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In this article we are interested in the following problem: to find a map u

where Ω is an open set of R 2 and E is a compact isotropic set of R 2×2 . We will show an existence theorem under suitable hypotheses on ϕ.

Introduction

In this article we study the following problem: let Ω be an open set of R 2 ; we investigate the existence of maps u : Ω → R 2 (weakly differentiable) that satisfy (1.1) Du ∈ E a.e. in Ω u(x) = ϕ(x) x ∈ ∂Ω where ϕ : Ω → R 2 is sufficiently regular and E is a compact isotropic set of R 2×2 (that is AEB ⊆ E for every A, B ∈ O(2)). In an equivalent way E can be written as (1.2) E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K} , for some compact set K ⊂ T = {(x, y) ∈ R 2 : 0 ≤ x ≤ y}, where we have denoted by λ 1 (ξ) ≤ λ 2 (ξ) the singular values of the matrix ξ, that is the eigenvalues of the matrix ξξ t , which are (1.3)

λ 1 (ξ) = 1 2 ξ 2 + 2| det(ξ)| - ξ 2 -2| det(ξ)| λ 2 (ξ) = 1 2 ξ 2 + 2| det(ξ)| + ξ 2 -2| det(ξ)| .
We will assume throughout the article that (1.4) min{x, (x, y) ∈ K} > 0 .

Thanks to the properties of the singular values (see [START_REF] Horn | Topics in matrix analysis[END_REF]), the problem (1.1) can be rewritten in the following equivalent way: x ∈ ∂Ω .

We will show the following existence theorem for the problem (1.1):

Theorem 1.1. Let E be defined by (1.2) where K ⊂ T is a compact set such that min{x, (x, y) ∈ K} > 0 . Let Ω ⊂ R 2 be an open set. Let ϕ ∈ C 1 piec (Ω; R 2 ) such that Dϕ(x) ∈ E ∪ int RcoE in Ω (where Rco E denotes the rank one convex hull of E and int RcoE its interior). Then there exists a map u ∈ ϕ + W 1,∞ 0 (Ω; R 2 ) such that Du ∈ E a.e. in Ω.

Our result will be a generalization of an existence theorem by Dacorogna and Marcellini (see [START_REF] Dacorogna | Implicit partial differential equations[END_REF]), where they investigated the case in which K contains only one point, but K ⊆ R n , n ≥ 2.

To establish our theorem we will use an abstract existence result proved by Dacorogna and Marcellini [START_REF] Dacorogna | Implicit partial differential equations[END_REF] and then refined by Dacorogna and Pisante [START_REF] Dacorogna | A general existence theorem for differential inclusions in the vector valued case[END_REF], which is based on a functional analytic method, that uses the Baire category theorem. However we recall that the kind of problem like (1.1) can also be solved by another method, established by Gromov [START_REF] Gromov | Partial differential relations[END_REF] and then presented by Müller and Šverák (see [START_REF] Müller | Convex integration for Lipschitz mappings and counterexamples to regularity[END_REF] for example) in a more analytic manner.

Moreover it will be useful the representation of the rank one convex hull of the set E (we will show that the rank one convex hull coincides with the polyconvex one): for this, we will apply some results established by Cardaliaguet and Tahraoui in [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF].

Definitions and preliminary results

This section is devoted to the study of the polyconvex hull of an isotropic compact set of R 2×2 : this is useful to study the rank one convex hull, as we will see in the next section.

We first give the definitions of polyconvex hull and rank one convex hull of a set E ⊆ R 2×2 : we will follow the definitions of Dacorogna and Marcellini [START_REF] Dacorogna | Implicit partial differential equations[END_REF].

Definition 2.1. Let E ⊆ R 2×2 ; if R = R ∪ {+∞}, we define Pco E = {ξ ∈ R 2×2 : f (ξ) ≤ 0, ∀ f : R 2×2 → R polyconvex , f | E ≤ 0}; Rco E = {ξ ∈ R 2×2 : f (ξ) ≤ 0, ∀ f : R 2×2 → R rank one convex , f | E ≤ 0}.
Remark 2.2. i) We observe that, according to this definition, the rank one convex hull of a compact set is not necessarily closed (some examples can be found in [START_REF] Kolář | Non-compact lamination convex hulls[END_REF]). According to our definition Rco E is the smallest rank one convex set which contains E (see [START_REF] Dacorogna | Implicit partial differential equations[END_REF]). Some authors call our envelop the laminate convex hull of E. ii) We will use also the following representation for Rco E (see [START_REF] Dacorogna | Implicit partial differential equations[END_REF]

