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THE REGULARIZING EFFECTS OF SOME LOWER ORDER

TERMS IN AN ELLIPTIC EQUATION WITH DEGENERATE

COERCIVITY

GISELLA CROCE

Abstract. In this article we study an elliptic problem with degenerate co-
ercivity. We will show that the presence of some lower order terms has a
regularizing effect on the solutions, if we assume that the datum f ∈ Lm(Ω)
for some m ≥ 1.

1. Introduction

Consider the problem

(1.1)

{

−∆u+ |u|p−1u = f in Ω
u = 0 on ∂Ω .

It is known that the lower order term |u|p−1u has a regularizing effect on the
solutions: indeed the solution u belongs to the Lebesgue space Lp(Ω) under the
weak assumption that the datum f ∈ L1(Ω) (see [11]); moreover ∇u ∈ Lq(Ω),
q < 2p

p+1 (see [9]).

A stronger effect can be observed if we consider a lower order term h(u) where
h : [0, σ) → R

+ is a continuous, increasing function with a vertical asymptote in
σ (σ > 0). Indeed in [3] it is shown that if f is an L1(Ω) positive function, then
there exists a bounded H1

0 (Ω) solution to

(1.2)

{

−∆u+ h(u) = f in Ω
u = 0 on ∂Ω .

All these results have been proved for general nonlinear coercive elliptic problems
too.

In this article we want to analyse the regularizing effects of the same kind of
lower order terms as in problems (1.1) and (1.2) in the case of an elliptic operator
with degenerate coercivity. More in details, let us consider the differential operator

(1.3) A(v) = −div (a(x, v)∇v) , v ∈ H1
0 (Ω)

under the following assumptions: Ω is an open bounded subset of RN , N ≥ 3, and
a : Ω × R → R is a Carathéodory function such that for a.e. x ∈ Ω and for every
s ∈ R

(1.4) a(x, s) ≥
α

(1 + |s|)γ
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and

(1.5) |a(x, s)| ≤ β

for some real positive constants α, β, γ. Assumption (1.4) implies that the differ-
ential operator A is well defined on H1

0 (Ω), but it fails to be coercive on the same
space when v is large (see [17]). Due to the lack of coercivity, the classical theory
for elliptic operators acting between spaces in duality (see [16]) cannot be applied.
Despite this difficulty, some papers (see [1], [5], [6], [7], [12], [14] and [15]) have
been written about Dirichlet problems with the differential operator A. In particu-
lar in [1], [5] and [7] it has been shown the existence of solutions to the differential
problem

(1.6)

{

−div (a(x, u)∇u) = f in Ω
u = 0 on ∂Ω

in the case where f ∈ Lm(Ω) with m ≥ 1 and γ ∈ (0, 1]. Indeed, let

(1.7) r =
Nm(1− γ)

N − 2m

and

(1.8) q =
Nm(1− γ)

N −m(1 + γ)
.

If f ∈ Lm(Ω), with 1 ≤ m ≤ max
{

N
N+1−γ(N−1) , 1

}

problem (1.6) admits a solution

u such that

|u|s ∈ L1(Ω), s < r

and

|∇u|s ∈ L1(Ω), s < q .

If N
N+1−γ(N−1) < m ≤ 2N

N(1−γ)+2(γ+1) , then

u ∈W
1,q
0 (Ω).

If 2N
N(1−γ)+2(γ+1) ≤ m < N

2 , then

u ∈ H1
0 (Ω) ∩ L

r(Ω) .

If m > N
2 , then

u ∈ H1
0 (Ω) ∩ L

∞(Ω) .

In the case where γ > 1, the effect of the degenerate coercivity is even worst:
indeed problem (1.6) may have no solution at all, even if the datum f is a constant
function (see [7] and [1]). In any case the degenerate coercivity of the operator A
gives solutions less regular than the solutions to uniformly elliptic problems.

In the spirit of problem (1.1), the first problem that we will consider in this
article is

(1.9)

{

−div (a(x, u)∇u) + |u|p−1u = f in Ω
u = 0 on ∂Ω .

