α′ +β′)
∑

f1(N1). In this particular case, the problems are equivalent, a

procedure for solving F or G can solve the other problem.
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• Case of a goal programming approach for sf1 = sg2 and sf2 = sg1.

Problem F is to find a solution S such that
∑

f1(N1) ≤ ε1 and
∑

f2(N2) ≤ ε2. Problem G is

to find a solution S′ such that
∑

f2(N1) +
∑

f2(N2) ≤ ε′1 and
∑

f1(N1) ≤ ε′2. We show that the

problems are never comparable. If we have sf2 6= sf1, then
∑

f2(N1) +
∑

f2(N2) is related to

∑

f2(N1), which is not taken into account in problem F .

Then, F and G are not comparable. We consider now the case where sf2 = sf1 = sg2 = sg1.

It is clear that if ε1 6= ε′2 or ε′1 6= ε1 + ε2, then F and G are not comparable. When ε1 = ε′2 and

ε′1 = ε1 + ε2, if S is a solution to problem F , it is also a solution to problem G. But the reverse is

not true and is proved by the following instances:

— if sf =
∑

j Cj: N = 1,2,3, N1 = 1,2, N2 = 3, p1 = 1, p2 = 2, p3 = 3, ε1 = 8, ε2 = 3 (ε1 + ε2 =

11). G has a feasible solution S′ = (1,3,2) with
∑

j Cj(N1) = 7 and
∑

j Cj(N ) = 11. However, F has

no feasible solution. As a consequence, the reverse is not true for any sf ∈ {
∑

wjCj,
∑

Tj,
∑

wjTj}.

— if sf =
∑

j Uj : N = 1,2,3, N1 = 3, N2 = 1,2, p1 = 1, p2 = 2, p3 = 3, d1 = d2 = d3 = 1, ε1 = 2,

ε2 = 0 (ε1 + ε2 = 2). G has a feasible solution S′ = (1,3,2) but F has no feasible solution. As a

consequence, the reverse is not true for sf =
∑

wjUj .

So, these problems are not comparable.

• Case of a linear combination approach for mf1 = mg2 and sf2 = sg1.

The objective function of F is Min Z = αmaxf1(N1)+β
∑

f2(N2) and for problem G Min Z ′ =

α′
∑

f2(N ) + β′ maxf1(N1) = (α′
∑

f2(N2) + β′ maxf1(N1)) + α′
∑

f2(N1). The term
∑

f2(N1) is

not considered in the objective function of problem F , thus problems are not comparable.

• Case of a goal programming approach for mf1 = mg2 and sf2 = sg1.

Problem F is to find a solution S such that maxf1(N1)≤ ε1 and
∑

f2(N2)≤ ε2. Problem G is to

find a solution S′ such that
∑

f2(N1) +
∑

f2(N2)≤ ε′1 and maxf1(N1)≤ ε′2. For the same reason,

problems F and G are not comparable.

Hence, problems F and G are equivalent if and only if Z1,Z2,Z3 and Z4 are the same and of the

type min-sum and if the multicriteria approach is a linear combination of criteria.
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Furthermore, ifN1 =N , the problem is a classical multicriteria scheduling problem, which implies

that this model is more general. In all the other cases, the problems are not comparable.

3. Single machine problems

In this section, we consider the case of a single machine environment. We first present some poly-

nomially solvable problems, and then some NP-hard problems.

3.1. Polynomially solvable problems

Proposition 1. The following problems can be solved in polynomial time:

1. Problems 1||Fℓ

(

Cmax(N ),Cmax(N1)
)

and 1||ε
(

Cmax(N )/Cmax(N1)
)

2. Problem 1||Fℓ

(

Cmax(N ),Lmax(N1)
)

and 1||ε
(

Cmax(N )/Lmax(N1)
)

3. Problem 1||Fℓ

(

Cmax(N ),
∑

wjCj(N1)
)

and 1||ε
(

Cmax(N )/
∑

wjCj(N1)
)

4. Problem 1||Fℓ

(
∑

wjCj(N ),
∑

w′
jCj(N1)

)

Proof. Problems 1 are trivial since it is sufficient to schedule the jobs of N1 first in an arbitrary

order and the remaining jobs arbitrarily. Similarly, problems 2 are trivial since it is sufficient to

schedule the jobs of N1 first in EDD order and problems 3 are trivial since it is sufficient to schedule

the jobs of N1 first in WSPT order. Remember that problems 1||Fℓ

(

Cmax(N1),
∑

wjCj(N2)
)

and

1||ε
(

Cmax(N1)/
∑

wjCj(N2)
)

are NP-hard (Baker and Smith (2003), Yuan et al. (2005), Agnetis

et al. (2004)). Problem 4 is also trivial (see Baker and Smith (2003) and Section 2.3). �.

According to the results presented in Baker and Smith (2003), Yuan et al. (2005) and Cheng et

al. (2008), we can deduce the complexity of the following scheduling problems.

Proposition 2. The following problems can be solved in polynomial time:

• Problem 1||Fℓ

(
∑

Cj(N ),Cmax(N1)
)

and 1||ε
(
∑

Cj(N )/Cmax(N1)
)

• Problem 1||Fℓ

(

Lmax(N ),Cmax(N1)
)

and 1||ε
(

Lmax(N )/Cmax(N1)
)

• Problem 1||Fℓ

(

Lmax(N ),Lmax(N1)
)

and 1||ε
(

Lmax(N )/Lmax(N1)
)

Proofs.
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• Problem 1||Fℓ

(
∑

Cj(N ),Cmax(N1)
)

is polynomial.

An optimal solution always exists with the jobs in N1 and the jobs in N \ N1 sequenced in

WSPT order. Furthermore, for the makespan objective, only the completion time of the last job

of N1 has to be considered. Thus, the jobs before the last job of N1 are sequenced in SPT order,

whether they belong to N1 or not. Let us suppose that the jobs of N1 in SPT are numbered as

follows: {1,2, . . . , n1} and the jobs of N \N1 are {n1 +1, n1 +2, . . . , n}. We evaluate the sequences

SPT (N1∪{n1 +1, . . . , j})//SPT ({j +1, j +2, . . . , n}) for all j ∈ {n1 +1, n1 +2, . . . , n} (a//b stands

for the concatenation of a and b). The best sequence is the optimal solution of the problem. This

algorithm can be implemented in O(n log(n)).

• Problem 1||ε
(
∑

Cj(N )/Cmax(N1)
)

is polynomial.

If PN1 =
∑

Jj∈N1
pj < ε, there is no feasible solution. Otherwise, an optimal solution can be

obtained by the following two-step algorithm:

1. determine the initial solution by ordering the jobs of N in SPT order

2. move the last jobs in N1 on the left so that the new solution satisfies the ε-constraint.

The complexity is bounded by O(n logn).

• Problem 1||Fℓ

(

Lmax(N ),Cmax(N1)
)

and 1||ε
(

Lmax(N )/Cmax(N1)
)

are polynomial.

In the same way, the jobs are sorted in EDD order and all the sequences EDD(N1 ∪ {n1 +

1, . . . , j})//EDD({j +1, j +2, . . . , n}) for all j ∈ {n1 +1, n1+2, . . . , n} are tested. The best sequence

gives an optimal solution.

• Problems 1||Fℓ

(

Lmax(N ),Lmax(N1)
)

and 1||ε
(

Lmax(N )/Lmax(N1)
)

are polynomial.

There exists an optimal solution such that the jobs of N1 are sorted in EDD order and the jobs

of N \N1 are sorted in EDD order.

