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A PARTICULAR CLASS OF SOLUTIONS OF A SYSTEM OF

EIKONAL EQUATIONS

THIERRY CHAMPION AND GISELLA CROCE

Abstract. In this paper we study the following Dirichlet problem:






∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

= 1 a.e. inΩ, i = 1, . . . , N

u = 0 on ∂Ω,

where Ω is an open bounded subset of RN and u ∈ W 1,∞(Ω). This problem
has infinitely many solutions: our aim is to isolate those which minimize some
functional involving the discontinuity sets of ∂u

∂xi
, for i = 1, . . . , N .

1. Introduction

In this paper we are interested in the following system of eikonal equations

(1.1)







∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

= 1 a.e. inΩ, i = 1, . . . , N

u = 0 on ∂Ω,

where Ω is a connected open bounded subset of RN with Lipschitz boundary and
u ∈ W1,∞(Ω) ∩ C0(Ω). This problem admits infinitely many solutions (see [6] and
[9] for example for a proof). An interesting question is then to isolate a particular
class of solutions which have some additional properties, since such an analysis
could be useful to select and characterize a prefered solution.

There exist some evident difficulties to this kind of question. For example the
lack of convexity of the set S(Ω) of the solutions of (1.1) implies that the natural
functionals

v →
∫

Ω

|v|p p ≥ 1,

have in general neither a minimizer nor a maximizer over S(Ω). Indeed any min-
imizing sequence converges to 0, which does not belong to S(Ω), and the cluster
points of maximizing sequences are the distance function to ∂Ω (in the l1 norm of
R

N ) or its opposite, which usually do not verify (1.1) (see remark 3.6).
Another natural way to select a particular solution in S(Ω) would be to use the

notion of viscosity solution (for the definition and further details see [9]). Indeed
one could study the existence of W 1,∞(Ω) viscosity solutions of a problem like

(1.2)

{

F (Du) = 0 a.e. inΩ

u = 0 on∂Ω
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2 THIERRY CHAMPION AND GISELLA CROCE

where F : RN → R is such that F (x) = 0 if and only if x = (x1, . . . , xN ) verifies
|xi| = 1 ∀ i = 1, . . . , xN . This is indeed possible in dimension N = 1, where the
only viscosity solution of the problem

(1.3)

{

|u′| − 1 = 0 a.e. in ]− 1, 1[

u(−1) = u(1) = 0

is u(x) = 1− |x|. Nevertheless when N ≥ 2 there is in general no viscosity solution
of (1.2), unless Ω is convex and the normals to ∂Ω are in the set E = {x : |xi| =
1/

√
N}; we refer to [5] and [13] for further details.

In the literature we find few articles with the purpose of isolating particular
solutions of problem (1.1) and selecting one. In [7] and [8] the authors study
numerically a variational problem over the set of non-negative solutions of (1.1) in
the 2-dimensional case: they obtain a maximizing sequence for the problem

(1.4) sup

{
∫

Ω

u, u ≥ 0, u ∈ S(Ω)

}

through the numerical minimization of the functional

u 7→ −
∫

Ω

u+
1

2

∫

|∇u|2 + ε

2

∫

|∆u|2 + 1

2ε

N
∑

i=1

∫
(∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

− 1

)2

.

Unfortunately, as we said above, there is in general no optimal solution for the
variational problem (1.4), since the limit for any maximizing sequence is the distance
to ∂Ω (in the l1 norm).

A different approach is followed in [10] where the authors construct an explicit
solution. Indeed they define a special partition of Ω made up of convex sets whose
normals to ∂Ω are in E; over each of these sets they consider the relative viscosity
solution. In this way the constructed solution has local properties (which depend
on the chosen partition), but no global ones. In any case we want to point out that
this study is made in a more general framework than problem (1.1).

Our purpose in this work is to characterize a particular class of solutions of
(1.1) through a variational method, i.e., as the optimal solutions of a variational
problem. We shall define over S(Ω) a functional involving the discontinuity sets
of the gradient of the solutions of (1.1) and we minimize it. Let us briefly explain
the kind of results that we shall present in this article. We distinguish two cases,
according to the properties of Ω. In the case where ∂Ω is composed by a finite set
of faces with normals in E (see section 3), we consider the functional

v 7→
N
∑

i=1

HN−1(J ∂v

∂xi

)

(where J ∂v

∂xi

is the jump set of ∂v
∂xi

) and we show that it admits a minimizer.

In the general case, that is, when Ω is any connected open subset of RN with
Lipschitz boundary, we cannot minimize the discontinuity sets of Du for u ∈ S(Ω)
in the same way. Indeed the previous functional is in general infinite over S(Ω),
as shown in section 4. Consequently we construct a positive “weight” function
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h ∈ C0(Ω) such that the functional

v →
N
∑

i=1

∫

J ∂v
∂xi

h(x)dHN−1(x)

admits a minimizer over S(Ω).
We also study the relationship between the viscosity solution (when it exists)

and the optimal solutions of the minimization problem: we show that they coincide
if N = 1, 2 (see Proposition 3.8).

