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In this article we study an elliptic problem with degenerate coercivity. We will show that the presence of some lower order terms has a regularizing effect on the solutions, if we assume that the datum f ∈ L m (Ω) for some m ≥ 1.

Introduction

Consider the problem (1.1)

-∆u

+ |u| p-1 u = f in Ω u = 0 on ∂Ω .
It is known that the lower order term |u| p-1 u has a regularizing effect on the solutions: indeed the solution u belongs to the Lebesgue space L p (Ω) under the weak assumption that the datum f ∈ L 1 (Ω) (see [START_REF] Brézis | Semi-linear second-order elliptic equations in L 1[END_REF]); moreover ∇u ∈ L q (Ω), q < 2p p+1 (see [START_REF] Boccardo | Nonlinear elliptic equations in R N without growth restrictions on the data[END_REF]). A stronger effect can be observed if we consider a lower order term h(u) where h : [0, σ) → R + is a continuous, increasing function with a vertical asymptote in σ (σ > 0). Indeed in [START_REF] Boccardo | Quasilinear elliptic equations with natural growth terms: the regularizing effects of the lower order terms[END_REF] it is shown that if f is an L 1 (Ω) positive function, then there exists a bounded H 1 0 (Ω) solution to

(1.2) -∆u + h(u) = f in Ω u = 0 on ∂Ω .

All these results have been proved for general nonlinear coercive elliptic problems too.

In this article we want to analyse the regularizing effects of the same kind of lower order terms as in problems (1.1) and (1.2) in the case of an elliptic operator with degenerate coercivity. More in details, let us consider the differential operator (1.3) A(v) = -div (a(x, v)∇v) , v ∈ H 1 0 (Ω) under the following assumptions: Ω is an open bounded subset of R N , N ≥ 3, and a : Ω × R → R is a Carathéodory function such that for a.e. x ∈ Ω and for every s ∈ R for some real positive constants α, β, γ. Assumption (1.4) implies that the differential operator A is well defined on H 1 0 (Ω), but it fails to be coercive on the same space when v is large (see [START_REF] Porretta | Uniqueness and homogenization for a class of noncoercive operators in divergence form. Special issue in honor of Calogero Vinti[END_REF]). Due to the lack of coercivity, the classical theory for elliptic operators acting between spaces in duality (see [START_REF] Lions | Quelques méthodes de resolution de problèmes aux limites non linéaires[END_REF]) cannot be applied. Despite this difficulty, some papers (see [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF], [START_REF] Boccardo | Some elliptic problems with degenerate coercivity[END_REF], [START_REF] Boccardo | Some remarks on a class of elliptic equations with degenerate coercivity[END_REF], [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity[END_REF], [START_REF] Cirmi | On the existence of solutions to non-linear degenerate elliptic equations with measures data[END_REF], [START_REF] Giachetti | Existence results for some nonuniformly elliptic equations with irregular data[END_REF] and [START_REF] Giachetti | Elliptic equations with degenerate coercivity: gradient regularity[END_REF]) have been written about Dirichlet problems with the differential operator A. In particular in [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF], [START_REF] Boccardo | Some elliptic problems with degenerate coercivity[END_REF] and [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity[END_REF] it has been shown the existence of solutions to the differential problem

(1.6) -div (a(x, u)∇u) = f in Ω u = 0 on ∂Ω in the case where f ∈ L m (Ω) with m ≥ 1 and γ ∈ (0, 1]. Indeed, let (1.7) r = N m(1 -γ) N -2m and (1.8) q = N m(1 -γ) N -m(1 + γ) . If f ∈ L m (Ω), with 1 ≤ m ≤ max N N +1-γ(N -1) , 1 problem (1.6) admits a solution u such that |u| s ∈ L 1 (Ω), s < r and |∇u| s ∈ L 1 (Ω), s < q . If N N +1-γ(N -1) < m ≤ 2N N (1-γ)+2(γ+1) , then u ∈ W 1,q 0 (Ω). If 2N N (1-γ)+2(γ+1) ≤ m < N 2 , then u ∈ H 1 0 (Ω) ∩ L r (Ω) . If m > N 2 , then u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) .
In the case where γ > 1, the effect of the degenerate coercivity is even worst: indeed problem (1.6) may have no solution at all, even if the datum f is a constant function (see [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity[END_REF] and [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF]). In any case the degenerate coercivity of the operator A gives solutions less regular than the solutions to uniformly elliptic problems.