We introduce the following notations: P(i,j) =
∑i

k=1 pk +
∑j

k=n1+1 pk. We consider that L corre-

sponds to Lmax(N1). Furthermore, we assume that the jobs are numbered according to EDD rule,

that is: d1 ≤ d2≤ . . .≤ dn1
on the one hand and dn1+1≤ . . .≤ dn on the other hand.

The objective function to minimize is F (i, j,L) = Lmax(N ). In the following, L denotes the set

of possible Lmax(N1) values (|L| ≤ n1 × n2 = n2, Yuan et al. (2005)). We define F (0, n1,0) = 0,
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F (i, j,L) = +∞, ∀(i, j,L) 6= (0, n1,0). Let consider now the triplet F (i, j,L):

— if job i+1 is inserted, triplet F (i+1, j,max(L,P(i,j)) is then updated:

F (i+1, j,max(L,P(i,j)))←min
(

F (i+1, j,max(L,P(i,j)));max(F (i, j,L);P(i,j)− di)
)

—if job j +1 is inserted, triplet F (i, j +1,max(L,P(i,j)) is then updated:

F (i+1, j,L))←min
(

F (i, j +1,L);max(F (i, j +1,L);P(i,j)− dj)
)

For the problem of minimizing αLmax(N ) +βLmax(N1)
)

, the optimal solution corresponds to

minL∈L αF (n1, n,L) +βL

For the problem of minimizing Lmax(N ) with Lmax(N1)≤ ε, the optimal solution corresponds to

minL∈L,L≤ε F (n1, n,L)

The overall running time to find an optimal solution is bounded by O(n4). �

3.2. NP-hard problems

Proposition 3. The following problem is ordinary NP-hard: 1||ε(
∑

wjCj(N )/Cmax(N1)).

Proof. We denote by WCCM the decision problem associated to 1||ε
(
∑

wjCj(N )/Cmax(N1)
)

.

This problem is defined by:

WCCM

Data: A set N of n jobs, a subset N1 ⊂N , processing times pj and a weight wj for each job j,

1≤ j ≤ n, two integer values Y and Y1.

Question: Is there a single machine schedule σ for N such that
∑

j∈N wjCj ≤ Y and maxj∈N1
Cj ≤

Y1?

We prove that PARTITION ∝ WCCM.

PARTITION

Data: Finite setA of r elements a1, a2, . . . , ar, with integer sizes s(ai), ∀i,1≤ i≤ r,
∑r

i=1 s(ai) = 2B.

Question: Is there a subset A1 of indices such that
∑

i∈A1
s(ai) =

∑

i∈{1,2,...,r}\A1
s(ai) = B?

Given an arbitrary instance of PARTITION, we construct an instance of WCCM as follows:

• N = {1,2, ..., r +1}, N1 = {r +1},

• for j ∈ {1,2, ..., r}: pj = wj = s(aj); pr+1 = 2B, wr+1 = 1,
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• Y = 6B2 +4B− 1 and Y1 = 3B,

(⇒) Given a feasible solution to PARTITION, we can define a solution to WCCM by sequencing

a subset of jobs corresponding to A1 before job r+1, the jobs corresponding to A\A1 are scheduled

after job r +1. This schedule satisfies the conditions and the answer to problem WCCM is ’yes’.

(⇐) If there exists a feasible solution to problem WCCM, then:

1. maxj∈N1
Cj ≤ Y1 ⇔

∑

j∈A1
pj + pr+1 ≤ Y1 ⇔

∑

j∈A1
s(aj)≤B

2.
∑

j∈N wjCj ≤ Y

⇔ (
∑

j∈N\N1
pj)(

∑

j∈N\N1
wj) +wr+1(

∑

j∈A1
pj + pr+1) + pr+1(

∑

j∈N\(N1∪A1) wj)≤ Y

⇔ 4B2 +wr+1(2B−
∑

j∈A1
pj) + pr+1wr+1 + pr+1(

∑

j∈N\(N1∪A1) wj)≤ Y

⇔ (pr+1−wr+1))(
∑

j∈A\A1
s(aj))≤ Y − 4B2− 2Bwr+1− pr+1wr+1 = Y − 4B2− 3B− 1

⇔
∑

j∈A\A1
s(aj)≤B

Because
∑

j∈A s(aj) = 2B, we have
∑

j∈A1
s(aj) = B and

∑

j∈A\A1
s(aj) = B and the answer to

PARTITION is ’yes’. �

Proposition 4. The following problems are strongly NP-hards: 1||ε
(
∑

wjCj(N )/Lmax(N1)
)

;

1||ε
(

Lmax(N )/
∑

wjCj(N1)
)

; 1||Fℓ

(
∑

wjCj(N ),Lmax(N1)
)

; 1||Fℓ

(

Lmax(N ),
∑

wjCj(N1)
)

.

Proof. For the two first problems, the result can be obtained by using the instance defined by

Lawler Lawler (1977) for problem 1||
∑

wjTj and the sketch of the proof for Theorem 2.2 in Ng et

al. (2006).

• Problem 1||Fℓ

(

Lmax(N ),
∑

wjCj(N1)
)

is strongly NP-Hard.

The decision version of this problem is given by the following problem, denoted LMWC.

LMWC

Data: A set N of n jobs; a subset N1 ⊂N ; processing times pj for each job j, 1≤ j ≤ n and due

dates dj if j ∈N1; a, b and y are real values.

Question: Does a schedule σ exist such that aLmax(N ) + b
∑

wjCj(N1)≤ y ?

It is clear that problem LMWC is in the class NP. We next prove that LMWC is NP-complete

in the strong sense by a reduction from 3-PARTITION (Garey and Johnson (1979)).

Given an instance of 3-PARTITION, we construct an instance of the LMWC problem as follows:
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—N = {1,2, . . . ,4r +1}, N1 = {1,2, . . . ,3r}, Pn =
∑4r+1

j=1 pj

—for j ∈ {1,2, . . . ,3r}: pj = wj = aj and dj = Pn,

— for j ∈ {3r +1,3r +2, . . . ,4r +1}: pj = B and dj = (2(j− 3r)− 1)B,

— y = 1
2
B2r(r +1) +

∑3n

i=1

∑i

j=1 aiaj,

—a = 2y and b = 1.

Figure 2 An optimal sequence σ of 1||Fℓ

(

Lmax(N ),
∑

wjCj(N1)
)

Because of the definition of coefficient a, Lmax(N ) has to be smaller than or equal to 0. Because

job 3r+1 has a duration and a due date equal to B, this job has to start at time 0. Thus, in what

follows, Lmax(N ) = 0 and the jobs j ∈ {3r +1,3r +2, . . . ,4r +1} cannot be tardy.

(⇒) Suppose that 3-PARTITION has a ’yes’ answer which partition the set A into r disjoint

subsets Aj (1≤ j ≤ r). Then we construct the following solution to the LMWC problem. We form

r blocks, where jth block contains job 3r+ j followed by the jobs corresponding to the elements in

Aj, which we process contiguously in this order. The last job of the sequence is job 4r + 1, which

completes at time Pn.

It can easily be established that the maximum lateness is equal to 0 and that the weighted

completion time of jobs in N1 is equal to
∑r−1

k=0 B2(r−k)+
∑3r

i=1

∑i

j=1 aiaj = y. Thus, aLmax(N )+

b
∑

wjCj(N1) = y which means that LMWC has also a ’yes’ answer.

(⇐) Suppose now that LMWC has a ’yes’ answer, we denote by σ a feasible solution. The

maximum lateness of σ is equal to 0. Each job j ∈N \N1 is early, we are going to prove that all

these jobs complete at their due date.