Our study allows us to isolate particular solutions of problem (1.1), but unfor-
tunately we are not able to say if it selects a particular one, in the sense that the
variational problems we propose could admit more than one solution. In section 5
we then present a method to select a function among the optimal solutions of the
variational problems that we studied (see 4.).

Finally we refer to a recent work [3] which does not address the problem of the
selection of a particular solution of (1.1) but is also concerned with some local
properties of the discontinuity sets of Du, u ∈ S(Ω).

2. Notations

Throughout this paper Ω denotes a bounded connected open subset of RN with
Lipschitz boundary. We will denote by (xi)1≤i≤N the coordinates of a point x ∈ R

N ,
and 〈x, y〉 the usual scalar product of x, y ∈ R

N . The norm ‖x‖l1 of x ∈ R
N stands

for the usual l1 norm, that is ‖x‖l1 =
∑N

i=1 |xi| .
In the following, we shall use the short notation W 1,∞

0 (Ω) for W 1,∞(Ω)∩C0(Ω).

When considering a function v ∈ W 1,∞
0 (Ω), we shall always assume that we are

handling its continuous representative; notice that, due to the hypothesis on Ω,
such a function v is a Lipschitz continuous function.

Let us briefly recall some properties and notations of the spaces BV and SBV for
future use (in any case we refer to [2] and to [11] for further details). If w ∈ BV (Ω),
we write ‖w‖BV (Ω) for the usual BV norm of w defined by

‖w‖BV (Ω) = ‖w‖L1(Ω) + |Dw|(Ω) .
Moreover we will use the usual weak* convergence in BV defined as follows (see
[2]):

Definition 2.1 (weak* convergence in BV ). Let (un)n, u ∈ BV (Ω). We say that
(un)n weakly* converges to u in BV (Ω) if un → u in L1(Ω) and the measures Dun

weakly* converge to the measure Du in M(Ω,RN ), that is

lim
n→∞

∫

Ω

ϕdDun =

∫

Ω

ϕdDu ∀ϕ ∈ C0(Ω) .

A BV function belongs to SBV when the Cantor part of its derivative is zero.
This implies that the measure Dw of an SBV (Ω) function can be decomposed in
the following way:

Dw = Daw +Djw

= ∇wLN + (w+ − w−)νw HN−1⌊Jw = ∇wLN + [w]νwHN−1⌊Jw
where Daw is the absolute continuous part of Dw with respect to the Lebesgue
measure LN in R

N , Djw = [w]νwHN−1⌊Jw is the jump part of Dw, HN−1 the
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Hausdorff measure of dimension N − 1, w+ and w− denote the upper and lower
approximate limits of w, Jw the jump set of w and νw its generalized normal.

Referring to our problem, we will denote by S(Ω) the set of W 1,∞(Ω) solutions
of (1.1), that is

S(Ω) :=

{

v ∈ W 1,∞
0 (Ω) :

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

= 1 a.e. in Ω, i = 1, . . . , N

}

.

In this paper we will consider the piecewise C1 elements v of S(Ω) and more
generally those elements v of S(Ω) such that Dv ∈ SBVloc(Ω)

N . To define a
piecewise C1 function, we first recall the definition of Caccioppoli partitions and
piecewise constant function (we refer to [2] for further details):

Definition 2.2 (Caccioppoli partition). Let I ⊂ N. A partition {Ei}i∈I of Ω is a

Caccioppoli partition if
∑

i∈I

|DχEi
|(Ω) < ∞.

In the above definition, χA denotes the characteristic function of a set A, that
is χA(x) = 1 when x ∈ A, χA(x) = 0 when x /∈ A.

Definition 2.3 (Piecewise constant function). We say that u : Ω → R is piecewise
constant in Ω if there exist a Caccioppoli partition {Ei}i∈I of Ω and a function

t : I → R such that u =
∑

i∈I

tiχEi
.

Notice that a piecewise constant function is an SBV function (see [2] for further
details).

We define the set of piecewise C1 functions by

C1
pw(Ω) :=

{

v ∈ W 1,∞(Ω) :
∂v

∂xi
is piecewise constant in Ω, i = 1, . . . , N

}

.

As has already been said, we shall handle the solutions of (1.1) such that Dv ∈
SBVloc(Ω)

N . We now want to write their distributional gradient: for any index
i ∈ {1, . . . , N} we use the short notation Jv

i instead of J ∂v

∂xi

. Therefore for a function

v ∈ S(Ω) such that Dv ∈ SBVloc(Ω)
N one has

(2.1) D

(

∂v

∂xi

)

= 2 ν ∂v

∂xi

HN−1⌊Jv
i on ω ∀ i = 1, . . . , N

for any open subset ω ⊂ ω ⊂ Ω.
In the rest of the paper, the distance in l1 norm to a subset of RN will play an

important role: if A is an open bounded subset of RN , we define dl1 (· , A) : RN → R

by

∀x ∈ R
N , dl1(x,A) := min {‖x− y‖l1 : y ∈ A} .

3. A particular case

In this section we will assume that Ω satisfies the following property:

(H)







the boundary ∂Ω is the union of a finite family of polyhedrons
of dimension N − 1, each of which is included in a hyperplane
with normals in E,
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where E := {x ∈ R
N : ∀i, |xi| = 1/

√
N}, and we will minimize the HN−1 measure

of the discontinuity sets of ∂v
∂xi

, for v ∈ S(Ω). We define

Epw(Ω) := {v ∈ S(Ω) : v ∈ C1
pw(Ω)} .