In the spirit of problem (1.1), the first problem that we will consider in this article is

(1.9) -div (a(x, u)∇u) + |u| p-1 u = f in Ω u = 0 on ∂Ω .
We will study the existence of distributional solutions, that is the existence of some function u in W 1,1 0 (Ω) (at least) such that |u| p ∈ L 1 (Ω) and

Ω a(x, u)∇u • ∇ϕ + Ω |u| p-1 u ϕ = Ω f ϕ
for every ϕ ∈ C ∞ 0 (Ω). We will also use a weaker notion of solution, the entropy solution. We recall that this type of solution has been introduced in [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF]. To give this definition we need the following lemma (see [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF] for the proof). We define

T k (s) = max{-k, min{k, s}} Lemma 1.1. Let u : Ω → R be measurable function such that T k (u) ∈ H 1 0 (Ω) for every k > 0. Then there exists an unique measurable v : Ω → R N such that ∇T k (u) = v χ {|u|<k} q.o. in Ω ∀ k > 0 ;
the map v is called the weak gradient of u. If u ∈ W 1,1 0 (Ω), then the weak gradient of u coincides with its standard distributional gradient.

Definition 1.2. Let f be an L m (Ω) function, with m ≥ 1. A measurable function u : Ω → R such that |u| p ∈ L 1 (Ω) and T k (u) ∈ H 1 0 (Ω) for every k > 0 is an entropy solution to problem (1.9) if Ω a(x, u)∇u • ∇T k (u -ϕ) + Ω |u| p-1 u T k (u -ϕ) ≤ Ω f T k (u -ϕ)
for every k > 0 and for every ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Note that this definition is useful in the case where the solution of problem (1.9) does not necessary belong to a Sobolev space. Indeed, about the gradient of the solution, it has a sense under the weak hypothesis that ∇T k (u) ∈ L 2 (Ω), we don't need that ∇u ∈ L 1 (Ω), as for distributional solutions.

Definition 1.3. The Marcinkiewicz space M s (Ω), s > 0, is made up of all measurable functions v : Ω → R such that |{|v| ≥ k}| ≤ C k s for all k > 0, for a positive constant C > 0.

One can show that, if |Ω| is finite and if 0 < ε < s -1

(1.10) L s (Ω) ⊂ M s (Ω) ⊂ L s-ε (Ω) .
We can now state our existence results for problem (1.9).

Theorem 1.4. Let f ∈ L 1 (Ω).

(1) If p > γ + 1, then there exists a distributional solution u to problem (1.9) such that

u ∈ W 1,s 0 (Ω) ∩ L p (Ω) , s < 2p γ + 1 + p .
(2) If 0 < p ≤ γ + 1, then there exists an entropy solution u to problem (1.9) such that

|u| p ∈ L 1 (Ω) and |∇u| ∈ M 2p γ+1+p (Ω).
Observe that the presence of the lower order term |u| p-1 u guarantees the existence of a distributional solution if f is a L 1 (Ω) function. On the contrary, problem (1.6) may have no distributional solution, because the summability of the gradient of the solutions may be lower than 1.

In the case where f ∈ L m (Ω) with m > 1, we will prove the following existence result.

Theorem 1.5. Let f ∈ L m (Ω), with m > 1. (1) If p ≥ γ + 1 m -1
, then there exists a distributional solution u to problem (1.9)

such that u ∈ H 1 0 (Ω) ∩ L pm (Ω) . (2) If γ m -1 < p < γ + 1 m -1
, then there exists a distributional solution u to problem (1.9) such that

|u| pm ∈ L 1 (Ω) and u ∈ W 1, 2pm γ+1+p 0 
(Ω) .