Define Hj (j = 1, . . . , r) as the jobs in N1 that are processed between jobs 3r + j and 3r + j +1.

We use p(Hj) and w(Hj) as a short-hand notation for the total processing time and the total weight



Huynh Tuong et al.: New scheduling problems with interfering and independent jobs

14 Article submitted to Journal of Scheduling; manuscript no. (Please, provide the mansucript number!)

of the jobs in Hj, respectively. The total weighted completion time of the jobs in N1 according to

σ,
∑

wjCj(N1), is then equal to
∑3r

i=1

∑i

j=1 aiaj +B
∑r

j=1 jw(Hj).

Since job 3r +2 is completed by its due date, p(H1)≤B. Similarly, since job 3r +3 is completed

by its due date, we have p(H1) + p(H2)≤ 2B. Extending this reasoning, we find that

rp(H1) + (r− 1)p(H2) + . . .+ p(Hr)≤
∑r

i=1 iB = Br(r +1)/2

⇔ (r +1)[p(H1) + p(H2) + . . .+ p(Hr)]−
∑r

j=1 jp(Hj)≤Br(r +1)/2

⇔ (r +1)[rB]−
∑r

j=1 jp(Hj)≤Br(r +1)/2

⇔Br(r +1)−Br(r +1)/2≤
∑r

j=1 jp(Hj)

⇔Br(r +1)/2≤
∑r

j=1 jp(Hj) ⇔Br(r +1)/2≤
∑r

j=1 jw(Hj) (1) since w(Hj) = p(Hj).

On the other hand, we have:

aLmax(N ) + b
∑

wjCj(N1)≤ y

⇔
∑

wjCj(N1)≤
1
2
B2r(r +1) +

∑3n

i=1

∑i

j=1 aiaj

⇔
∑3r

i=1

∑i

j=1 aiaj +B
∑r

j=2 jw(Hj)≤
∑3n

i=1

∑i

j=1 aiaj + 1
2
B2r(r +1)

⇔
∑r

j=1 jw(Hj)≤Br(r +1)/2 (2)

From (1) and (2) we deduce that:

⇔
∑r

j=1 jp(Hj) = Br(r +1)/2

Because ∀j ∈ {1, . . . , r}, p(H1)+ . . .+ p(Hj)≤ jB we can deduce that ∀j ∈ {1, . . . , r}, p(Hj) = B.

Hence, the partitioning of A into H1, . . . ,Hr yields a yes-instance to 3-PARTITION. This completes

the proof. �

• Problem 1||Fℓ

(
∑

wjCj(N ),Lmax(N1)
)

is strongly NP-hard.

The decision version of this problem is given by the following problem, denoted WCLM.

WCLM

Data: a set N of n jobs; a subset N1 ⊂N , processing times pj for each job j, 1≤ j ≤ n and due

dates dj if j ∈N1; a, b and y real numbers.

Question: Does a schedule σ exist such that a
∑

wjCj(N ) + bLmax(N1)≤ y ?

It is clear that problem WCLM is in NP. We next prove that WCLM is NP-complete in the

strong sense by a reduction from 3-PARTITION, which is known to be NP-complete in the strong
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sense (Garey and Johnson (1979)).

3-PARTITION

Data: an integer B and a set A = {a1, .., a3r} of 3r positive integers with B/4 < ak < B/2 (k =

1, ..,3r) and
∑3r

k=1 ak = rB.

Question: Is there a partition of A into r mutually disjoint subsets A1, . . . ,Ar such that the

elements in Ak sum up to B for each k = 1, .., r ?

Given an arbitrary instance of 3-PARTITION, we construct an instance of WCLM as follows:

—N = {1,2, . . . ,4r}, N1 = {1,2, . . . , r},

— for j ∈ {1,2, . . . , r}: pj = wj = 1 and dj = 1 +(j− 1)(B +1), let D =
∑r

i=1 dj,

— for j ∈ {r + 1, r + 2, . . . ,4r}: pj = aj−r, wj = D2aj−r (all jobs will have the same ratio
pj

wj
=

1/D2),

—a = 1 and b = y = D2
∑3r

i=1

∑i

j=1 aiaj +D2Br(r +1)/2 +D,

Figure 3 An optimal sequence σ of 1||Fℓ

(
∑

wjCj(N ),Lmax(N1)
)

(⇒) Suppose that 3-PARTITION has a ’yes’ answer. Then we construct the following solution

to the WCLM problem. We form r blocks, where jth block contains job j followed by the jobs

corresponding to the elements in Aj , which we process contiguously in this order. It can be easily

verified that each job of N1 finishes at its due date. Thus, bLmax(N1) = 0. Furthermore, it can be

easily established that the weighted completion time of jobs in N is equal to D2
∑3r

i=1

∑i

j=1 aiaj +

Br(r +1)/2 +D. Thus, WCLM has also a ’yes’ answer.

(⇐) Suppose now that WCLM has a ’yes’ answer. We denote by σ a feasible solution. Because

the delay of job 1 is greater than or equal to 0, Lmax(N1)≥ 0. Because
∑

wjCj(N ) > 0 and because
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y = b, we have Lmax(N1) < 1 and thus Lmax(N1) = 0 and job 1 starts at time 0. The total weighted

completion time of the jobs of N1 is then smaller than or equal to D.

Define Hj (j = 1, .., r − 1) as the jobs in N \N1 that are processed between jobs j and j + 1,

and define Hr as the set of jobs in N \N1 that are processed after job r in σ. We use p(Hj) and

w(Hj) as a short-hand notation for the total processing time and the total weight of the jobs in

Hj, respectively. The total weighted completion time of the jobs in N \N1 according to σ is then

equal to D2
∑3r

i=1

∑i

j=1 aiaj +
∑r

j=1 jw(Hj) (the first part is the total weighted completion time of

jobs of N \N1 without considering the contribution of the jobs in N1). Since job 2 is completed

by its due date, we know that p(H1)≤B. Similarly, since job 3 is completed by its due date, we

know that p(H1) + p(H2)≤ 2B. Extending this reasoning, we find that

rp(H1) + (r− 1)p(H2) + . . .+ p(Hr)≤
∑r

i=1 iB = Br(r +1)/2

⇔ (r +1)[p(H1) + p(H2) + . . .+ p(Hr)]−
∑r

j=1 jp(Hj)≤Br(r +1)/2

⇔ (r +1)[rB]−
∑r

j=1 jp(Hj)≤Br(r +1)/2 ⇔Br(r +1)−Br(r +1)/2≤
∑r

j=1 jp(Hj)

⇔Br(r +1)/2≤
∑r

j=1 jp(Hj)

On the other hand, we have

∑

wjCj(N \N1) +
∑

wjCj(N1)≤D2
∑3r

i=1

∑i

j=1 aiaj +D2Br(r +1)/2 +D

⇔D2
∑3r

i=1

∑i

j=1 aiaj +
∑r

j=1 jw(Hj) +
∑

wjCj(N1)≤D2
∑3r

i=1

∑i

j=1 aiaj +D2Br(r +1)/2 +D

⇔
∑r

j=1 jw(Hj) +
∑

wjCj(N1)≤D2Br(r +1)/2 +D

⇔D2
∑r

j=1 jp(Hj) +
∑

wjCj(N1)≤D2Br(r +1)/2 +D

⇔
∑r

j=1 jp(Hj)≤Br(r +1)/2 + (D−
∑

wjCj(N1))/D2

Thus, we have:

Br(r +1)/2≤
r

∑

j=1

jp(Hj)≤Br(r +1)/2 + (D−
∑

wjCj(N1))/D2

Since 0 <
∑

wjCj(N1)≤D, 0 < (D−
∑

wjCj(N1))/D2 < 1.