We will study the existence of distributional solutions, that is the existence of some
function u in W 1,1

0 (Ω) (at least) such that |u|p ∈ L1(Ω) and
∫

Ω

a(x, u)∇u · ∇ϕ+

∫

Ω

|u|p−1uϕ =

∫

Ω

f ϕ
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for every ϕ ∈ C∞
0 (Ω). We will also use a weaker notion of solution, the entropy

solution. We recall that this type of solution has been introduced in [2]. To give
this definition we need the following lemma (see [2] for the proof). We define

Tk(s) = max{−k,min{k, s}}

Lemma 1.1. Let u : Ω → R be measurable function such that Tk(u) ∈ H1
0 (Ω) for

every k > 0. Then there exists an unique measurable v : Ω → R
N such that

∇Tk(u) = v χ{|u|<k} q.o. in Ω ∀ k > 0 ;

the map v is called the weak gradient of u. If u ∈W
1,1
0 (Ω), then the weak gradient

of u coincides with its standard distributional gradient.

Definition 1.2. Let f be an Lm(Ω) function, with m ≥ 1. A measurable function
u : Ω → R such that |u|p ∈ L1(Ω) and Tk(u) ∈ H1

0 (Ω) for every k > 0 is an entropy
solution to problem (1.9) if

∫

Ω

a(x, u)∇u · ∇Tk(u− ϕ) +

∫

Ω

|u|p−1u Tk(u − ϕ) ≤

∫

Ω

f Tk(u − ϕ)

for every k > 0 and for every ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω).

Note that this definition is useful in the case where the solution of problem (1.9)
does not necessary belong to a Sobolev space. Indeed, about the gradient of the
solution, it has a sense under the weak hypothesis that ∇Tk(u) ∈ L2(Ω), we don’t
need that ∇u ∈ L1(Ω), as for distributional solutions.

Definition 1.3. The Marcinkiewicz space M s(Ω), s > 0, is made up of all mea-
surable functions v : Ω → R such that |{|v| ≥ k}| ≤ C

ks for all k > 0, for a positive
constant C > 0.

One can show that, if |Ω| is finite and if 0 < ε < s− 1

(1.10) Ls(Ω) ⊂M s(Ω) ⊂ Ls−ε(Ω) .

We can now state our existence results for problem (1.9).

Theorem 1.4. Let f ∈ L1(Ω).

(1) If p > γ + 1, then there exists a distributional solution u to problem (1.9)
such that

u ∈W
1,s
0 (Ω) ∩ Lp(Ω) , s <

2p

γ + 1 + p
.

(2) If 0 < p ≤ γ + 1, then there exists an entropy solution u to problem (1.9)
such that

|u|p ∈ L1(Ω) and |∇u| ∈M
2p

γ+1+p (Ω).

Observe that the presence of the lower order term |u|p−1u guarantees the exis-
tence of a distributional solution if f is a L1(Ω) function. On the contrary, problem
(1.6) may have no distributional solution, because the summability of the gradient
of the solutions may be lower than 1.

In the case where f ∈ Lm(Ω) with m > 1, we will prove the following existence
result.

Theorem 1.5. Let f ∈ Lm(Ω), with m > 1.
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(1) If p ≥
γ + 1

m− 1
, then there exists a distributional solution u to problem (1.9)

such that
u ∈ H1

0 (Ω) ∩ L
pm(Ω) .

(2) If
γ

m− 1
< p <

γ + 1

m− 1
, then there exists a distributional solution u to

problem (1.9) such that

|u|pm ∈ L1(Ω) and u ∈ W
1, 2pm

γ+1+p

0 (Ω) .

(3) If 0 < p ≤
γ

m− 1
, then there exists an entropy solution u to problem (1.9)

such that
|u|pm ∈ L1(Ω) and |∇u| ∈M

2pm

γ+1+p (Ω).

In this case too the lower order term |u|p−1u has a regularizing effect. Indeed, if
p > γ

m−1 , we have a distributional solution for any m > 1. This is not always the

case for problem (1.6). If p is larger, that is p > γ+1
m−1 we even find a finite energy

(i.e., H1
0 (Ω)) solution, for any m > 1.

Notice that in the case where γ = 0, we get the same results obtained in [13],
for elliptic coercive problems; moreover these results are a generalization of [6].