(

) If 0 < p ≤ γ m -1 3 
, then there exists an entropy solution u to problem (1.9) such that

|u| pm ∈ L 1 (Ω) and |∇u| ∈ M 2pm γ+1+p ( 
Ω). In this case too the lower order term |u| p-1 u has a regularizing effect. Indeed, if p > γ m-1 , we have a distributional solution for any m > 1. This is not always the case for problem (1.6). If p is larger, that is p > γ+1 m-1 we even find a finite energy (i.e., H 1 0 (Ω)) solution, for any m > 1. Notice that in the case where γ = 0, we get the same results obtained in [START_REF] Cirmi | Regularity of the solutions to nonlinear elliptic equations with a lower-order term[END_REF], for elliptic coercive problems; moreover these results are a generalization of [START_REF] Boccardo | Some remarks on a class of elliptic equations with degenerate coercivity[END_REF].

In the spirit of problem (1.2), the second problem that we will study in this paper is

(1.11) -div (a(x, u)∇u) + h(u) = f in Ω u = 0 on Ω
under the following assumptions on the lower order term h. Let σ be a real positive constant; we assume that the function h : [0, σ) → R is increasing, continuous, h(0) = 0 and lim s→σ -h(s) = +∞. We will show the existence of a solution u such that h(u) ∈ L 1 (Ω) and (1.11). This result shows that the presence of the lower order term h(u) has a strong regularizing effect: it is sufficient to compare the summability that we have found to summabilities (1.7) and (1.8) for the solution to the same problem, without the lower order term h(u).

Ω a(x, u)∇u • ∇ϕ + Ω h(u)ϕ = Ω f ϕ for every ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Theorem 1.6. Let f be a positive L 1 (Ω) function. Then there exists a solution u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) to problem
Notice that the same results of Theorems 1.4, 1.5 and 1.6 can be obtained for more general lower order terms, depending also on the variable x.

Preliminaries

We will use the following approximating problems to prove Theorems 1.4 and 1.5:

(2.1) -div (a(x, T n (v))∇v) + |v| p-1 v = T n (f ) in Ω v = 0 on ∂Ω .
The following lemma will be very useful, as it gives us an a priori estimate on the summability of the solutions to problems (2.1).

Lemma 2.1. Let f ∈ L m (Ω), m ≥ 1.
Then, for every n ∈ N, there exists a solution u n ∈ H 1 0 (Ω) to problems (2.1) such that

(2.2) Ω |u n | pm ≤ Ω |f | m ; u n satisfies (2.3) Ω a(x, T n (u n ))∇u n • ∇ϕ + Ω |u n | p-1 u n ϕ = Ω T n (f ) ϕ for every ϕ ∈ H 1 0 (Ω) . Proof. The operator v → -div (a(x, T n (v))∇v) + |v| p-1 v , v ∈ H 1 0
(Ω) satisfies the hypothesis of standard theorems for elliptic operators (see [START_REF] Lions | Quelques méthodes de resolution de problèmes aux limites non linéaires[END_REF]); therefore there exists a solution u n ∈ H 1 0 (Ω) to problems (2.1) which satisfies (2.3). To show estimate (2.2), we will consider the cases m > 1 e m = 1 separately.

Case m > 1:

Choosing ϕ = |u n | p(m-1) sgn(u n ) in (2.3) one gets Ω |u n | pm ≤ Ω |f ||u n | p(m-1) ;
the Hölder inequality on the right hand side yields

Ω |u n | pm ≤ f m Ω |u n | pm 1-1 m which implies (2.2). Case m = 1: Choosing ϕ = T k (u n ) k in (2.3) we get Ω |u n | p-1 u n T k (u n ) k ≤ Ω T n (f ) T k (u n ) k ≤ Ω |f | .
Fatou's lemma implies, for k → 0, estimate (2.2).

In the study of entropy solutions to problem (1.9) we will need the following lemmas.