We now state the main result of this section.

Theorem 3.1. Let Ω be an open bounded connected subset of RN which satisfies
hypothesis (H). Then the variational problem

(P1) inf

{

F(v) :=

N
∑

i=1

HN−1(Jv
i ) : v ∈ Epw(Ω)

}

.

has finite value and admits an optimal solution.

Remark 3.2. Under assumption (H), problem (P1) always has at least two optimal
solutions: indeed, if u is a solution then −u is also a solution.

Remark 3.3. When Ω fails to satisfy hypothesis (H), then problem (P1) is not well
posed as we will show in section 4.

In the proof of Theorem 3.1 we will use the following lemmas.

Lemma 3.4. Let Ω be an open bounded connected subset of R
N with Lipschitz

boundary. Then

−dl1(· , ∂Ω) ≤ v ≤ dl1(· , ∂Ω) on Ω

for every function v ∈ S(Ω).

Proof. Let v ∈ S(Ω). We denote by A a set of zero Lebesgue measure such that v

is differentiable on Ω \A with
∣

∣

∣

∂v
∂xi

∣

∣

∣
= 1 for all i.

Take x ∈ Ω, and let y ∈ ∂Ω be such that dl1(x, ∂Ω) = ‖x− y‖l1 . For any t ∈ ]0, 1]
we define the map γt : [0, 1] → Ω by γt(s) := sx+(1−s)xt, where xt := tx+(1−t)y.
For a fixed t ∈ ]0, 1[ and ε > 0, we apply Lemma 3.2 in [4] to get the existence of
a Lipschitz continuous path γt,ε : [0, 1] → Ω \A such that

γt,ε(0) = xt, γt,ε(1) = x and ‖γ′
t,ε − γ′

t‖L∞(0,1) ≤ ε.

Then the function v ◦ γt,ε is Lipschitz continuous on [0, 1] and we can compute

v(x) − v(xt) =

∫ 1

0

(v ◦ γt,ε)′(s)ds =

∫ 1

0

∇v(γt,ε(s)).γ
′
t,ε(s)ds .

Now
∣

∣

∣

∂v
∂xi

(γt,s(s))
∣

∣

∣
= 1 for all i and so

v(x)− v(xt) ≤
∫ 1

0

∥

∥γ′
t,ε(s)

∥

∥

l1
ds ≤ Nε+

∫ 1

0

‖γ′
t(s)‖l1 ds = Nε+

∥

∥x− xt
∥

∥

l1
.

Letting t and ε go to 0 this yields v(x) ≤ dl1(x, ∂Ω). In an analogous way one can
prove that −v(x) ≤ dl1(x, ∂Ω) �

Lemma 3.5. Let Ω be an open bounded connected subset of R
N which satisfies

hypothesis (H). Then dl1(· , ∂Ω)) belongs to Epw(Ω) and F(dl1(· , ∂Ω)) < +∞.

Remark 3.6. Notice that for a general bounded open subset Ω, dl1( · , ∂Ω) does not
necessarily satisfy

∣

∣

∣

∂v
∂xi

∣

∣

∣
= 1 a.e. in Ω for all i. Indeed, it is sufficient to consider

Ω = (0, 1)2 ⊂ R
2 : we have that dl1((x1, x2), ∂Ω) = x2 in the set T = {(x1, x2) :

0 ≤ x1 ≤ 1/2, 0 ≤ x2 ≤ x1} .
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Proof. Since Ω satisfies hypothesis (H), we can write ∂Ω =

m
⋃

j=1

Fj where each face

Fj is a polyhedron of dimension N − 1 included in a hyperplane Hj with normal
in E. We shall assume that two faces Fj and Fk that intersect are not included in
the same hyperplane of RN .

Let j ∈ {1, . . . ,m}. We first notice that since the normal of the hyperplane Hj

is included in E, one has
∣

∣

∣

∂
∂xi

dl1( · , Hj)
∣

∣

∣
= 1 a.e. in Ω for all i. Let us prove that

dl1( · , ∂Ω) = min
1≤j≤m

dl1(· , Fj) also satisfies this system of eikonal equations in Ω.

We fix x in Ω and distinguish three cases:
Case 1. Assume that dl1(x, ∂Ω) = dl1(x, Fj) for a unique index j. Then

dl1(x, Fj) is attained in the relative interior of Fj , so that in a neighborhood of
x one has dl1(· , ∂Ω) = dl1 ( · , Hj), and thus in this neighborhood dl1(· , ∂Ω) is reg-
ular and satisfies the system of eikonal equations (1.1).

Case 2. Assume that dl1(x, ∂Ω) = dl1(x, Fj) = dl1(x, Fk) is attained in Fj ∩ Fk

with j 6= k. Then dl1(x, Fj) = dl1(x, Fk) is attained in the intersection Hj ∩ Hk.
We notice that the set of the elements y of RN such that dl1(x, Fj) = dl1(x, Fk) is
attained in Fj ∩ Fk is included in the hyperplane Aj,k generated by Hj ∩Hk and
ξj + ξk, where ξl denotes a normal vector to Hl for l ∈ {j, k}. Since LN (Aj,k) = 0
this set is negligeble in view of the system of eikonal equations (1.1).