Thus,
∑r

j=1 jp(Hj) = Br(r +1)/2

Because ∀j ∈ {1, . . . , r}, p(H1)+ . . .+ p(Hj)≤ jB we can deduce that ∀j ∈ {1, . . . , r}, p(Hj) = B.

Hence, the partitioning of A into H1, . . . ,Hr yields a yes-instance to 3-PARTITION. This completes

the proof. �
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Remark: as a consequence, the classical biobjective scheduling problem

1||Fℓ(
∑

wjCj(N ),Lmax(N )) is also strongly NP-hard.

3.3. Total (weighted) completion time for both criteria

We consider in this section two problems for which the two objective functions are the same. The

first problem involves
∑

Cj objective function and the second one involves
∑

wjCj.

Problem 1||ε
(
∑

Cj(N )/
∑

Cj(N1)
)

Proposition 5. There always is an optimal solution that respects the following properties:

1. there is no idle time.

2. jobs in N1 respect the SPT order (Shortest Processing Time first).

3. jobs in (N \N1) respect the SPT order.

4. if pi ≤ pj, then i must be scheduled before j, ∀(i, j)∈N1× (N \N1).

Proof. The first point is true because we consider regular criteria. The two next points are true

because an interchange of jobs that do not respect the SPT order cannot decrease the solution

quality. The last point is true because the permutation of i and j improves both
∑

j∈N Cj and

∑

j∈N1
Cj . Note that point 4 is not true if (i, j)∈ (N \N1)×N1. �

Proposition 6. Problem 1||ε
(
∑

Cj(N )/
∑

Cj(N1)
)

is binary NP-hard.

Let us remember PARTITION problem Garey and Johnson (1979) defined as follows:

PARTITION

Data: Finite setA of r elements a1, a2, . . . , ar, with integer sizes s(ai), ∀i,1≤ i≤ r,
∑r

i=1 s(ai) = 2B.

Question: Is there a subset A1 of indices such that
∑

i∈A1
s(ai) =

∑

i∈{1,2,...,r}\A1
s(ai) = B?

We define the problem PWDE (PARTITION with distinct elements) by:

PWDE

Data: Finite set B of t elements b1, b2, . . . , bt with distinct integer sizes (s(bi) 6= s(bj), ∀i, j),

∑t

i=1 s(bi) = 2C.

Question: Is there a subset B1 of indices such that
∑

i∈B1
s(bi) =

∑

i∈{1,2,...,t}\B1
s(bi) = C?
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This problem is ordinary NP-hard (HuynhTuong et al. (2009)). We denote by INT1m the decision

problem associated to 1||ε
(
∑

Cj(N )/
∑

Cj(N1)
)

. This problem is defined by:

INT1M

Data: a set N of n jobs, a subset N1⊂N , processing times pj for each job j, 1≤ j ≤ n, two integer

values Y and Y1.

Question: Is there a single machine schedule σ for N such that
∑

j∈N Cj ≤ Y and
∑

j∈N1
Cj ≤ Y1?

We prove that PWDE ∝ INT1m.

We consider an instance of PWDE and we assume w.l.o.g. that s(a1) < s(a2) < . . . < s(at). We

have mint−1
i=1

ai+1

ai
> 1. It is always possible to find α and K such that 1 < α < mint−1

i=1
ai+1

ai
and

αK ∈N (if
aℓ+1

aℓ
= mint−1

i=1
ai+1

ai
take for instance α =

aℓ+1

aℓ+1
and K = aℓ +1 if aℓ+1 6= aℓ +1 or take for

instance α =
10×aℓ+1

10×aℓ+1
and K = 10× aℓ +1 otherwise).

Because of the definition of α and K we have: Ks(ai) < αKs(ai) < Ks(ai+1) < αKs(ai+1).

Let β = α− 1, β > 0 and X = K
∑t

i=1

(

2(t− i+1) + (2t− 2i+1)α
)

× s(ai).

We define an instance of problem INT1m as follows: n = 2t and

• p(2i−1) = K × s(ai), ∀i = 1,2, . . . , t; p(2i) = αK × s(ai), ∀i = 1,2, . . . , t;

• Y1 = K(1 +α)
(
∑t

i=1(t− i+1)× s(ai)
)

−KC; Y = X +βKC;

• N1 = {2,4,6, . . . ,2t}.

We define an initial solution S0 = {1,2,3, . . . ,2t− 1,2t}, i.e. the sequence where the jobs are

sorted according to SPT rule (see Figure 4).

We have:

∑n

j=1 Cj(S
0) = Ks(a1) + (Ks(a1) + αKs(a1)) + (Ks(a1) + αKs(a1) + Ks(a2)) + (Ks(a1) +

αKs(a1) +Ks(a2) +αKs(a2)) + . . .

⇒
∑n

j=1 Cj(S
0) = 2tKs(a1) + (2t− 1)αKs(a1) + (2t− 2)Ks(a2) + (2t− 3)αKs(a2) + . . .

⇒
∑n

j=1 Cj(S
0) = Ks(a1)(2t+(2t− 1)α) +Ks(a2)((2t− 2) + (2t− 3)α) + . . .

⇒
∑n

j=1 Cj(S
0) = K

∑t

i=1

(

2(t− i+1) + (2t− 2i+1)α
)

× s(ai) = X.

In the same way, we obtain:
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∑

j∈N1
Cj(S

0) = (K×s(a1)+αK×s(a1))+(K×s(a1)+αK×s(a1)+K×s(a2)+αK×s(a2))+ . . .

⇒
∑

j∈N1
Cj(S

0) = (K×s(a1)+αK×s(a1))+(K×s(a1)+αK×s(a1)+K×s(a2)+αK×s(a2))+

. . .

⇒
∑

j∈N1
Cj(S

0) = t× (K × s(a1) +αK × s(a1)) + (t− 1)× (K× s(a2) +αK × s(a2)) + . . .

⇒
∑

j∈N1
Cj(S

0) = t× ((1 +α)K × s(a1)) + (t− 1)× ((1 +α)K× s(a2)) + . . .

⇒
∑

j∈N1
Cj(S

0) = K(1 +α)(t× s(a1) + (t− 1)× s(a2) + . . .

⇒
∑

j∈N1
Cj(S

0) = K(1 +α)
∑t

i=1(t− i+1)× s(ai) = Y1 +KC

Thus, this solution is not a feasible solution for problem INT1m:
∑

j∈N Cj(S
0) ≤ Y but

∑

j∈N1
Cj(S

0) > Y1.

Figure 4 Initial sequence with 10 jobs

Let us suppose that the answer to PWDE is ’yes’. We are going to propose a method for

permuting consecutive jobs for decreasing
∑

j∈N1
Cj and increasing

∑

j∈N Cj at the same time. We

consider the set of jobs G = {j ∈N/j = 2i∧ i ∈ B1}. Note that G ⊆N1. We define the sequence S1

by the permutation in S0 of each job of G with its predecessor: S1[j] = S0[j − 1], S1[j − 1] = S0[j]

for j ∈ G and S1[j] = S0[j] for the other jobs.

We have to compute
∑

j∈N Cj(S
1) and

∑

j∈N1
Cj(S

1). We first compute these values after the

permutation of only two jobs (sequence S′).

∑

j∈N Cj(S
′) =

∑

j∈N Cj(S
0) + (pj − pj−1).