Lemma 2.2. Let u be a measurable function in M s (Ω), s > 0, and suppose that there exists a positive constant ρ > 0 such that

Ω |∇T k (u)| 2 ≤ C k ρ ∀ k > 0 , ∀ n ∈ N . Then |∇u| ∈ M 2s ρ+s (Ω). Remark 2.3. Lemma 2.2 is true for sequences too. That is, if u n is a sequence of measurable functions such that |{|u n | ≥ k}| ≤ C k s ∀ n ∈ N s > 0,
and there exists a positive constant ρ > 0 such that

Ω |∇T k (u n )| 2 ≤ C k ρ ∀ k > 0 , then |{|∇u n | ≥ k}| ≤ C k 2s ρ+s ∀ n ∈ N .
Proof. See [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity[END_REF].

Lemma 2.4. Let u n be a sequence of measurable functions such that T k (u n ) is bounded in H 1 0 (Ω) for every k > 0. Then there exists a measurable function u such that T k (u) ∈ H 1 0 (Ω) and, up to a subsequence, u n → u a.e. in Ω and T k (u n ) → T k (u) weakly in H 1 0 (Ω). Proof. See [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF].

Proofs

To show Theorems 1.4 and 1.5, we will pass to the limit in (2.3). All along the proofs C will denote a constant depending only on p, m, α, f m and γ.

Let us begin with the proof of 1.4.

Proof. We divide our proof into two parts: in the first one we will study the case where p > γ + 1, showing the existence of a distributional solution to problem (1.9), and in the second one we will show the existence of an entropy solution for 0 < p ≤ γ + 1.

PART I: Let p > γ + 1. If we choose ϕ = [(1 + |u n |) 1-λ -1]sgn(u n ), with λ > 1, in (2.
3) we get, using assumption (1.4) on a

(3.1) C Ω |∇u n | 2 (1 + |u n |) γ+λ ≤ Ω |f | . Now, let q < 2; writing Ω |∇u n | q = Ω |∇u n | q (1 + |u n |) q 2 (γ+λ) (1 + |u n |) q 2 (γ+λ)
and using the Hölder inequality with exponent 2 q , we get from (3.1)

Ω |∇u n | q ≤ C Ω (1 + |u n |) q 2-q (γ+λ) 1-q 2 .
Thanks to Lemma 2.1, the right hand side is uniformly bounded if q 2-q (γ + λ) = p, that is q = 2p γ+p+λ . Since λ > 1, then q > 1 and so we get that u n is uniformly bounded in W 1,β 0 (Ω), for β < 2p γ+p+1 . As a consequence there exists a function u ∈ W 1,β 0 (Ω), β < 2p γ+p+1 such that u n → u weakly in W 1,β 0 (Ω), up to a subsequence. Moreover u n → u a.e. in Ω and this implies that u ∈ L p (Ω).

We are going to show that u is a distributional solution to problem (1.9) passing to the limit in (2.3). We will suppose that ϕ ∈ C ∞ 0 (Ω). For the first term of the left-hand side, it is sufficient to observe that ∇u n → ∇u weakly in L β (Ω) and a(x, T n (u n ))∇ϕ → a(x, u)∇ϕ in L m (Ω) for every m, due to assumption (1.5) on a. The limit of the second term is a little more delicate. Even if the principal part of our differential operator is degenerate, on can show the following estimate, in the spirit of [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF]:

(3.2) {|un|>t} |u n | p ≤ {|un|>t} |f | .
Indeed, let ψ i be a sequence of increasing, positive, uniformly bounded C ∞ (Ω) functions, such that

ψ i (s) →    1, s ≥ t 0, |s| < t -1, s ≤ -t . Choosing ψ i (u n ) in (2.3), we get Ω |u n | p-1 u n ψ i (u n ) ≤ Ω T n (f ) ψ i (u n ) .
The limit on i implies (3.2). We are going to use this inequality to show that if E is any measurable subset of Ω, then lim

|E|→0 E
|u n | p = 0 uniformly with respect to n .