In the spirit of problem (1.2), the second problem that we will study in this
paper is

(1.11)

{

−div (a(x, u)∇u) + h(u) = f in Ω
u = 0 on Ω

under the following assumptions on the lower order term h. Let σ be a real positive
constant; we assume that the function h : [0, σ) → R is increasing, continuous,
h(0) = 0 and lims→σ− h(s) = +∞.

We will show the existence of a solution u such that h(u) ∈ L1(Ω) and
∫

Ω

a(x, u)∇u · ∇ϕ+

∫

Ω

h(u)ϕ =

∫

Ω

f ϕ

for every ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω).

Theorem 1.6. Let f be a positive L1(Ω) function. Then there exists a solution
u ∈ H1

0 (Ω) ∩ L
∞(Ω) to problem (1.11).

This result shows that the presence of the lower order term h(u) has a strong
regularizing effect: it is sufficient to compare the summability that we have found
to summabilities (1.7) and (1.8) for the solution to the same problem, without the
lower order term h(u).

Notice that the same results of Theorems 1.4, 1.5 and 1.6 can be obtained for
more general lower order terms, depending also on the variable x.

2. Preliminaries

We will use the following approximating problems to prove Theorems 1.4 and
1.5:

(2.1)

{

−div (a(x, Tn(v))∇v) + |v|p−1v = Tn(f) in Ω
v = 0 on ∂Ω .

The following lemma will be very useful, as it gives us an a priori estimate on the
summability of the solutions to problems (2.1).
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Lemma 2.1. Let f ∈ Lm(Ω), m ≥ 1. Then, for every n ∈ N, there exists a
solution un ∈ H1

0 (Ω) to problems (2.1) such that

(2.2)

∫

Ω

|un|
pm ≤

∫

Ω

|f |m ;

un satisfies

(2.3)

∫

Ω

a(x, Tn(un))∇un · ∇ϕ+

∫

Ω

|un|
p−1unϕ =

∫

Ω

Tn(f)ϕ

for every ϕ ∈ H1
0 (Ω) .

Proof. The operator

v → −div (a(x, Tn(v))∇v) + |v|p−1v , v ∈ H1
0 (Ω)

satisfies the hypothesis of standard theorems for elliptic operators (see [16]); there-
fore there exists a solution un ∈ H1

0 (Ω) to problems (2.1) which satisfies (2.3).
To show estimate (2.2), we will consider the cases m > 1 e m = 1 separately.

Case m > 1: Choosing ϕ = |un|
p(m−1)sgn(un) in (2.3) one gets

∫

Ω

|un|
pm ≤

∫

Ω

|f ||un|
p(m−1);

the Hölder inequality on the right hand side yields
∫

Ω

|un|
pm ≤ ‖f‖m

[
∫

Ω

|un|
pm

]1− 1
m

which implies (2.2).

Case m = 1: Choosing ϕ =
Tk(un)

k
in (2.3) we get

∫

Ω

|un|
p−1un

Tk(un)

k
≤

∫

Ω

Tn(f)
Tk(un)

k
≤

∫

Ω

|f | .

Fatou’s lemma implies, for k → 0, estimate (2.2). �

In the study of entropy solutions to problem (1.9) we will need the following
lemmas.

Lemma 2.2. Let u be a measurable function in M s(Ω), s > 0, and suppose that
there exists a positive constant ρ > 0 such that

∫

Ω

|∇Tk(u)|
2 ≤ C kρ ∀ k > 0 , ∀n ∈ N .

Then |∇u| ∈M
2s

ρ+s (Ω).

Remark 2.3. Lemma 2.2 is true for sequences too. That is, if un is a sequence of
measurable functions such that

|{|un| ≥ k}| ≤
C

ks
∀n ∈ N

s > 0, and there exists a positive constant ρ > 0 such that
∫

Ω

|∇Tk(un)|
2 ≤ C kρ ∀ k > 0 ,

then

|{|∇un| ≥ k}| ≤
C

k
2s

ρ+s

∀n ∈ N .
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Proof. See [7]. �

Lemma 2.4. Let un be a sequence of measurable functions such that Tk(un) is
bounded in H1

0 (Ω) for every k > 0. Then there exists a measurable function u such
that Tk(u) ∈ H1

0 (Ω) and, up to a subsequence, un → u a.e. in Ω and Tk(un) →
Tk(u) weakly in H1

0 (Ω).