): RcoE = i∈N R i coE, where R 0 coE = E, R i+1 coE = {tA+(1-t)B : A, B ∈ R i coE, rk(A-B) ≤ 1, t ∈ [0, 1]} .
iii) If E is bounded, then (see [START_REF] Dacorogna | Implicit partial differential equations[END_REF])

Pco E = {ξ ∈ R 2×2 : f (ξ) ≤ 0, ∀ f : R 2×2 → R polyconvex , f | E ≤ 0} = Pco E .
This means that for a compact set, our notion of polyconvexity coincides with that one of Cardaliaguet and Tahraoui in [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF]. We observe that the polyconvex hull of a compact set E is compact. iv) We recall that Rco E ⊆ Pco E for every set E.

We now pass to the study of the polyconvex hull of our set E. We recall the following result established in [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF]:

Proposition 2.3. Let K ⊂ T be a compact set and E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K} . Let (2.1) Σ = (θ, γ) ∈ R 2 + : γ ≥ θ 2 et ∀ (x, y) ∈ K y ≤ θ + γ -θ 2 x + θ σ(x) = inf (θ,γ)∈Σ θ + γ -θ 2 x + θ , ∀ x ≥ 0. Then PcoE = {ξ ∈ R 2×2 : λ 2 (ξ) ≤ σ(λ 1 (ξ))} .
It will be useful for our purposes to write in a different way the function σ defined by (2.1). We will use the notation m(θ) = max Proposition 2.4. Let K ⊂ T be a compact set satisfying (1.4) and σ be the function defined by (2.1). Then

(2.2) σ(x) = min θ∈[0, max (a,b)∈K b] θx + m(θ) x + θ .
Proof. We divide the proof into two steps: in the first one we study the set Σ defined in proposition 2.3, and in the second one we state the formula for the function σ.

Step 1: Study of the set Σ: By definition

Σ = (θ, γ) ∈ R 2 + : γ ≥ θ 2 et ∀ (a, b) ∈ K b ≤ θ + γ -θ 2 a + θ .
As for every (a, b) ∈ K we have a > 0 , thanks to (1.4)

Σ = (θ, γ) ∈ R 2 + : γ ≥ sup{θ 2 , max (a,b)∈K {ab + θ(b -a)}} .
We observe that if θ ≥ max and so max

(a,b)∈K {ab + θ(b -a)} ≤ θ 2 . If θ < max (a,b)∈K b then, considering (a, max (a,b)∈K b) ∈ K we have max (a,b)∈K {ab + θ(b -a)} ≥ a( max (a,b)∈K b -θ) + θ max (a,b)∈K b > θ max (a,b)∈K b > θ 2 . If θ = max (a,b)∈K b we have (2.3) max (a,b)∈K {ab + [ max (a,b)∈K b](b -a)} = [ max (a,b)∈K b] 2 .
From this study we can infer that

Σ = Σ 1 ∪ Σ 2 ,
where

Σ 1 = {(θ, γ) ∈ R 2 : θ ∈ [0, max (a,b)∈K b], γ ≥ max (a,b)∈K {ab + θ(b -a)}} Σ 2 = {(θ, γ) ∈ R 2 : θ ≥ max (a,b)∈K b, γ ≥ θ 2 } .
Step 2: Study of the function σ: We define

g x (θ, γ) = θx + γ x + θ for x ≥ 0,
and

Γ 1 = {(θ, max (a,b)∈K {ab + θ(b -a)}), θ ∈ [0, max (a,b)∈K b]} Γ 2 = {(θ, θ 2 ), θ ≥ max (a,b)∈K b} .
We observe that Γ 1 ∪ Γ 2 ⊂ Σ 1 ∪ Σ 2 . We are going to show that

σ(x) = inf Γ1∪Γ2 g x (θ, γ).
We know from proposition 2.3 that σ(x) = inf

(θ,γ)∈Σ θ + γ -θ 2 x + θ . Now, if x = 0 σ(0) = inf (θ,γ)∈Σ θ + γ -θ 2 θ = inf (θ,γ)∈Σ γ θ .
As (θ 0 fixed) the function γ θ 0 is increasing,