Using assumption (3.2), for any t > 0 we have

E |u n | p ≤ t p |E| + E∩{|un|>t} |u n | p ≤ t p |E| + {|un|>t} |f | .
The previous lemma and the fact that f ∈ L 1 (Ω) allow us to say that for any given ε > 0, there exists t ε such that

{|un|>tε} |f | ≤ ε .
In this way

E |u n | p ≤ t p ε |E| + ε and so lim |E|→0 E |u n | p ≤ ε ∀ ε > 0 .
We thus proved that lim

|E|→0 E
|u n | p = 0 uniformly with respect to n. Vitali's theorem implies that |u n | p-1 u n → |u| p-1 u in L 1 (Ω) and so we can pass to the limit in the second term of the left-hand side of (2.3). We get a distributional solution to problem (1.9) in this way.

Part II: Let p > 0. Let us choose T k (u n ) as test function in (2.3):

Ω a(x, T n (u n ))∇u n • ∇T k (u n ) + Ω |u n | p-1 u n T k (u n ) = Ω T n (f ) T k (u n ) .
In this way we have

Ω a(x, T n (u n ))∇u n • ∇T k (u n ) ≤ C k ,
and so

Ω |∇T k (u n )| 2 ≤ Ck(1 + k) γ .
Lemma 2.4 implies the existence of a measurable function u such that ∀ k > 0, T k (u) ∈ H 1 0 (Ω), and, up to a subsequence, T k (u n ) → T k (u) weakly in H 1 0 (Ω), and u n → u a.e. in Ω. Fatou's lemma implies that |u| p ∈ L 1 (Ω). To prove that |∇u| ∈ M 2p γ+p+1 (Ω), one can pass to the limit, as n → ∞, in the previous inequality to get

Ω |∇T k (u)| 2 ≤ C k (1 + k) γ . Using Lemma 2.2, |∇u| ∈ M 2p γ+1+p (Ω).
We claim that u is an entropy solution. Indeed, let us choose

T k (u n -ϕ), ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) as test function in (2.3): Ω a(x, T n (u n ))∇u n •∇T k (u n -ϕ)+ Ω |u n | p-1 u n T k (u n -ϕ) = Ω T n (f ) T k (u n -ϕ) .
For the second term of the left hand side and for the right hand side, one can use the Fatou's lemma to pass to the limit. For the first term of the left hand side, we can use the same technique as in [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity[END_REF] (Theorem 1.17). Indeed, let us write it as

Ω a(x, T n (u n ))|∇T k (u n -ϕ)| 2 + Ω a(x, T n (u n ))∇ϕ • ∇T k (u n -ϕ) .
Passing to the limit in the first term, we have, since

T k (u n ) → T k (u) weakly in H 1 0 (Ω) and u n → u a.e. in Ω, lim inf n→∞ Ω a(x, T n (u n ))|∇T k (u n -ϕ)| 2 ≥ Ω a(x, u)|∇T k (u -ϕ)| 2 ;
the second term tends to

Ω a(x, u)∇ϕ • ∇T k (u -ϕ) . Therefore lim inf n→∞ Ω a(x, T n (u n ))∇u n • ∇T k (u n -ϕ) ≥ Ω a(x, u)∇u • ∇T k (u -ϕ) .
Let us show Theorem 1.5, that is the existence of solutions to problem (1.9) in the case where f ∈ L m (Ω), m > 1.

Proof. We will divide our proof into three parts, according to the different values of p.

PART I: Suppose

p ≥ γ + 1 m -1 . If we choose ϕ = [(1 + |u n |) γ+1 -1]sgn(u n ) in (2.
3) we get, using assumption (1.4) on a

C Ω |∇u n | 2 (1 + |T n (u n )|) γ (1 + |T n (u n )|) γ ≤ Ω |T n (f )| [(1 + |u n |) γ+1 -1] . As a consequence Ω |∇u n | 2 ≤ C Ω |f ||u n | γ+1 .
The Hölder inequality on the right hand side and Lemma 2.1 imply that