Proof. See [2]. �

3. Proofs

To show Theorems 1.4 and 1.5, we will pass to the limit in (2.3). All along the
proofs C will denote a constant depending only on p,m, α, ‖f‖m and γ.

Let us begin with the proof of Theorem 1.4.

Proof. We divide our proof into two parts: in the first one we will study the case
where p > γ + 1, showing the existence of a distributional solution to problem
(1.9), and in the second one we will show the existence of an entropy solution for
0 < p ≤ γ + 1.

PART I: Let p > γ+1. If we choose ϕ = [(1+ |un|)
1−λ − 1]sgn(un), with λ > 1,

in (2.3) we get, using assumption (1.4) on a

(3.1) C

∫

Ω

|∇un|
2

(1 + |un|)γ+λ
≤

∫

Ω

|f | .

Now, let q < 2; writing
∫

Ω

|∇un|
q =

∫

Ω

|∇un|
q

(1 + |un|)
q

2
(γ+λ)

(1 + |un|)
q

2
(γ+λ)

and using the Hölder inequality with exponent 2
q
, we get from (3.1)

∫

Ω

|∇un|
q ≤ C

(
∫

Ω

(1 + |un|)
q

2−q
(γ+λ)

)1− q

2

.

Thanks to Lemma 2.1, the right hand side is uniformly bounded if q
2−q

(γ+λ) = p,

that is q = 2p
γ+p+λ

. Since λ > 1, then q > 1 and so we get that un is uniformly

bounded in W
1,β
0 (Ω), for β < 2p

γ+p+1 . As a consequence there exists a function

u ∈ W
1,β
0 (Ω), β < 2p

γ+p+1 such that un → u weakly inW 1,β
0 (Ω), up to a subsequence.

Moreover un → u a.e. in Ω and this implies that u ∈ Lp(Ω).
We are going to show that u is a distributional solution to problem (1.9) passing

to the limit in (2.3). We will suppose that ϕ ∈ C∞
0 (Ω). For the first term of the

left-hand side, it is sufficient to observe that ∇un → ∇u weakly in Lβ(Ω) and
a(x, Tn(un))∇ϕ→ a(x, u)∇ϕ in Lm(Ω) for every m, due to assumption (1.5) on a.
The limit of the second term is a little more delicate. Even if the principal part of
our differential operator is degenerate, on can show the following estimate, in the
spirit of [8]:

(3.2)

∫

{|un|>t}

|un|
p ≤

∫

{|un|>t}

|f | .



THE REGULARIZING EFFECTS OF THE SOME ORDER TERMS... 7

Indeed, let ψi be a sequence of increasing, positive, uniformly bounded C∞(Ω)
functions, such that

ψi(s) →







1, s ≥ t

0, |s| < t

−1, s ≤ −t .

Choosing ψi(un) in (2.3), we get
∫

Ω

|un|
p−1un ψi(un) ≤

∫

Ω

Tn(f)ψi(un) .

The limit on i implies (3.2). We are going to use this inequality to show that if E
is any measurable subset of Ω, then

lim
|E|→0

∫

E

|un|
p = 0 uniformly with respect to n .

Using assumption (3.2), for any t > 0 we have
∫

E

|un|
p ≤ tp |E|+

∫

E∩{|un|>t}

|un|
p ≤ tp |E|+

∫

{|un|>t}

|f | .

The previous lemma and the fact that f ∈ L1(Ω) allow us to say that for any given
ε > 0, there exists tε such that

∫

{|un|>tε}

|f | ≤ ε .

In this way
∫

E

|un|
p ≤ tpε |E|+ ε

and so

lim
|E|→0

∫

E

|un|
p ≤ ε ∀ ε > 0 .

We thus proved that lim
|E|→0

∫

E

|un|
p = 0 uniformly with respect to n. Vitali’s theorem

implies that |un|
p−1un → |u|p−1u in L1(Ω) and so we can pass to the limit in the

second term of the left-hand side of (2.3). We get a distributional solution to
problem (1.9) in this way.