σ(0) = inf (θ,γ)∈Σ γ θ = inf Γ1∪Γ2 g 0 (θ, γ). If x > 0, σ(x) = inf (θ,γ)∈Σ θ + γ -θ 2 x + θ = inf (θ,γ)∈Σ g x (θ, γ) . We observe that ∂g x ∂γ > 0:
this implies that, if θ 0 ≥ 0 is fixed, g x (θ 0 , γ) is increasing (in γ), and so for x > 0

σ(x) = inf Σ g x (θ, γ) = inf Γ1∪Γ2 g x (θ, γ) ,
as wished. We observe that x + θ .

g x | Γ1 = θx + max
Moreover

g x | Γ2 = θx + θ 2 x + θ = θ, θ ≥ max (a,b)∈K b : consequently inf Γ2 g x = max (a,b)∈K b.
This study implies that

σ(x) = inf Γ1∪Γ2 g x (θ, γ) = inf    inf θ∈[0, max (a,b)∈K b] θx + max (a,b)∈K {ab + θ(b -a)} x + θ , max (a,b)∈K b    .
Due to (2.3)

x max θx + m(θ) x + θ .

We are going to show that

∀ x ≥ 0 inf θ∈[0, max (a,b)∈K b] θx + m(θ) x + θ = min θ∈[0, max (a,b)∈K b] θx + m(θ) x + θ ,
and so the formula of the statement. For x > 0 this is trivial. For x = 0 we have to study the function of θ

m(θ) θ = max (a,b)∈K {ab + θ(b -a)} θ : we observe that, max (a,b)∈K {ab + θ(b -a)} θ ≥ max (a,b)∈K ab θ → ∞, θ → 0.
This implies that there exists ε > 0 such that

(2.4) inf θ∈[0, max (a,b)∈K b] m(θ) θ = inf θ∈[ε, max (a,b)∈K b] m(θ) θ = min θ∈[ε, max (a,b)∈K b] m(θ) θ ,
and so we have the result.

In the next proposition we study the interior of Pco E .

Proposition 2.5. Let K ⊂ T be a compact set satisfying (1.4).

Let E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K} . Then, if σ is the function defined by (2.2), int PcoE = {ξ ∈ R 2×2 : λ 2 (ξ) < σ(λ 1 (ξ))} .
Proof. The proof is divided into two steps.

Step 1) To show that int PcoE ⊇ {ξ ∈ R 2×2 : λ 2 (ξ) < σ(λ 1 (ξ))} , as λ i (ξ) are continuous functions, i = 1, 2, it is sufficient to show that the function σ is continuous for x ≥ 0. This is easy for x > 0. To study the point x = 0, we are going to show that if x n → 0 + , then σ(x n ) → σ(0). We can say from (2.4) that there exists θ 0 ∈ (0, max

(a,b)∈K b] such that σ(0) = m(θ0) θ0 . Then, by definition of σ(x n ) σ(x n ) -σ(0) ≤ θ 0 x n + m(θ 0 ) x n + θ 0 - m(θ 0 ) θ 0 → 0, n → ∞ .
We are going to show that σ(

x n ) -σ(0) ≥ h(x n ), with h(x n ) → 0, if n → ∞: this will imply that σ(x n ) → σ(0)
, and so the continuity of σ in 0.

For every x n there exists θ n ∈ [0, max

(a,b)∈K b] such that σ(x n ) = θ n x n + m(θ n ) x n + θ n .
Then, by definition of σ(0)

σ(x n ) -σ(0) = θ n x n + m(θ n ) x n + θ n - min θ∈[0, max (a,b)∈K b] m(θ) θ ≥ θ n x n + m(θ n ) x n + θ n - m(θ n ) θ n = x n θ n (x n + θ n ) [θ 2 n -m(θ n )] .
We will show that h(

x n ) = xn θn(xn+θn) [θ 2 n -m(θ n )] → 0, n → ∞ . As θ 2 n -m(θ n ) is bounded, it is now sufficient to prove that x n θ n (x n + θ n ) → 0, n → ∞ .
We observe that lim inf

n→∞ θ n > 0 . In fact, if lim inf n→∞ θ n = 0 , then there exists a sub- sequence n k such that lim k→∞ θ n k = 0; consequently σ(x n k ) = θ n k x n k + m(θ n k ) x n k + θ n k ≥ max (a,b)∈K ab x n k + θ n k → ∞, k → ∞ .
The matrix

ξ n k = x n k 0 0 σ(x n k ) belongs to Pco E and λ 2 (ξ n k ) → ∞ : recalling that λ 2 is a norm over R 2×2 (see [6]
), we got a contradiction because PcoE is bounded, as E is bounded. Then lim inf n→∞ θ n = a > 0 : this implies that, for n sufficiently large θ n ≥ a 2 and so

x n θ n (x n + θ n ) ≤ x n a 2 (x n + a 2 ) → 0, n → ∞ ,
that is the result.