Case 3. Assume that dl1(x, ∂Ω) = dl1(x, Fj) = dl1 (x, Fk) for j 6= k such that the
hyperplanes Hj and Hk are parallel and that case 2 is excluded. Then dl1(x, Fl) is
attained in the relative interior of Fl for l ∈ {j, k}, and thus one has dl1(x,Hj) =
dl1(x,Hk). As a consequence, x belongs to the set Bj,k := {y : dl1(y,Hj) =
dl1(y,Hk)}, which is an hyperplane parallel to Hj and Hk, so that LN (Bj,k) = 0.
This means that this set is negligeble in view of the system of eikonal equations
(1.1).

As a consequence of the above discussion, almost every x in Ω enters case 1, so
that dl1 ( · , ∂Ω) is a solution of (1.1). Moreover, if i ∈ {1, . . . , N} then one has

J
d
l1
( · ,∂Ω)

i = J
d
l1
( · ,∂Ω)

i ∩
⋃

j,k

(Aj,k ∪Bj,k)

⊂
⋃

j,k

[Ω ∩ (Aj,k ∪Bj,k)] .

Since Ω is bounded and the sets Aj,k and Bj,k are hyperplanes of RN , we infer that
the last union has finite HN−1 measure. This being true for all index i, we get that
F(dl1( · , ∂Ω)) is finite. �

We can now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. As a direct consequence of Lemma 3.5, we get that the in-
fimum inf(P1) is finite. We now apply the direct methods of the Calculus of Vari-
ations to prove the existence of an optimal solution of (P1).

Let (vn)n∈N ⊂ Epw(Ω) be a minimizing sequence for (P1). We deduce from
Lemma 3.4 that (vn)n is uniformly bounded in L∞(Ω). Moreover this sequence is

uniformly Lipschitz continuous on Ω since ∂Ω is Lipschitz and |∇vn| ≤
√
N a.e.

in Ω for any n. Applying Ascoli-Arzelà and Banach-Alaoglu Theorems, and up to
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a subsequence, we can assume that vn → v∞ in C0(Ω) and vn → v∞ weakly* in

W 1,∞(Ω) for some v∞ ∈ W 1,∞
0 (Ω).

Step 1: we show that v∞ ∈ Epw(Ω). We first prove that
∣

∣

∣

∂v∞

∂xi

∣

∣

∣
= 1 a.e. in Ω. Let

us fix i ∈ {1, . . . , N}. We observe that since (vn)n is a minimizing sequence, there
exists a constant C > 0 such that F(vn) ≤ C for every n ∈ N. This implies that

(3.1)

∥

∥

∥

∥

∂vn

∂xi

∥

∥

∥

∥

BV (Ω)

= LN (Ω) + 2HN−1(Jvn

i ) ≤ LN (Ω) + 2C.

Applying Theorem 6.1 to the sequence ∂vn

∂xi
we have that ∂vn

∂xi
→ gi weakly* in

BV (Ω) for some function gi ∈ BV (Ω) (up to a subsequence). Since we already

know that ∂vn

∂xi
→ ∂v∞

∂xi
weakly* in L∞(Ω), we infer that ∂v∞

∂xi
= gi. Moreover

∂vn

∂xi
→ ∂v∞

∂xi
in L1(Ω) so that |∂v∞

∂xi
| = 1 a.e. in Ω.

To prove that v∞ belongs to C1
pw(Ω) it is sufficient to apply Theorem 6.3 to

the sequence ∂vn

∂xi
. Indeed, ∂vn

∂xi
is a piecewise constant function for every n and

∥

∥

∥

∂vn

∂xi

∥

∥

∥

L∞(Ω)
+ HN−1(Jvn

i ) is uniformly bounded since F(vn) ≤ C. As a conse-

quence, up to a subsequence, ∂vn

∂xi
converges in measure to a piecewise constant

function which is necessarily ∂v∞

∂xi
. This proves that v∞ ∈ Epw(Ω).

Step 2: we show that v∞ is a minimizer of F . Since (vn)n is a minimizing sequence
for F it is sufficient to prove that

(3.2) lim inf
n→∞

HN−1(Jvn

i ) ≥ HN−1(Jv∞

i )

for all i = 1, . . . , N . Thanks to (2.1) one has for any n ∈ N ∪ {+∞}
∣

∣

∣

∣

D
∂vn

∂xi

∣

∣

∣

∣

(Ω) = 2HN−1(Jvn

i ) .

Moreover we know that ∂vn

∂xi
→ ∂v∞

∂xi
weakly* in BV (Ω). Applying Theorem 6.4

with f ≡ 1 we get (3.2). �

We now study the relationship between the viscosity solutions of problem (1.1)
and the optimal solutions of problem (P1). We restrict ourselves to the one and
two-dimensional cases, where the geometric arguments are intuitive.