Part II: Let p > 0. Let us choose Tk(un) as test function in (2.3):
∫

Ω

a(x, Tn(un))∇un · ∇Tk(un) +

∫

Ω

|un|
p−1un Tk(un) =

∫

Ω

Tn(f)Tk(un) .

In this way we have
∫

Ω

a(x, Tn(un))∇un · ∇Tk(un) ≤ C k ,

and so
∫

Ω

|∇Tk(un)|
2 ≤ Ck(1 + k)γ .

Lemma 2.4 implies the existence of a measurable function u such that ∀ k > 0,
Tk(u) ∈ H1

0 (Ω), and, up to a subsequence, Tk(un) → Tk(u) weakly in H1
0 (Ω),

and un → u a.e. in Ω. Fatou’s lemma implies that |u|p ∈ L1(Ω). To prove that
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|∇u| ∈M
2p

γ+p+1 (Ω), one can pass to the limit, as n→ ∞, in the previous inequality
to get

∫

Ω

|∇Tk(u)|
2 ≤ C k (1 + k)γ .

Using Lemma 2.2, |∇u| ∈M
2p

γ+1+p (Ω).
We claim that u is an entropy solution. Indeed, let us choose Tk(un − ϕ),

ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω) as test function in (2.3):
∫

Ω

a(x, Tn(un))∇un ·∇Tk(un−ϕ)+

∫

Ω

|un|
p−1un Tk(un−ϕ) =

∫

Ω

Tn(f)Tk(un−ϕ) .

For the second term of the left hand side and for the right hand side, one can use
the Fatou’s lemma to pass to the limit. For the first term of the left hand side, we
can use the same technique as in [7] (Theorem 1.17). Indeed, let us write it as

∫

Ω

a(x, Tn(un))|∇Tk(un − ϕ)|2 +

∫

Ω

a(x, Tn(un))∇ϕ · ∇Tk(un − ϕ) .

Passing to the limit in the first term, we have, since Tk(un) → Tk(u) weakly in
H1

0 (Ω) and un → u a.e. in Ω,

lim inf
n→∞

∫

Ω

a(x, Tn(un))|∇Tk(un − ϕ)|2 ≥

∫

Ω

a(x, u)|∇Tk(u− ϕ)|2 ;

the second term tends to

∫

Ω

a(x, u)∇ϕ · ∇Tk(u − ϕ) . Therefore

lim inf
n→∞

∫

Ω

a(x, Tn(un))∇un · ∇Tk(un − ϕ) ≥

∫

Ω

a(x, u)∇u · ∇Tk(u− ϕ) .

�

Let us show Theorem 1.5, that is the existence of solutions to problem (1.9) in
the case where f ∈ Lm(Ω), m > 1.

Proof. We will divide our proof into three parts, according to the different values
of p.

PART I: Suppose p ≥
γ + 1

m− 1
. If we choose ϕ = [(1 + |un|)

γ+1 − 1]sgn(un) in

(2.3) we get, using assumption (1.4) on a

C

∫

Ω

|∇un|
2

(1 + |Tn(un)|)γ
(1 + |Tn(un)|)

γ ≤

∫

Ω

|Tn(f)| [(1 + |un|)
γ+1 − 1] .

As a consequence
∫

Ω

|∇un|
2 ≤ C

∫

Ω

|f ||un|
γ+1 .

The Hölder inequality on the right hand side and Lemma 2.1 imply that

∫

Ω

|f ||un|
γ+1 ≤ ‖f‖m





∫

Ω

|un|
(γ+1) m

m−1





m−1

m

<∞
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if (γ + 1) m
m−1 ≤ pm. Under this assumption

∫

Ω

|∇un|
2 ≤ C , ∀n ∈ N .

Up to a subsequence, there exists a function u ∈ H1
0 (Ω) such that un → u weakly

in H1
0 (Ω) and a.e. in Ω. Moreover u ∈ Lpm(Ω).