Step 2) We now show that int Pco E ⊆ {ξ ∈ R 2×2 : λ 2 (ξ) < σ(λ 1 (ξ))} . Suppose that there exists a matrix η ∈ int Pco E such that λ 2 (η) = σ(λ 1 (η)); therefore the ball B ε (η) ⊆ Pco E, for some ε > 0. Let A, B ∈ O(2) be such that

AηB = λ 1 (η) 0 0 λ 2 (η) ;
we define

D = A -1 0 0 0 d B -1 , with 0 < d < ε. Then we have λ 1 (η + D) = λ 1 (AηB + ADB) = λ 1 (η) λ 2 (η + D) = λ 2 (AηB + ADB) = λ 2 (η) + d . The matrix η + D ∈ B ε (η) ⊆ Pco E, as d < ε: this implies that λ 2 (η + D) ≤ σ(λ 1 (η + D)). From other hand, λ 2 (η + D) = λ 2 (η) + d = σ(λ 1 (η)) + d = σ(λ 1 (η + D)) + d > σ(λ 1 (η + D)) ,
and this is a contradiction: therefore λ 2 (η) < σ(λ 1 (η)) .

Remark 2.6. The previous results imply that if ξ ∈ ∂Pco E, then there exists θ ∈ [0, max

(a,b)∈K b] such that λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) = m( θ) .

The rank one convex hull

In this section we are going to prove the representation theorem of the rank one convex hull of E. It will be useful to show our existence result. We recall that we use the notation m(θ) = max Theorem 3.1. Let K ⊂ T be a compact set satisfying (1.4). Let

E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K} . Then RcoE = ξ ∈ R 2×2 : λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) ≤ m(θ), ∀ θ ∈ [0, max (a,b)∈K b] , int RcoE = ξ ∈ R 2×2 : λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) < m(θ), ∀ θ ∈ [0, max (a,b)∈K b] .
We will first prove the following lemma:

Lemma 3.2. Let K = {(a 1 , b 1 ), (a 2 , b 2 )}, 0 < a 1 < a 2 , a 1 b 1 ≤ a 2 b 2 , b 2 ≤ b 1 , a 1 ≤ b 1 , a 2 ≤ b 2 and E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K}. Then Rco E = {ξ ∈ R 2×2 : λ 2 (ξ) ≤ b 1 , λ 1 (ξ)λ 2 (ξ) ≤ a 2 b 2 λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) ≤ a 1 b 1 + θ(b 1 -a 1 )} where θ = a 2 b 2 -a 1 b 1 b 1 -a 1 -b 2 + a 2 .
Remark 3.3. We remember that Dacorogna and Marcellini [START_REF] Dacorogna | Implicit partial differential equations[END_REF] proved that if K is composed by one point (a, b) we have

Rco E = {ξ ∈ R 2×2 : λ 2 (ξ) ≤ b, λ 1 (ξ)λ 2 (ξ) ≤ ab} .
Proof. In [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF] it is showed that the function σ (2.2) defined for E is

σ(x) = inf b 1 , a 2 b 2 x , θx + a 1 b 1 + θ(b 1 -a 1 ) θ + x .
Thanks to proposition 2.3, this implies that Pco E is the set of matrices ξ such that

λ 2 (ξ) ≤ b 1 , (3.1) λ 1 (ξ)λ 2 (ξ) ≤ a 2 b 2 , (3.2) λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) ≤ a 1 b 1 + θ(b 1 -a 1 ) . (3.3)
Therefore to prove the formula of RcoE it is sufficient to prove that PcoE = RcoE. For this we will show that ∂PcoE ⊆ RcoE : this will imply the not trivial inclusion PcoE ⊆ RcoE and so the result. In fact, let ξ ∈ intPcoE; as PcoE is compact, then for any rank one matrix λ ∈ R 2×2 , there exist

t 1 = t 1 (λ) < 0 < t 2 = t 2 (λ) such that ξ + t i λ ∈ ∂PcoE ⊆ RcoE, i = 1, 2. Defining ξ i = ξ + t i λ, i = 1, 2, we have ξ = t 2 t 2 -t 1 ξ 1 - t 1 t 2 -t 1 ξ 2 ∈ RcoE , because rk(ξ 1 -ξ 2 ) = 1.
Now, let ξ ∈ ∂PcoE: necessarily λ 2 (ξ) = σ(λ 1 (ξ)) and so ξ satisfies either (3.1) or (3.2) or (3.3) with equality. We are going to treat these cases separately (steps 1, 2, 3 respectively) to show that ξ ∈ RcoE. We can assume without loss of generality that ξ = diag(λ 1 (ξ), λ 2 (ξ)), as Rco E is isotropic: in fact, using the same notations as in the second point of remark 2.2, we have by induction on i that R i coE is isotropic and so RcoE is isotropic.