Ω |f ||u n | γ+1 ≤ f m   Ω |u n | (γ+1) m m-1   m-1 m < ∞ if (γ + 1) m m-1 ≤ pm. Under this assumption Ω |∇u n | 2 ≤ C , ∀ n ∈ N .
Up to a subsequence, there exists a function u ∈ H 1 0 (Ω) such that u n → u weakly in H 1 0 (Ω) and a.e. in Ω. Moreover u ∈ L pm (Ω). We are going to show that u is a solution to problem (1.9), passing to the limit in (2.3). For the first term of the left-hand side, it is sufficient to observe that a(x, T n (u n ))∇ϕ → a(x, u)∇ϕ in L r (Ω), for any r ≥ 1, due to assumption (1.5) on a. For the second term, since |u n | p-1 u n is uniformly bounded in L m (Ω) with m > 1 and u n → u a.e., we can deduce that

|u n | p-1 u n → |u| p-1 u in L 1 (Ω). PART II: Suppose γ m -1 < p < γ + 1 m -1 . If we choose ϕ = [(1 + |u n |) p(m-1) - 1]sgn(u n ) in (2.
3), we get, using assumption (1.4) on a 1) . Now, using the Hölder inequality in the right hand side of the previous inequality and Lemma 2.1, we get

Ω |∇u n | 2 (1 + |u n |) γ-p(m-1)+1 ≤ C Ω |f | |u n | p(m-
(3.3) Ω |∇u n | 2 (1 + |u n |) γ-p(m-1)+1 ≤ C   Ω |u n | pm   1-1 m ≤ C ∀ n ∈ N .
From the other hand, let σ < 2; writing

Ω |∇u n | σ = Ω |∇u n | σ (1 + |u n |) σ 2 [γ-p(m-1)+1] (1 + |u n |) σ 2 [γ-p(m-1)+1]
and using the Hölder inequality with exponent 2 σ , we get from (3.3)

Ω |∇u n | σ ≤ C Ω (1 + |u n |) σ 2-σ [γ-p(m-1)+1] 1-σ 2 . Thanks to Lemma 2.1, if σ 2 -σ [γ -p(m -1) + 1] = pm, that is σ = 2pm γ + p + 1
, the last quantity is uniformly bounded. Notice that σ < 2, since we are assuming that

p < γ + 1 m -1 . If 2pm γ + p + 1 > 1, the fact that Ω |∇u n | 2pm γ+p+1 ≤ C ∀ n ∈ N implies the existence of a function u ∈ W 1, 2pm γ+p+1 0 
(Ω) such that, up to a subsequence,

u n → u weakly in W 1, 2pm γ+p+1 0 
(Ω) and a.e. in Ω; moreover |u| pm ∈ L 1 (Ω). One can show that u is a distributional solution to problem (1.9), as in PART I.

PART III: Suppose that p ≤ γ m -1 . We show that there exists an entropy solution to problem (1.9). Estimate (3.3) (obtained indipendently from the value of p) implies that

{|un|>k} |∇u n | 2 (1 + |u n |) γ-p(m-1)+1 ≤ C and consequently {|un|<k} |∇T k (u n )| 2 ≤ C(1 + k) γ-p(m-1)+1 .
Thanks to Lemma 2.4, there exists a function u such that

T k (u) ∈ H 1 0 (Ω), ∀ k, T k (u n ) → T k (u) weakly in H 1 0
(Ω) and u n → u a.e. in Ω. Therefore we can pass to the limit as n → ∞ in the previous inequality to get

Ω |∇T k (u)| 2 ≤ C(1 + k) γ-p(m-1)+1 . Lemma 2.2 gives us, if p < γ+1 m-1 |∇u| ∈ M 2pm γ+1+p (Ω) . Since |u n | pm is uniformly bounded in L 1 (Ω)
, we can say that |u| pm ∈ L 1 (Ω). One can show that u is an entropy solution, using the same method as in PART II of the proof of Theorem 1.4.

We are going to show Theorem 1.6. We will follow the technique used in [START_REF] Boccardo | On the regularizing effect of strongly increasing lower order terms[END_REF]. In the lemma below we prove the existence of a solution to problem (1.11) in the case where the datum f is a bounded function.