We are going to show that u is a solution to problem (1.9), passing to the limit
in (2.3). For the first term of the left-hand side, it is sufficient to observe that
a(x, Tn(un))∇ϕ → a(x, u)∇ϕ in Lr(Ω), for any r ≥ 1, due to assumption (1.5) on
a. For the second term, since |un|

p−1un is uniformly bounded in Lm(Ω) with m > 1
and un → u a.e., we can deduce that |un|

p−1un → |u|p−1u in L1(Ω).

PART II: Suppose
γ

m− 1
< p <

γ + 1

m− 1
. If we choose ϕ = [(1 + |un|)

p(m−1) −

1]sgn(un) in (2.3), we get, using assumption (1.4) on a
∫

Ω

|∇un|
2

(1 + |un|)γ−p(m−1)+1
≤ C

∫

Ω

|f | |un|
p(m−1) .

Now, using the Hölder inequality in the right hand side of the previous inequality
and Lemma 2.1, we get

(3.3)

∫

Ω

|∇un|
2

(1 + |un|)γ−p(m−1)+1
≤ C





∫

Ω

|un|
pm





1− 1
m

≤ C ∀n ∈ N .

From the other hand, let σ < 2; writing
∫

Ω

|∇un|
σ =

∫

Ω

|∇un|
σ

(1 + |un|)
σ

2
[γ−p(m−1)+1]

(1 + |un|)
σ

2
[γ−p(m−1)+1]

and using the Hölder inequality with exponent 2
σ
, we get from (3.3)

∫

Ω

|∇un|
σ ≤ C

(
∫

Ω

(1 + |un|)
σ

2−σ
[γ−p(m−1)+1]

)1− σ

2

.

Thanks to Lemma 2.1, if
σ

2− σ
[γ− p(m− 1)+ 1] = pm, that is σ =

2pm

γ + p+ 1
, the

last quantity is uniformly bounded. Notice that σ < 2, since we are assuming that

p <
γ + 1

m− 1
. If

2pm

γ + p+ 1
> 1, the fact that

∫

Ω

|∇un|
2pm

γ+p+1 ≤ C ∀n ∈ N

implies the existence of a function u ∈W
1, 2pm

γ+p+1

0 (Ω) such that, up to a subsequence,

un → u weakly in W
1, 2pm

γ+p+1

0 (Ω) and a.e. in Ω; moreover |u|pm ∈ L1(Ω). One can
show that u is a distributional solution to problem (1.9), as in PART I.

PART III: Suppose that p ≤
γ

m− 1
. We show that there exists an entropy

solution to problem (1.9). Estimate (3.3) (obtained indipendently from the value
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of p) implies that
∫

{|un|>k}

|∇un|
2

(1 + |un|)γ−p(m−1)+1
≤ C

and consequently
∫

{|un|<k}

|∇Tk(un)|
2 ≤ C(1 + k)γ−p(m−1)+1 .

Thanks to Lemma 2.4, there exists a function u such that Tk(u) ∈ H1
0 (Ω), ∀ k,

Tk(un) → Tk(u) weakly in H1
0 (Ω) and un → u a.e. in Ω. Therefore we can pass to

the limit as n→ ∞ in the previous inequality to get
∫

Ω

|∇Tk(u)|
2 ≤ C(1 + k)γ−p(m−1)+1 .

Lemma 2.2 gives us, if p < γ+1
m−1

|∇u| ∈M
2pm

γ+1+p (Ω) .

Since |un|
pm is uniformly bounded in L1(Ω), we can say that |u|pm ∈ L1(Ω). One

can show that u is an entropy solution, using the same method as in PART II of
the proof of Theorem 1.4. �

We are going to show Theorem 1.6. We will follow the technique used in [4]. In
the lemma below we prove the existence of a solution to problem (1.11) in the case
where the datum f is a bounded function.

Lemma 3.1. Let f be a positive L∞(Ω) function. Then there exists a distributional
solution u ∈ L∞(Ω) ∩H1

0 (Ω) to problem (1.11). Moreover 0 ≤ u(x) ≤ σ a.e. in Ω.