Thus,
∑

j∈N Cj(S
1) =

∑

j∈N Cj(S
0) +

∑

j∈G(pj − pj−1) =
∑

j∈N Cj(S
0) +

∑

j∈G(αK × s(aj/2)−

K × s(aj/2)).

⇒
∑

j∈N Cj(S
1) =

∑

j∈N Cj(S
0) +

∑

j∈G(βK× s(aj/2)) =
∑

j∈N Cj(S
0) +βK×

∑

j∈G(s(aj/2))

⇒
∑

j∈N Cj(S
1) =

∑

j∈N Cj(S
0) +βK ×C = X +βKC = Y
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Similarly,
∑

j∈N1
Cj(S

′) =
∑

j∈N1
Cj(S

0)− pj−1

Thus,
∑

j∈N1
Cj(S

1) =
∑

j∈N1
Cj(S

0)−
∑

j∈G pj−1

⇒
∑

j∈N1
Cj(S

1) =
∑

j∈N1
Cj(S

0)−
∑

j∈G K × s(aj/2)

⇒
∑

j∈N1
Cj(S

1) =
∑

j∈N1
Cj(S

0)−KC = Y1 +KC−KC = Y1

Thus, S1 is the sequence for which the answer to INT1m is ’yes’.

Suppose now that the answer to INT1m is ’yes’ for sequence σ. If σ does not respect the conditions

of proposition 5, then we shift all the jobs to the left, we apply the SPT rule to the jobs of N1, we

apply the SPT rule to the jobs of N \N1 and each time condition 4 occurs, we permute jobs i and

j. We obtain a new sequence σ′ so that:

•
∑

j∈N Cj(σ
′)≤

∑

j∈N Cj(σ)≤ Y (1)

•
∑

j∈N1
Cj(σ

′)≤
∑

j∈N1
Cj(σ)≤ Y1 (2)

• and σ′ satisfies the conditions of Proposition 5.

We will now compare σ′ and S0.

Let us consider the job number 2i. This job is in position 2i in S0 and in position k in σ′. Let us

suppose that k > 2i. In this case, there is at least one job before 2i in σ′ with a bigger processing

time. This job cannot belong to N1 since the jobs of N1 in σ′ are sorted according to SPT. Thus

this job belongs to N \N1. This case is not possible because of condition 4 of proposition 5. Thus,

k≤ 2i. Similarly, we can show that job 2i−1 is in position 2i−1 in S0 and in position l in σ′ with

l≥ 2i− 1. The case is illustrated in Figure 5.

Figure 5 Sequences S0 and σ′ and position of job 2i
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We define the set of jobs H2i = {j/(j ≻σ′ 2i)∧ (pj < p2i)∧ (j ∈N \N1)}. For instance, job 2i− 1

belongs to H2i. These jobs are the jobs of N \N1 that precede job 2i in S0.

We have C2i(S
0) = C2i(σ

′) +
∑

k∈H2i
pk according to the definition of H2i.

⇒C2i(σ
′) = C2i(S

0)−
∑

k∈H2i
pk

⇒
∑

j∈N1
Cj(σ

′) =
∑

j∈N1
Cj(S

0)−
∑

j∈N1

∑

k∈Hj
pk (3)

⇒
∑

j∈N1
Cj(σ

′) = Y1 +KC−
∑

j∈N1

∑

k∈Hj
pk

Because (2) that
∑

j∈N1
Cj(σ

′)≤ Y1, we have:

Y1 +KC −
∑

j∈N1

∑

k∈Hj
pk ≤ Y1 ⇒KC ≤

∑

j∈N1

∑

k∈Hj
pk

⇒KC ≤
∑

j∈N1

∑

k∈Hj
Ks(a(k+1)/2) ⇒C ≤

∑

j∈N1

∑

k∈Hj
s(a(k+1)/2) (4)

Due to Proposition 5.4, from the initial solution S0, the position of jobs j ∈ N1 in σ′ would

be unchanged or moved to the left. Similarly, the position of jobs j ∈ N \ N1 in σ′ would be

unchanged or moved to the right. The deviation of the completion time of a job j ∈N \N1 between

two sequences σ′ and S0 is determined by the total processing times of the jobs of N1 which are

scheduled after j in S0, and scheduled before j in σ′. For instance, in Figure 5, the deviation of

the completion time of job 2i− 1 between two sequences σ′ and S0 is at least equal to p2i. More

generally, we have:

C2i−1(σ
′) = C2i−1(S

0) +
∑

k∈N1|2i−1∈Hk
pk

⇒
∑

j∈N\N1
Cj(σ

′)−
∑

j∈N\N1
Cj(S

0) =
∑

j∈N\N1

∑

k∈N1|j∈Hk
pk

⇒
∑

j∈N\N1
Cj(σ

′)−
∑

j∈N\N1
Cj(S

0) =
∑

k∈N1|j∈Hk

∑

j∈N\N1
pk =

∑

k∈N1

∑

j∈Hk
pk

So, the deviation of the total completion times between two sequences σ′ and S0 is defined as

follows.

∑

j Cj(σ
′) −

∑

j Cj(S
0) =

(
∑

j∈N1
Cj(σ

′) −
∑

j∈N1
Cj(S

0)
)

+
(
∑

j∈N\N1
Cj(σ

′) −

∑

j∈N\N1
Cj(S

0)
)

.

Due to (3), we have:
∑

j∈N1
Cj(σ

′)−
∑

j∈N1
Cj(S

0) =
∑

j∈N1

∑

k∈Hj
pk

⇒
∑

j Cj(σ
′)−

∑

j Cj(S
0) =

∑

k∈N1

∑

j∈Hk
pk−

∑

j∈N1

∑

k∈Hj
pk.

⇒
∑

j Cj(σ
′)−

∑

j Cj(S
0) =

∑

j∈N1

∑

k∈Hj
(pj − pk)
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Since pj > pk where j ∈N1, k ∈Hj, we have pj ≥ pk+1 with j, k +1∈N1 and k ∈Hj (5)

⇒
∑

j∈N Cj(σ
′) −

∑

j∈N Cj(S
0) ≥

∑

j∈N1

∑

k∈Hj
(pk+1 − pk) =

∑

j∈N1

∑

k∈Hj

(

αKs(a(k+1)/2) −

Ks(a(k+1)/2)
)

⇒
∑

j∈N Cj(σ
′)−

∑

j∈N Cj(S
0)≥ βK

∑

j∈N1

∑

k∈Hj
s(a(k+1)/2)

⇒
∑

j∈N Cj(σ
′)≥

∑

j∈N Cj(S
0) +βK

∑

j∈N1

∑

k∈Hj
s(a(k+1)/2)

According to (2) that
∑

j∈N1

∑

k∈Hj
s(a(k+1)/2)≥C, we have then:

∑

j∈N Cj(σ
′)≥

∑

j∈N Cj(S
0) +βKC = Y (6)

Consequently, thanks to (1) and (6), we deduce then
∑

j∈N Cj(σ
′) = Y .

In other words, all inequalities (4),(5) should become equalities:
{∑

j∈N1

∑

k∈Hj
s(a(k+1)/2) = C

pj = pk+1 where j ∈N1, k ∈Hj

Let us recall that the processing time of jobs are all different. Hence, either pj = pk+1 (i.e.

|Hj|= 1) or |Hj|= 0 where j ∈N1, k ∈Hj.

⇒ |Hj| ≤ 1,∀j ∈N1

⇒ The equality
∑

j∈N1

∑

k∈Hj
s(a(k+1)/2) = C defines the subset B1 of PWDE.