step 1) If ξ satisfies (3.1) with equality, (3.3) implies that λ 1 (ξ) ≤ a 1 ; then ξ ∈ RcoE, as

ξ = λ 1 (ξ) 0 0 b 1 = t a 1 0 0 b 1 + (1 -t) -a 1 0 0 b 1 , t ∈ (0, 1) .
In the next steps we can assume that ξ satisfies (3.1) with strict inequality. step 2) We suppose that ξ satisfies (3.2) with equality. Moreover we can assume that ξ satisfies (3.3) with strict inequality, otherwise these two equalities imply

ξ = a 2 0 0 b 2 ∈ E.
If we define

V = {ξ ∈ R 2×2 : λ 1 (ξ)λ 2 (ξ) = a 2 b 2 }, Y = V ∩ ∂PcoE
we have that ξ ∈ rel intY 1 . Let Z be the rank one matrix defined by

Z = 1 -λ2(ξ) λ1(ξ) 1 -λ2(ξ) λ1 (ξ) 
:

then λ 1 (ξ + tZ)λ 2 (ξ + tZ) = λ 1 (ξ)λ 2 (ξ) = a 2 b 2 ∀ t ∈ R.
This implies, as Y is compact, that there exist t 1 < 0 < t 2 : ξ + t i Z ∈ ∂Y, i = 1, 2. Consequently ξ + t i Z satisfies either (3.1) and (3.2) as equalities or (3.3) and (3.2) as equalities: from the previous studies we obtain that ξ + t i Z ∈ RcoE, i = 1, 2 and so ξ ∈ RcoE.

In the next step we can assume that (3.1) and (3.2) are satisfied as strict inequalities.

step 3) We assume that ξ satisfies (3.3) with equality. Using the explicit expressions of λ 1 , λ 2 (see (1.3)), it is easy to prove that if (λ 1 (ξ), λ 2 (ξ)) = (x, y) the matrix defined by

A =   1 y- θ x+ θ -y- θ x+ θ -y- θ x+ θ  
has the following properties: it is well defined (as y ≥ θ because θ2 ≤ max

(a,b)∈K ab + θ(b -a) = xy + θ(y -x)) and (3.4) λ 1 (ξ + tA)λ 2 (ξ + tA) + θ[λ 2 (ξ + tA) -λ 1 (ξ + tA)] = xy + θ(y -x) ∀ t ∈ [t -, t + ], t -= - xy(x + θ) θ(x + y) , t + = (y -x)(x + θ) x + y .
In fact

λ 1 (ξ + tA)λ 2 (ξ + tA) = | det(ξ + tA)| = xy -xt y - θ x + θ + ty ;
One can easily check that this equality is verified for every t and so (3.4) is verified.

We prove now that there exists t 1 ∈ [t -, 0] such that λ 2 (ξ + t 1 A) = b 1 : this implies that ξ + t 1 A satisfies (3.1) and (3.3) as equalities: as we saw in the first step, ξ + t 1 A ∈ RcoE. Moreover we prove also that there exists

t 2 ∈ [0, t + ] such that λ 1 (ξ + t 2 A)λ 2 (ξ + t 2 A) = a 2 b 2 : this implies that ξ + t 2 A satisfies (3.
2) and (3.3) as equalities: as we saw in the second step, ξ + t 2 A ∈ RcoE. Consequently ξ ∈ RcoE, as it can be written as rank one combination of ξ + t 1 A and ξ + t 2 A. Existence of t 1 ) We consider F (t) = λ 2 (ξ + tA)b 1 . The existence of t 1 follows from the fact that this function is continuous and F (0) < 0 < F (t -) : in fact

F (t -) = ξ + t -A -b 1 > 0 ⇐⇒ b 1 < ξ + t -A = = x 2 ( θ -y) θ(x + y) 2 + y 2 ( θ + x) θ(x + y) 2 + 2 x 2 y 2 (x + θ)(y -θ) θ2 (x + y) 2 = x 2 (y -θ) + y 2 ( θ + x) θ(x + y) = xy + θ(y -x) θ .
The last inequality is equivalent to