Lemma 3.1. Let f be a positive L ∞ (Ω) function. Then there exists a distributional solution u ∈ L ∞ (Ω) ∩ H 1 0 (Ω) to problem (1.11). Moreover 0 ≤ u(x) ≤ σ a.e. in Ω. Proof. The standard theorems on elliptic operators (see [START_REF] Lions | Quelques méthodes de resolution de problèmes aux limites non linéaires[END_REF]) imply the existence of a solution u n ∈ H 1 0 (Ω) to the approximating problems -div (a(x,

T n (v))∇v) + h n (v) = f in Ω v = 0 on Ω where h n (s) =    h(s), h(s) < n and s < σ n, h(s) ≥ n and s < σ n, s ≥ σ . The use of (u n -h -1 ( f ∞ )) + as test function yields Ω (h n (u n ) -f )(u n -h -1 ( f ∞ )) + ≤ 0.
From the previous inequality we have

0 ≥ {h(un)≥ f ∞ } (T n (h(u n )) -f )(u n -h -1 ( f ∞ )) = {n>h(un)≥ f ∞ } (h(u n ) -f )(u n -h -1 ( f ∞ )) + {h(un)≥n≥ f ∞ } (n -f )(u n -h -1 ( f ∞ )) ≥ 0. This implies that 0 ≤ h(u n ) ≤ f ∞ ,
and so

(3.4) 0 ≤ u n ≤ h -1 ( f ∞ ) ≤ σ -ε .
Choosing ϕ = u n we get an uniform bound for the H 1 0 (Ω) norm of u n . Indeed using assumption (1.4) on a and the fact that h(u n ) ≥ 0, (3.4) 

implies that α Ω |∇u n | 2 (1 + σ) γ ≤ f 1 σ .
This yields the existence of a function u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) such that, up to a subsequence, u n → u weakly in H 1 0 (Ω) and a.e. in Ω. Remark that u n = T n (u n ) for n large enough. Consequently u n satisfies

Ω a(x, u n )∇u n • ∇ϕ + Ω h n (u n )ϕ = Ω f ϕ ∀ ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) .
Let us show that u is a solution to (1.11), passing to the limit in the previous equality. About the first term it is sufficient to observe that a(x, u n )∇u n → a(x, u)∇u weakly in L 2 (Ω), because a(x, u n ) → a(x, u) in L 2 (Ω) and ∇u n → ∇u weakly in L 2 (Ω). One can use the same technique as in [START_REF] Boccardo | On the regularizing effect of strongly increasing lower order terms[END_REF] to pass to the limit in the second term using (3.4) and to show that h(u) ∈ L 1 (Ω).

We remark that the previous lemma gives us an upper bound for the solution u (that is u ≤ σε) independently on the datum f .

We are now able to show Theorem 1.6.

Proof. The following sequence of approximating problems -div (a(x, v)∇v) + h(v) = T n (f ) in Ω v = 0 on ∂Ω has a solution u n such that 0 ≤ u n ≤ σε for every n ∈ N, according to the previous lemma; u n satisfies (3.5)

Ω a(x, u n )∇u n • ∇ϕ + Ω h n (u n )ϕ = Ω T n (f ) ϕ ∀ ϕ ∈ H 1 0 (Ω) ∩ L ∞ (Ω) .
As in the previous lemma one has

α Ω |∇u n | 2 (1 + σ) γ ≤ ||f || 1 σ .
Therefore there exists a function u ∈ H 1 0 (Ω) such that, up to a subsequence, u n → u weakly in H 1 0 (Ω) and a.e. in Ω; moreover 0 ≤ u ≤ σ. To show that u is a solution to (1.11), we pass to the limit in (3.5). As in the previous Lemma, it is easy to prove that a(x, u n )∇u n → a(x, u)∇u weakly in L 2 (Ω). One can use the same technique as in [START_REF] Boccardo | On the regularizing effect of strongly increasing lower order terms[END_REF] to pass to the limit in the second term. Indeed showing the estimate Since lim s→σ |{s ≤ u n < σ}| = 0 we get that {h(u n )} is equi-integrable. This implies that h(u n ) → h(u) in L 1 (Ω), as required.

  |a(x, s)| ≤ β

  {s≤un<σ} h(u n ) ≤ {s≤un<σ} f one can prove that for any measurable set E ⊂ Ω E h(u n ) ≤ {s≤un<σ} f + h(s)|E| .