In the one-dimensional case, it is evident that the viscosity solution u(x) = 1−|x|
and its opposite minimize the number of jumps of the solutions of (1.3), as their
derivatives have just one jump. For the 2-dimensional case, we recall the following
result about the existence of a viscosity solution (see Example 1.3 and Theorem 3.3
of [13]) .

Proposition 3.7. Let F : R2 → R be a continuous function such that F (ξ1, ξ2) = 0
if and only if |ξi| = 1, i = 1, 2 and F (ξ1, ξ2) < 0 if |ξi| < 1 for i = 1, 2. Let Ω be an

open bounded connected subset of R2. Then there is no W 1,∞(Ω) viscosity solution
of problem

{

F (Dv) = 0 a.e. inΩ

v = 0 on ∂Ω,

unless Ω is a rectangle whose normals are in the set E = {x = (x1, x2) ∈ R
2 : |xi| =

1√
2
, i = 1, 2} . In this case the only viscosity solution is dl1(· , ∂Ω).
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It also happens that dl1(· , ∂Ω) and its opposite are the only optimal solutions
of (P1) if Ω is a rectangle with normals in E, as the following result shows. Notice
that if Ω ⊂ R

2 is convex and satisfies property (H), then Ω is necessarily such a
rectangle.

Proposition 3.8. Let Ω be a rectangle with normals in E. Then ±dl1(· , ∂Ω) are

the only optimal solutions of (P1).

We will use the following lemma in the proof:

Lemme 3.9. If P : R2 → R is the projection (x1, x2) → x2, and E is a measurable
set of R2 then

∫

R

H0(E ∩ P−1{y})dy ≤ H1(E).

Proof. It is sufficient to apply Theorem 2.10.25 of [12] with f = P , X = R
2, Y = R,

k = 0 and m = 1. �

We are now able to prove Proposition 3.8:

Proof. To simplify the notations, we set d := dl1(· , ∂Ω). Let v ∈ Epw(Ω) different
from d and −d: we want to prove that

F(v) =

2
∑

i=1

H1(Jv
i ) >

2
∑

i=1

H1(Jd
i ) = F(d) = F(−d).

We first claim that H1(Jv
1 ) > H1(Jd

1 ). To this end, we define

A := {t ∈ R : ∃ s ∈ R such that x := (s, t) ∈ Ω and −d(x) < v(x) < d(x)} .
Since the functions v, d and −d are continuous, the set A can be written as

⋃

i∈I

]ti, t
′
i[

where I ⊂ N is non empty, and ti < t′i for all i ∈ I. We notice that

H1(Jv
1 ∩ (R×A

c
)) = H1(Jd

1 ∩ (R×A
c
))

where A
c
= R \A. We also notice that H1(Jd

i ∩ (R× ∂A)) = 0, so that in fact

H1(Jv
1 ∩ (R×Ac)) ≥ H1(Jd

1 ∩ (R×Ac)).

For L1-almost every t ∈ A, function w : s 7→ v(s, t) is differentiable on ]a, b[ with
derivative ±1, where a and b are such that ](a, t), (b, t)[= Ω ∩ (R× {t}). Moreover,
−d((s, t)) < w(s) < d((s, t)) for some s ∈ ]a, b[ , so that w′ = ∂v

∂x1
has at least two

jumps in ]a, b[ . As a consequence, applying Lemma 3.9, we get

H1(Jv
1 ∩ (R×A)) ≥

∫

t∈A

H0(Jv
1 ∩ (R× {t}))dt

≥
∫

t∈A

2dt = 2L1(A).

On the other hand, the geometry of Jd
1 implies that

H1(Jd
1 ∩ (R×A)) ≤

√
2L1(A).

As a consequence we get H1(Jv
1 ) > H1(Jd

1 ). The inequality H1(Jv
2 ) > H1(Jd

2 )
follows in the same way. �

We observe that dl1(· , ∂Ω) is not in general an optimal solution of (P1), as the
following two examples show.
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Example 3.10. Consider the subsets Ω+ := {x ∈ R
2 : ‖x‖l1 ≤ 3} and Ω− := {x ∈

R
2 : ‖x− (2, 2)‖l1 ≤ 1} and set Ω := int(Ω+ ∪Ω−). Define u as

u(x) = dl1(x, ∂Ω+)χΩ+
(x) − dl1(x, ∂Ω−)χΩ−

(x) .

Then F(u) = 16, while F(dl1(· , ∂Ω)) = 16 + 2
√
2.

The fact that the function dl1(· , ∂Ω) is not a solution of problem (P1), is not
a question of sign, as one could think from the previous example (notice that u is
not positive on Ω). Indeed in the next example we will exhibit a positive function
v ∈ Epw(Ω) such that F(dl1 (· , ∂Ω)) > F(v).

Example 3.11. Define the four following squares C1 := {x ∈ R
2 : ‖x‖l1 ≤ 12},

C2 := {x ∈ R
2 : ‖x − (10, 10)‖l1 ≤ 8}, C3 := {x ∈ R

2 : ‖x − (2, 11)‖l1 ≤ 1},
C4 := {x ∈ R

2 : ‖x − (11, 2)‖l1 ≤ 1}. Let Ω := int(C1 ∪ C2 ∪ C3 ∪ C4). It is easy

to see that F(dl1(· , ∂Ω)) = 120 + 16
√
2. Now, let us define

u(x) = dl1(x, ∂(C1 ∪C2))χC1∪C2
(x) + dl1(x, ∂C3)χC3

(x) + dl1(x, ∂C4)χC4
(x).