Consequently, the answer for the question of PWDE problem is ’yes’ (i.e., jobs j with |Hj|= 1

give a subset B1 of PWDE).

Problem 1||ε
(
∑

wjCj(N )/
∑

w′
jCj(N1)

)

Proposition 7. Problem 1||ε
(
∑

wjCj(N )/
∑

w′
jCj(N1)

)

is strongly NP-hard.

Proof. We denote by INT1MWC the decision problem associated to

1||ε
(
∑

wjCj(N )/
∑

w′
jCj(N1)

)

. This problem is defined by:

INT1MWC

Data: A set N of n jobs, a subset N1⊂N , processing times pj and weights wj ,w
′
j for each job j,

1≤ j ≤ n, two integer values Y and Y1.

Question: Is there a single machine schedule σ forN such that
∑

j∈N wjCj ≤ Y and
∑

j∈N1
w′

jCj ≤

Y1?
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We show that the answer to problem 3-PARTITION is ’yes’ if and only if the answer to problem

INT1MWC is ’yes’. Given an instance of 3-PARTITION, we construct an instance of INT1MWC

as follows:

• N = {1,2, . . . ,4r}, N1 = {1,2, . . . , r},

• for the job j ∈ {1,2, . . . , r}: pj = B, wj = 1 and w′
j = Br−j,

• for the job j ∈ {r + 1, r + 2, . . . ,4r}: pj = aj−r, wj = aj−r (all jobs will have the same ratio

pj

wj
= 1),

• Y1 =
∑3r

i=1

∑i

j=1 aiaj +Bn(B +1)/2 and Y2 =
∑r

i=1(2i− 1)Br−i+1.

We let the reader complete the proof, similarly as for problem 1||Fℓ

(
∑

wjCj(N ),Lmax(N1)
)

. �

3.4. Open problems

Proposition 8. The following problems remain open: 1||ε
(
∑

wjCj(N )/Cmax(N1)
)

and

1||Fℓ

(
∑

wjCj(N ),Cmax(N1)
)

; 1||ε
(

Lmax(N )/
∑

Cj(N1)
)

and 1||Fℓ

(

Lmax(N ),
∑

Cj(N1)
)

;

1||ε
(
∑

Cj(N )/Lmax(N1)
)

and 1||Fℓ

(
∑

Cj(N ),Lmax(N1)
)

.

4. Parallel machine scheduling problems

We consider now that the workshop is composed by identical parallel machines. We assume that

the number of machines is known and equal to m.

4.1. Corollaries

Proposition 9. The following problems are binary NP-hard: Pm||ε
(
∑

Cj(N )/
∑

Cj(N1)
)

and

Pm||ε
(
∑

Cj(N1)/
∑

Cj(N )
)

; Pm||ε
(

Cmax(N )/
∑

wjCj(N1)
)

and Pm||ε
(
∑

wjCj(N1)/Cmax(N )
)

;

Pm||ε
(
∑

wjCj(N )/Cmax(N1)
)

and Pm||ε
(

Cmax(N1)/
∑

wjCj(N )
)

; Pm||ε
(

Cmax(N )/Cmax(N1)
)

and Pm||ε
(

Cmax(N1)/Cmax(N )
)

.

Proof: Since the scheduling problems Pm||Cmax and Pm||
∑

wjCj are NP-Hard (see Lenstra

et al. (1977) and Bruno et al. (1974), the proof is straightforward. �

Notice that the same problems with goal programming or linear combination of these objective

functions are also binary NP-hard.
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4.2. General dynamic programming formulation

We first consider the case of two-parallel machines. The problem is denoted by P2||ε(Z1(A)/Z2(B)).

In the following, the two cases are possible: (A=N )∧ (B=N1) or (A=N1)∧ (B=N ) and Z1 and

Z2 belong to {Cmax,
∑

Cj ,
∑

wjCj}.

We assume that the jobs in N1 are numbered from 1 to n1 = |N1| and that the jobs in N \N1

are numbered from n1 +1 to n.

We denote by F (i, j,P1,Q1,Q2) the minimum cost of scheduling jobs {1,2, . . . , i} ∈N1 and jobs

{n1 + 1, n1 + 2, . . . , j} ∈ N \N1 so that the sum of processing times of the jobs in M1 is equal to

P1. Q1 and Q2 depend on the objective functions Z1 and Z2. Clearly, the total processing time of

all jobs P =
∑n

j=1 pj is an upperbound of P1. Let Q′
1 (respectively Q′

2) be an upperbound of Q1

(respectively Q2).

The decision consists in assigning one job of N1 or of N \N1 on M1 or on M2. We first give a

general formulation of the DP algorithm and then present its application to several problems.

The decisions are the following (in the case of two machines):

• assign the next job i in N1 to M1

• assign the next job i in N1 to M2

• assign the next job j in N \N1 to M1

• assign the next job j in N \N1 to M2

These decisions can be easily extended to the case of more than two machines (leading to

F (i, j,P1, P2, . . . , Pm−1,Q1,Q2, . . . ,Qm)).

The general recursive relation (in the case of two machines) is given by F (i, j,P1,Q1,Q2):
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F (0, n1,0,0,0) = 0

F (i, j,P1,Q1,Q2) = +∞,





∀i > n1,
∀j ≤ n1,
∀(P1,Q1,Q2)





F (i, j,P1,Q1,Q2) = +∞,





∀i∈ {0,1, . . . , n1},
∀j ∈ {n1, n1 +1, . . . , n},
∀((P1,Q1,Q2) < (0,0,0)∨ (P1,Q1,Q2) > (P,Q′

1,Q
′
2))





F (i, j,P1,Q1,Q2) = min















F (i− 1, j,P1− pi,Q11,Q21) +F1,
F (i− 1, j,P1,Q12,Q22) +F2,
F (i, j− 1, P1− pj,Q13,Q23) +F3,
F (i, j− 1, P1,Q14,Q24) +F4















,













∀i∈ {1, . . . , n1}
∀j ∈ {n1 +1, . . . , n}
∀0≤P1 ≤P
∀0≤Q1 ≤Q′

1

∀0≤Q2 ≤Q′
2













Fk definition (1 ≤ k ≤ 4) is related to decision k and to the objective function. Q1k, Q2k are

related to Q1 and Q2 and to decision k.

4.3. Applications of the general DP recursion

This DP algorithm can also be applied to the classical P2||Cmax problem as follows (we have

simplified the general formulation):

F (0,0) = 0 F (i,P1) = +∞,

(

∀i∈ {0,1, . . . , n},
∀(P1 < 0∨P1 > P )

)

F (i,P1) = min

{

F (i− 1, P1− pi) + pi,
F (i− 1, P1),

}

,

(

∀i∈ {1, . . . , n}
∀0≤P1 ≤P

)

The value of the optimal solution is equal to minP/2≤P1≤P max(F (n,P1), P −P1). The solution

is built by following a classical backtracking algorithm. The complexity of this DP algorithm is in

O(nP ) (the same complexity as Rothkopf (1966)).

In the following, we present some implementations of this recursive formulation. We introduce

the following notations: P(i,j) =
∑

1≤k≤i pk +
∑

n1+1≤k≤j pk. The quantity P(i,j) − P1 denotes the

completion time of the jobs on M2. Furthermore, we assume that the jobs are numbered according

to the WSPT rule, that is: p1/w1 ≤ p2/w2 ≤ . . .≤ pn1
/wn1

and pn1+1/wn1+1 ≤ pn1+2/wn1+2 ≤ . . .≤

pn/wn (we consider wj = 1, j = 1..n, for
∑

Cj criterion).