Proof. The standard theorems on elliptic operators (see [16]) imply the existence
of a solution un ∈ H1

0 (Ω) to the approximating problems
{

−div (a(x, Tn(v))∇v) + hn(v) = f in Ω
v = 0 on Ω

where

hn(s) =







h(s), h(s) < n and s < σ

n, h(s) ≥ n and s < σ

n, s ≥ σ .

The use of (un − h−1(‖f‖∞))+ as test function yields
∫

Ω

(hn(un)− f)(un − h−1(‖f‖∞))+ ≤ 0.

From the previous inequality we have

0 ≥

∫

{h(un)≥‖f‖
∞

}

(Tn(h(un))− f)(un − h−1(‖f‖∞))

=

∫

{n>h(un)≥‖f‖
∞

}

(h(un)− f)(un − h−1(‖f‖∞))

+

∫

{h(un)≥n≥‖f‖
∞

}

(n− f)(un − h−1(‖f‖∞)) ≥ 0.



THE REGULARIZING EFFECTS OF THE SOME ORDER TERMS... 11

This implies that

0 ≤ h(un) ≤ ‖f‖∞ ,

and so

(3.4) 0 ≤ un ≤ h−1(‖f‖∞) ≤ σ − ε .

Choosing ϕ = un we get an uniform bound for the H1
0 (Ω) norm of un. Indeed using

assumption (1.4) on a and the fact that h(un) ≥ 0, (3.4) implies that

α

∫

Ω

|∇un|
2

(1 + σ)γ
≤ ‖f‖1 σ .

This yields the existence of a function u ∈ H1
0 (Ω) ∩ L∞(Ω) such that, up to a

subsequence, un → u weakly in H1
0 (Ω) and a.e. in Ω. Remark that un = Tn(un)

for n large enough. Consequently un satisfies
∫

Ω

a(x, un)∇un · ∇ϕ+

∫

Ω

hn(un)ϕ =

∫

Ω

f ϕ ∀ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω) .

Let us show that u is a solution to (1.11), passing to the limit in the previous equal-
ity. About the first term it is sufficient to observe that a(x, un)∇un → a(x, u)∇u
weakly in L2(Ω), because a(x, un) → a(x, u) in L2(Ω) and ∇un → ∇u weakly in
L2(Ω). One can use the same technique as in [4] to pass to the limit in the second
term using (3.4) and to show that h(u) ∈ L1(Ω). �

We remark that the previous lemma gives us an upper bound for the solution u
(that is u ≤ σ − ε) independently on the datum f .

We are now able to show Theorem 1.6.

Proof. The following sequence of approximating problems
{

−div (a(x, v)∇v) + h(v) = Tn(f) in Ω
v = 0 on ∂Ω

has a solution un such that 0 ≤ un ≤ σ − ε for every n ∈ N, according to the
previous lemma; un satisfies

(3.5)

∫

Ω

a(x, un)∇un · ∇ϕ+

∫

Ω

hn(un)ϕ =

∫

Ω

Tn(f)ϕ ∀ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω) .

As in the previous lemma one has

α

∫

Ω

|∇un|
2

(1 + σ)γ
≤ ||f ||1 σ .

Therefore there exists a function u ∈ H1
0 (Ω) such that, up to a subsequence, un → u

weakly in H1
0 (Ω) and a.e. in Ω; moreover 0 ≤ u ≤ σ. To show that u is a solution to

(1.11), we pass to the limit in (3.5). As in the previous Lemma, it is easy to prove
that a(x, un)∇un → a(x, u)∇u weakly in L2(Ω). One can use the same technique
as in [4] to pass to the limit in the second term. Indeed showing the estimate

∫

{s≤un<σ}

h(un) ≤

∫

{s≤un<σ}

f
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one can prove that for any measurable set E ⊂ Ω
∫

E

h(un) ≤

∫

{s≤un<σ}

f + h(s)|E| .

Since lim
s→σ

|{s ≤ un < σ}| = 0 we get that {h(un)} is equi-integrable. This implies

that h(un) → h(u) in L1(Ω), as required. �
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Gauthier-Villars, Paris, 1969.

[17] A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence
form. Special issue in honor of Calogero Vinti Atti Sem. Mat. Fis. Univ. Modena 46 suppl.
(1998) 915–936.

[18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre
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