Then u is non-negative, u is a solution of (1.1) and F(u) = 88 + 24
√
2, and thus

dl1(· , ∂Ω) is not optimal for (P1) among the non-negative functions of Epw(Ω).

4. The general case

We now turn to the general case where Ω is any bounded open connected subset
of RN with Lipschitz boundary. In the previous section we saw that the functional
F attains its minimum in Epw(Ω), if the set Ω satisfies assumption (H). In the
general case we can’t expect F to be finite in S(Ω), as the following example
shows.

Example 4.1. Let Ω = (0, 1)2: we claim that F(v) = +∞ for every v ∈ S(Ω).
Indeed, let us consider, for t ∈ (0, 1/2) fixed, the points (s, t) in Ω with s ∈ (0, 1).
Then for almost every t ∈ (0, 1/2) the function wt : s 7→ v(s, t) has the following
properties: w′

t = ∂v
∂x1

( · , t), |w′
t| = 1 a.e., wt(0) = wt(1) = 0 and |wt| ≤ t, due to

Lemma 3.4. This implies that w′
t has at least

[

1
2t

]

jumps, if [x] denote the integer
part of a real number x. Therefore, applying Lemma 3.9, we have

H1(Jv
1 ) ≥

∫ 1/2

0

H0(Jv
1 ∩ ((0, 1)× t))dt ≥

∫ 1/2

0

[

1

2t

]

dt = +∞ ,

and so F(v) =

2
∑

i=1

H1(Jv
i ) = +∞ .

In view of the last example, a possible way to generalize the analysis of the
previous section is to measure the jump set of Du for u ∈ S(Ω) through a “weight”
function h ∈ C0(Ω) which penalizes the jumps of Du in the interior of Ω.

We propose the following construction for the function h. Let (Ωn)n≥1 be a
sequence of open subsets of Ω satisfying hypothesis (H) and approximating Ω in
the following way:

∀n ≥ 1
1

n+ 1/2
≤ d(Ωn, ∂Ω) ≤

1

n
.
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We set Ω0 = ∅. Notice that the sequence (Ωn)n≥1 is increasing, and that for any

n ≥ 1 the open set ωn := Ωn \ Ωn−1 satisfies hypothesis (H). Then for any n ≥ 1,
consider the problem

(Pn
1 ) inf

{

N
∑

i=1

HN−1(Jv
i ) : v ∈ Epw(ωn)

}

.

It follows from Theorem 3.1 that δn := inf(Pn
1 ) < +∞ for any fixed n ≥ 1. We

now define h ∈ C0(Ω, ]0,+∞[ ) by

h(x) :=























1/[4(α1 + α2)] if x ∈ Ω1,

1

dl1 (x, ∂Ωn) + dl1(x, ∂Ωn+1)

[

dl1(x, ∂Ωn+1)

(n+ 1)2(αn + αn+1)
+

dl1(x, ∂Ωn)

(n+ 2)2(αn+1 + αn+2)

]

if x ∈ ωn+1, n ≥ 1,

where αn := max{1, δn +HN−1(∂Ωn)} for any n ≥ 1.
Define

E(Ω) := {v ∈ S(Ω) : Dv ∈ SBVloc(Ω)
N} .

We will show the following result:

Theorem 4.2. Let Ω be an open bounded connected subset of RN with Lipschitz

boundary. Let h defined as above. Then the variational problem

(Ph) inf

{

Fh(v) :=

N
∑

i=1

∫

Jv

i

h(x)dHN−1(x) : v ∈ E(Ω)
}

.

has finite value and has a optimal solution.

Remark 4.3. As for problem (P1), (Ph) has at least two optimal solutions: if v is a
solution, then −v is a solution too.

Remark 4.4. If Ω satisfies hypothesis (H), one can choose h ≡ 1 as Theorem 3.1
shows.

Proof. We divide the proof into two steps: in the first one we show that inf(Ph) is
finite and in the second one we prove the existence of an optimal solution.
Step 1: We show that there exists a function u ∈ E(Ω) such that Fh(u) is finite.
For any n ≥ 1 let ωn be the sets considered in the definition of h. Let un be an
optimal solution of the associated problem (Pn

1 ), extended by 0 on R
N \ωn. (such a

solution exists due to Theorem 3.1). We then define u ∈ E(Ω) by u :=
∑+∞

n=1 un(x),

and claim that Fh(u) < +∞. Indeed, using that h ≤ 2
αnn2 on ωn for any n ≥ 1,
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one can estimate, for every i

∫

Ju

i

h(x) dHN−1(x) =

+∞
∑

n=1

∫

Ju

i
∩(ωn∪∂Ωn)

h(x) dHN−1(x)

=
+∞
∑

n=1







∫

Jun

i
∩ωn

h(x) dHN−1(x) +

∫

Ju

i
∩∂Ωn

h(x) dHN−1(x)







≤
+∞
∑

n=1

2

n2







∫

Jun

i
∩ωn

1

δn
dHN−1(x) +

∫

Ju

i
∩∂Ωn

1

HN−1(∂Ωn)
dHN−1(x)







≤
+∞
∑

n=1

4

n2
< +∞.