We present in the following the application of the general DP formulation to the problems
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involving the following objective functions: Cmax(N ) and Cmax(N1); Cmax(N ) and
∑

wjCj(N1);

∑

Cj(N ) and
∑

Cj(N1); and
∑

wjCj(N ) and Cmax(N1).

Problems with
∑

Cj objective function

Let us consider for instance problem P2||ε
(
∑

Cj(N1)/
∑

Cj(N )
)

. We have to minimize
∑

Cj(N1)

and to respect the constraint that
∑

Cj(N )≤ ε. We consider that Q1 corresponds to
∑

Cj(N );

Q2 = 0 (omitted in the recursive relation). The objective function to minimize is F (i, j,P1,Q1) =

∑

Cj(N1). The general recursive relation becomes:

F (0, n1,0,0) = 0

F (i, j,P1,Q1) = +∞,





∀i > n1,
∀j ≤ n1,
∀(P1,Q1)





F (i, j,P1,Q1) = +∞,





∀i∈ {0,1, . . . , n1},
∀j ∈ {n1, n1 +1, . . . , n},
∀((P1,Q1) < (0,0)∨ (P1,Q1) > (P,ε))





F (i, j,P1,Q1) = min















F (i− 1, j,P1− pi,Q1−P1) +P1,
F (i− 1, j,P1,Q1−wi(P(i,j)−P1)) +P(i,j)−P1,
F (i, j− 1, P1− pj,Q1−P1),
F (i, j− 1, P1,Q1− (P(i,j)−P1))















,









∀i∈ {1, . . . , n1}
∀j ∈ {n1 +1, . . . , n}
∀0≤P1 ≤P
∀0≤Q1 ≤ ε









The optimal solution is given by min(0≤P1≤P∧0≤Q1≤ε)F (n1, n,P1,Q1). The running time of this

algorithm is in O(n2Pε). This method can be generalized for m machines and we obtain the

following proposition.

Proposition 10. An optimal solution to the problem Pm||ε
(
∑

Cj(N1)/
∑

Cj(N )
)

can be deter-

mined in O(n2P m−1ε).

Let us consider now the problem P2||GP (
∑

Cj(N ),
∑

Cj(N1)), which is equivalent to find-

ing a solution that respects
∑

Cj(N ) ≤ ε and
∑

Cj(N1) ≤ ε1. A feasible solution is given by

F (n1, n,P1,Q1)≤ ε1, (0≤ P1≤P and 0≤Q1 ≤ ε). The running time is in O(n2Pε).

Let us consider now the problem P2||ε(
∑

Cj(N )/
∑

Cj(N1)). We search for the smallest value

of Q1 such that there is a value of P1 with F (n1, n,P1,Q1)≤ ε. We enumerate all possible values
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of (Q1, P1) from (0,0) to (n×wmax×P,P ) where wmax = maxj∈N wj . When (Q1, P1) are found so

that F (n1, P1,Q1)≤ ε, the algorithm stops and returns the current value of Q1 which defines the

minimum value of
∑

Cj(N1). If the algorithm does not return any feasible schedule, it returns ’no

feasible schedule’. The running time is bounded in O(n3P 2wmax). Note that a slight modification

of the recursive relation could lead to a more interesting running time in O(n2Pε).

Similarly, for solving the problem P2||Fℓ(
∑

Cj(N ),
∑

Cj(N1)), we consider the general DP for-

mulation with ε an upper bound to
∑

Cj(N ). For instance Fℓ(
∑

Cj(N ),
∑

Cj(N1)) = a
∑

Cj(N )+

b
∑

Cj(N1). We enumerate all possible values of (P1,Q1) from (0,0) to (P,nwmaxP ) and we return

the solution with the minimum value of a × Q1 + b × F (n1, n,P1,Q1). The running time is in

O(n3P 2wmax). Note that another algorithm can be done with a better running time (O(n2P )) by

reformulating P2||a
∑

Cj(N )+b
∑

Cj(N1) as P2||
∑

wjCj(N ) (wj = a if j ∈N \N1, and wj = a+b

if j ∈N1).

Problems with
∑

wjCj(N1) and Cmax(N ) objective functions

Let us consider the problem P2||ε
(
∑

wjCj(N1)/Cmax(N )
)

. We have Cmax(N )≤ ε and we assume

ε < P . We consider that Q1 corresponds to the sum of processing times of the jobs of N1 on M1;

and Q2 is equal to 0 (omitted in the recursive relation). We propose Q′
1 =

∑

j∈N1
as an upper

bound of Q. Clearly, Q′
1 ≤ P . The objective function to minimize is F (i, j,P1) =

∑

wjCj(N1). The

makespan is given by max(P1, P −P1). The general recursive relation becomes:

F (0, n1,0,0) = 0

F (i, j,P1,Q1) = +∞,





∀i > n1,
∀j ≤ n1,
∀(P1,Q1)





F (i, j,P1,Q1) = +∞,





∀i∈ {0,1, . . . , n1},
∀j ∈ {n1, n1 +1, . . . , n},
∀((P1,Q1) < (0,0)∨ (P1,Q1) > (ε,Q′

1))





F (i, j,P1,Q1) = min















F (i− 1, j,P1− pi,Q1− pi) +wiQ1,
F (i− 1, j,P1,Q1) +wi(P(i,0)−Q1),
F (i, j− 1, P1− pj,Q1),
F (i, j− 1, P1,Q1)















,





∀i∈ {1, . . . , n1};
∀j ∈ {n1 +1, . . . , n};
∀max(0, P − ε)≤ P1≤ ε∀0≤Q1 ≤Q′

1




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The optimal solution is given by the smallest value of F (n1, n,P1,Q1) with max(P1, P −P1)≤ ε.

The running time of this algorithm is in O(n2Pε). This algorithm can be generalized to the case

of m machines, we obtain the following proposition.

Proposition 11. An optimal solution to the problem Pm||ε
(
∑

wjCj(N1)/Cmax(N )
)

can be deter-

mined in O(n2P mεm−1).

By following the same approach as in the previous section, we can deduce the fol-

lowing results: problem P2||GP (Cmax(N ),
∑

wjCj(N1)) can be solved in O(n2Pε);

problem Pm||ε
(

Cmax(N )/
∑

wjCj(N1)
)

can be solved in O(n2Pε); and problem

P2||Fℓ(Cmax(N ),
∑

wjCj(N1)) can be solved in O(n2P 2).

Problems with
∑

wjCj(N ) and Cmax(N1) objective functions

Let us consider the problem P2||ε
(
∑

wjCj(N )/Cmax(N1)
)

. We consider that Q1 and Q2 correspond

to Cmax(N1) on M1 and M2 respectively (remember that P1 is the makespan on M1). The objective

function to minimize is F (i, j,P1,Q1,Q2) =
∑

wjCj(N ). The general recursive relation becomes:

F (0, n1,0,0,0) = 0

F (i, j,P1,Q1,Q2) = +∞,





∀i > n1,
∀j < n1,
∀(P1,Q1,Q2)





F (i, j,P1,Q1,Q2) = +∞,





∀i∈ {0,1, . . . , n1},
∀j ∈ {n1, n1 +1, . . . , n},
∀((P1,Q1,Q2) < (0,0,0)∨ (P1,Q1,Q2) > (P,ε, ε))





F (i, j,P1,Q1,Q2) = min















F (i− 1, j,P1− pi, P1− pi,Q2) +wiP1,
F (i− 1, j,P1,Q1, P(i,j)−P1− pi) +wi(P(i,j)−P1),
F (i, j− 1, P1− pj,Q1,Q2) +wjP1,
F (i, j− 1, P1,Q1,Q2) +wj(P(i,j)−P1)















,













∀i∈ {1, . . . , n1}
∀j ∈ {n1 +1, . . . , n}
∀0≤ P1≤ P
∀0≤Q1 ≤ ε
∀0≤Q2 ≤ ε













The optimal solution is given by min(0≤P1≤P∧0≤Q1≤ε∧0≤Q2≤ε)F (n1, n,P1,Q). The running time of

this algorithm is in O(n2Pε2). In the case of m machines, we obtain the following proposition.