As a consequence inf(Ph) has finite value.
Step 2: We show that there exists an optimal solution of problem (Ph) applying the
direct methods of the Calculus of Variations. Let (vn)n ⊂ E(Ω) be a minimizing
sequence for (Ph). As in the proof of Theorem 3.1 we can assume that, up to a

subsequence, vn → v∞ in C0(Ω) and weakly* in W 1,∞(Ω) for some v∞ ∈ W 1,∞
0 (Ω).

It remains to prove that v∞ is an optimal solution of (Ph).
Let us prove that v∞ ∈ E(Ω). Since (vn)n is a minimizing sequence we can

assume that there exists C > 0 such that Fh(v
n) ≤ C for every n ∈ N. Fix an open

subset ω of Ω with Lipschitz boundary and such that ω ⊂ ω̄ ⊂ Ω, and let α > 0 be
such that 0 < α ≤ h ≤ 1 in ω̄. We can then write

C ≥ Fh(v
n) ≥ α

N
∑

i=1

∫

Jvn

i
∩ω

dHN−1(x), ∀n ∈ N.

Let us fix i ∈ {1, . . . , N}. Since ∂vn

∂xi
∈ SBV (ω) and takes only the two values ±1

for any n, we can then write
∥

∥

∥

∥

∂vn

∂xi

∥

∥

∥

∥

BV (ω)

= LN (ω) + 2HN−1(Jvn

i ∩ ω) ≤ LN (ω) + 2C.

We now apply Theorem 6.2 to the sequence (∂v
n

∂xi
)n: condition i) is the inequality

given above; condition ii) is straightforward since ∇∂vn

∂xi
= 0 a.e. in ω; for condition

iii) it is sufficient to choose f ≡ 1, for example, because in this way

∀n ∈ N,

∫

Jvn

i
∩ω

f

([

∂vn

∂xi

])

dHN−1(x) = HN−1(Jvn

i ∩ ω) ≤ C.

As a consequence ∂vn

∂xi
→ gi weakly* in BV (ω) for some function gi ∈ SBV (ω) .

Since we already know that ∂vn

∂xi
→ ∂v∞

∂xi
weakly* in L∞(Ω), we infer that ∂v∞

∂xi
∈

SBV (ω). Moreover ∂vn

∂xi
→ ∂v∞

∂xi
in L1(ω) so that |∂v∞

∂xi
| = 1 a.e. in ω. This being

true for any index i and any such open subset ω of Ω, we infer that v∞ belongs to
E(Ω).
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To prove that v∞ is a minimizer of Fh, let us show that

(4.1) lim inf
n→∞

∫

Jvn

i
∩ω

h(x) dHN−1(x) ≥
∫

Jv∞

i
∩ω

h(x) dHN−1(x) i = 1, . . . , N

for any ω as above. To this aim we observe that for every n ∈ N ∪ {∞} one has
∫

Jvn

i
∩ω

h(x)dHN−1(x) =
1

2

∫

ω

h(x) d

∣

∣

∣

∣

D
∂vn

∂xi

∣

∣

∣

∣

(x).

Therefore (4.1) follows from Theorem 6.4. This is sufficient to conclude the proof,
since

lim inf
n→∞

∫

Jvn

i

h(x) dHN−1(x) ≥ sup
ω⊂Ω

∫

Jv∞

i
∩ω

h(x) dHN−1(x) =

∫

Jv∞

i

h(x) dHN−1(x)

where the supremum is taken over the open subsets ω ⊂ ω ⊂ Ω with Lipschitz
boundary. We then infer from the last inequality that lim inf

n→∞
Fh(v

n) ≥ Fh(v
∞),

that is, v∞ is a minimizer of Fh. �

5. Open problems

We would like to present here some open problems related to our work: some
questions about problems (P1) and (Ph) and the question of the selection of a
particular solution of the differential problem (1.1).
1. Suppose that Ω satisfies property (H). We showed in section 3 that there exists
a function u ∈ C1

pw(Ω) solution of problem (P1). Can we say that the number of
the connected components of Du is finite? This seems to be natural, as shown in
Proposition 3.5.

Another natural question is: has problem (P1) a finite number of solutions? Does
it admit just two optimal solutions (a solution and its opposite)? This is true when
Ω is a rectangle and N = 2 as shown in Proposition 3.8. With the same arguments
as in the proof of this proposition, it is easy to show that the functions ±u, where
u is the solution defined in Example 3.10, are the only optimal solutions of problem
(P1).

Another related question is to extend the result of Proposition 3.8 to higher
dimension, that is to prove that if Ω a convex open subset of RN satisfying (H)
then the distance functions ±dl1(., ∂Ω) are the only solutions of problem (P1). We
notice that under the above hypothesis on Ω, the function dl1(., ∂Ω) is a concave
solution of (1.1): this implies that on a non-void interval R×y∩Ω (where y ∈ R

N−1)
the partial derivative ∂

∂x1
dl1(., ∂Ω) has only one jump. As a consequence the jump

set of ∂
∂x1

dl1(., ∂Ω) is also in some sense minimal since on each such interval it is
reduced to one point, and so it has minimal cardinality.

2. In section 4 we studied the general case, that is when Ω is any subset of RN . A
natural question is the study of the asymptotic behavior of a family (uh)h of the
optimal solutions of (Ph) when h → 1 locally uniformly in Ω. The limit problem is
then obviously (P1), which in general is ill-posed (since it has no feasible solution),
but one expects uh to converge uniformly to a function u ∈ E(Ω) having some local
minimization properties in the open subsets ω ⊂ ω ⊂ Ω.
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3. In section 4 we saw that for a general open set Ω, F(v) may be infinite for any
v ∈ S(Ω). This means that for some index i one has HN−1(Jv

i ) = ∞. On the other
hand we know that HN (Jv

i ) = 0, so a natural question is to identify the Hausdorff
dimension s ∈ [N − 1, N ] for which Ht(Jv

i ) is finite if t < s, infinite if t > s. Then
one may try to minimize this dimension s overS(Ω), and then proceed as in section
3 with the optimal s in place of N − 1.

4. In this article we proposed to minimize the measure of the discontinuity sets
of the gradients of the elements of S(Ω) through the functionals F and Fh. Now,
let {Gi}i∈I be the connected components of the Du−1(E) for u ∈ S(Ω), where we
recall that E = {x : ∀i, |xi| = 1√

N
}. One could instead consider functionals of the

form
∑

i∈I

g(HN−1(Gi)) with g(t) =

{

tβ , t ≤ 1
t, t ≥ 1

where β ∈]0, 1[ . The advantage of this last type of functional with respect to our
choice is that we can penalize the number of components Gi thanks to g.

5. One of the aim of this work was to select a particular solution of (1.1). The idea
developed in the previous section is first to restrict ourselves to those solutions of
(1.1) that minimize problem (Ph). Now how can we select a particular solution of
(Ph) (up to its sign)? Does problem (Ph) admit more than two solutions? Notice
that in any case the selection of these two solutions of our problem (1.1) depends
on the choice of h, so that it would be even more interesting to select a solution
obtained by letting h go to 1 (see 4. above).

In the case where problem (Ph) admits more than two solutions one can think
of the following way to select a particular solution. Let S0 be the set of solutions
of problem (Ph), and let (fn)n≥1 be an orthogonal basis of L2(Ω) starting from
f1 = 1. With the same arguments as in the proof of Theorem 4.2, it is not difficult
to show that problem

(B1) sup

{
∫

Ω

uf1, u ∈ S0

}

admits a solution. Let S1 be the set of optimal solutions of problem (B1). If S1 is
composed by more then one function, we consider

(B2) sup

{
∫

Ω

uf2, u ∈ S1

}

and so on. If two functions u, v ∈ S0 satisfy
∫

Ω

ufi =

∫

Ω

vfi ∀i ≥ 1

then one gets u = v. Therefore this method allows us to select a particular solution
of (Ph).

6. Appendix

We recall here some compactness and semicontinuity results about BV , SBV
and piecewise constant functions; for the proofs, see respectively Theorem 3.23 in
[2], Theorem 1.4 in [1], Theorem 4.25 and Theorem 2.38 in [2].
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Theorem 6.1 (compactness for BV functions). Let Ω be a bounded open subset of

R
N with Lipschitz boundary. Assume that (un)n is an uniformly bounded sequence

in BV (Ω). Then there exist a subsequence (unk
)k and a function u ∈ BV (Ω) such

that unk
→ u weakly* in BV (Ω).

Theorem 6.2 (compactness for SBV functions). Let Ω be a bounded open subset
of RN with Lipschitz boundary. Let (un)n be a sequence of functions in SBV (Ω)
and assume that
i) the functions un are uniformly bounded in BV (Ω);
ii) the gradients ∇un are equi-integrable;

iii) there exists a function f : [0,∞) → [0,∞] such that f(t)/t → ∞ as t → 0+ and
∫

Jun

f([un])dHN−1 ≤ C < ∞ ∀n ∈ N.

Then there exists a subsequence (unk
)k and a function u ∈ SBV (Ω) such that

unk
→ u weakly* in BV (Ω), with the Lebesgue and jump parts of the derivatives

converging separately, i.e. Daunk
→ Dau and Djunk

→ Dju weakly* in M(Ω,RN ).

Theorem 6.3 (compactness for piecewise constant functions). Let Ω be a bounded

open subset of RN with Lipschitz boundary. Let (un)n be a sequence of piecewise
constant functions in Ω such that ‖un‖L∞(Ω) + HN−1(Jun

) is uniformly bounded.

Then there exist a subsequence (unk
)k and a piecewise constant function u such

that unk
→ u in measure.

Theorem 6.4 (semicontinuity in BV ). Let Ω be a bounded open subset of RN . Let
(un)n be a sequence of functions in BV (Ω) such that un → u weakly* in BV (Ω).
Then

∫

Ω

f(x)d|Dju|(x) ≤ lim inf
n→∞

∫

Ω

f(x)d|Djun|(x)

for any non-negative continuous function f : Ω → [0,+∞[ .
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