Proposition 12. An optimal solution of problem Pm||ε
(
∑

wjCj(N )/Cmax(N1)
)

is determined in

O(n2P m−1εm).
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By following the same approach as in the previous section, we can deduce the fol-

lowing results: problem P2||GP (Cmax(N1),
∑

wjCj(N )) can be solved in O(n2Pε2);

problem Pm||ε
(

Cmax(N1)/
∑

wjCj(N )
)

can be solved in O(n2Pε2); and problem

P2||Fl(Cmax(N1),
∑

wjCj(N )) can be solved in O(n2P 3).

Problem P2||ε(Cmax(N )/Cmax(N1))

Let us consider the problem P2||ε
(

Cmax(N1)/Cmax(N )
)

. We consider that Q1 and Q2 correspond to

Cmax(N1) on M1 and M2 respectively (remember that P1 is the makespan on M1). The objective

function to minimize is F (i, j,P1,Q1,Q2) which corresponds to the makespan on M2. The general

recursive relation becomes:

F (0, n1,0,0,0) = 0

F (i, j,P1,Q1,Q2) = +∞,





∀i > n1,
∀j < n1,
∀(P1,Q1,Q2)





F (i, j,P1,Q1,Q2) = +∞,





∀i∈ {0,1, . . . , n1},
∀j ∈ {n1, n1 +1, . . . , n},
∀((P1,Q1,Q2) < (0,0,0)∨ (P1,Q1,Q2) > (P,ε, ε))





F (i, j,P1,Q1,Q2) = min















F (i− 1, j,P1− pi, P1− pi,Q2),
F (i− 1, j,P1,Q1, P(i,j)−P1− pi) + pi,
F (i, j− 1, P1− pj,Q1,Q2),
F (i, j− 1, P1,Q1,Q2) + pj















,













∀i∈ {1, . . . , n1}
∀j ∈ {n1 +1, . . . , n}
∀0≤ P1≤ P
∀0≤Q1 ≤ ε
∀0≤Q2 ≤ ε













The optimal solution is given by min(0≤P1≤P∧0≤Q1≤ε∧0≤Q2≤ε)F (n1, n,P1,Q). The running time of

this algorithm is in O(n2Pε2). Generalizing to m machines, we obtain the following proposition.

Proposition 13. An optimal solution of problem Pm||ε
(

Cmax(N1)/Cmax(N )
)

is determined in

O(n2P m−1ε2m).

By following the same approach as in the previous section, we can deduce the fol-

lowing results: problem P2||GP (Cmax(N1),Cmax(N )) can be solved in O(n2Pε2); problem

P2||ε
(

Cmax(N )/Cmax(N1)
)

can be solved in O(n2Pε2); problem P2||Fl(Cmax(N1),Cmax(N )) can be

solved in O(n2P 3).
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5. Conclusion

In this paper, we consider a new family of scheduling problems in the area of interfering job sets or

multi-agent scheduling. One subset of jobs (N1⊆N ) is in competition with the whole set of jobs and

a compromise solution has to be found. We first show the difference between these problems and

multi-agent scheduling problems and explain why this approach generalizes typical multicriteria

scheduling problems. We consider the problem of scheduling independent jobs on a single machine

or on identical parallel machines, without additional constraints.

New complexity results are given for single machine problems depending on the objective function

(linear combination of criteria or ε-constraint approach). These results can be easily extended for

goal programming and enumerative approaches. Concerning identical parallel machine problems, we

propose new complexity results and a general dynamic programming formulation. This algorithm

is presented for some two-parallel machine problems. This DP formulation can be easily generalized

for m identical or uniform parallel machines and for several subsets of jobs. Table 1 summarizes

the results presented in the paper for single machine problems and Table 2 for parallel machine

problems.

Objective functions Studied approaches Reference
(Fℓ) (ε) (GP )

Cmax(N ), Cmax(N1) Polynomial Polynomial Polynomial Prop. 1
Cmax(N ), Lmax(N1) Polynomial Polynomial Polynomial Prop. 1
Cmax(N ),

∑

wjCj(N1) Polynomial Polynomial Polynomial Prop. 1
Lmax(N ), Cmax(N1) Polynomial Polynomial Polynomial Prop. 2
Lmax(N ), Lmax(N1) Polynomial Polynomial Polynomial Prop. 2
Lmax(N ),

∑

Cj(N1) Open Open Open Prop. 8
Lmax(N ),

∑

wjCj(N1) Strongly NP-hard Strongly NP-hard Strongly NP-hard Prop. 4
∑

Cj(N ), Cmax(N1) Polynomial Polynomial Polynomial Prop. 2
∑

Cj(N ), Lmax(N1) Open Open Open Prop. 8
∑

Cj(N ),
∑

Cj(N1) Polynomial Binary NP-Hard Binary NP-Hard Prop. 6, 1
∑

wjCj(N ), Cmax(N1) Open Binary NP-Hard Binary NP-Hard Prop. 3
∑

wjCj(N ), Lmax(N1) Strongly NP-hard Strongly NP-hard Strongly NP-hard Prop. 4
∑

wjCj(N ),
∑

w′

jCj(N1) Polynomial Strongly NP-Hard Strongly NP-Hard Prop. 1, 7

(Fℓ): linear combination of criteria
(ε): ε-constraint approach
(GP ): goal programming approach

Table 1 Some new complexity results on interfering-jobs single-machine scheduling problems
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Objective functions Studied approaches Complexity Reference
(Fl) (ε) (GP ) (DP)

∑

Cj(N ),
∑

Cj(N1) X X X - Binary NP-Hard Prop. 9,10
∑

wjCj(N ), Cmax(N1) X X X - Binary NP-Hard Prop. 9,12
Cmax(N ),

∑

wjCj(N1) X X X - Binary NP-Hard Prop. 9,11
Cmax(N ), Cmax(N1) X X X - Binary NP-Hard Prop. 9,13
∑

Cj(N ),
∑

Cj(N1),
∑

Cj(N2), . . . X X X - Binary NP-Hard Prop. 9,10
∑

wjCj(N ), Cmax(N1), Cmax(N2), . . . X X X - Binary NP-Hard Prop. 9,12
∑

wjCj(N ), Cmax(N1), Cmax(N2), . . . X X X - Binary NP-Hard Prop. 9,12
Cmax(N ),

∑

Cj(N1),
∑

Cj(N2), . . . X X X - Binary NP-Hard Prop. 9,11
Cmax(N ), Cmax(N1), Cmax(N2), . . . X X X - Binary NP-Hard Prop. 9,13

(Fl): linear combination of criteria
(ε): ε-constraint approach
(GP ): goal programming approach
(DP): Can be solved by the proposed DP algorithm

Table 2 New complexity results on interfering-jobs parallel-machine scheduling problems

This category of problems leads to a wide area of research problems. Some complexity results

remain open; some approximation schemes can be constructed for these problems as well as exact

and approximated heuristic algorithms.
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