θb 1 ≤ xy + θ(y -x) = a 1 b 1 + θ(b 1 -a 1 ) ⇐⇒ b 1 ≥ θ which is true. Existence of t 2 ) We consider G(t) = λ 1 (ξ + tA)λ 2 (ξ + tA) -a 2 b 2 .
The existence of t 2 follows from the fact that G is continuous and G(0

) < 0 < G(t + ) : in fact G(t + ) > 0 if and only if xy -x (y -θ)(y -x) x + y + y (x + θ)(y -x) x + y ≥ a 2 b 2 . Using that xy + θ(y -x) = a 2 b 2 + θ(b 2 -a 2 ) we get xy(x + y) + θ(y -x)(y + x) ≥ a 2 b 2 (x + y) ⇐⇒ a 2 b 2 + θ(b 2 -a 2 ) ≥ a 2 b 2
which is true.

To prove theorem 3.1 it will be useful to recall the following properties about convex functions and their sub-differential (we will follow the definition of [START_REF] Rockafellar | Convex analysis[END_REF]). Definition 3.4. Let f : R → R be a convex function and θ ∈ R. The subdifferential of f in θ is the set

∂f ( θ) = {θ * ∈ R : f (θ) ≥ f ( θ) + θ * (θ -θ) ∀ θ ∈ R} . Proposition 3.5. Let f : R → R be a convex function. Then i) ∂f (θ) is non empty, compact and convex for every θ ∈ R. ii) If θ is a point of differentiability of f then ∂f (θ) = {f ′ (θ)} .
iii) The set of points of differentiability of f is dense in R and

∂f (x) = co S(x) , S(x) = { lim n→∞ f ′ (x n ) f differentiable in x n , x n → x} .
Remark 3.6. The proof of i) can be found at page 218 of [START_REF] Rockafellar | Convex analysis[END_REF]; ii) is theorem 26.1 of [START_REF] Rockafellar | Convex analysis[END_REF]; the proof of iii) is a direct combination of theorems 25.6 and 17.2 of [START_REF] Rockafellar | Convex analysis[END_REF].

We pass now to the proof of theorem 3.1.

Proof. Thanks to propositions 2.3 and 2.4 it is sufficient to prove that Pco E = Rco E. For this, as in lemma 3.2, we will show the inclusion ∂Pco E ⊆ Rco E .

Let ξ ∈ ∂Pco E. We have seen in remark 2.6 that there exists θ ∈ [0, max

(a,b)∈K b] such that λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) = m( θ)
, and for every θ ∈ [0, max

(a,b)∈K b] λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) ≤ m(θ) .
We define

F (θ) =              max (a,b)∈K ab θ ≤ 0 m(θ) θ ∈ [0, max (a,b)∈K b] θ 2 θ ≥ max (a,b)∈K b .
We observe that ξ satisfies

λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) ≤ F (θ), ∀ θ ∈ R ,
and there exists θ ∈ [0, max

(a,b)∈K b] such that λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) = F ( θ) .
The following remarks will be useful:

• λ 2 (ξ) -λ 1 (ξ) ∈ ∂F ( θ) .
• One can easily check that F is convex: the previous proposition implies that ∂F ( θ) = [α( θ), β( θ)] for some α( θ), β( θ) ∈ R.

• If θ 0 is a point of differentiability for the function

F then ∂F (θ 0 ) = {F ′ (θ 0 )} = b 0 -a 0 for some (a 0 , b 0 ) ∈ K, such that F (θ 0 ) = max (a,b)∈K {ab + θ 0 (b -a)} = a 0 b 0 + θ 0 (b 0 -a 0 ) .
We are going to show that ξ ∈ Rco E: for this we will find a set a ⊂ K composed by one or two points such that letting A = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ a} we have ξ ∈ RcoA ⊆ Rco E. We will distinguish the cases θ = 0, θ ∈ (0, max step 1) We analyse the case θ = 0, for which max (a,b)∈K ab = λ 1 (ξ)λ 2 (ξ). We study the set S(0) defined in proposition 3.5 (the points θ n will be points of differentiability of F throughout this proof): 0) is 0 or ba for some (a, b) ∈ K, because of the compactness of K. The fact that K is compact implies also that p M = bā, for some (ā, b) ∈ K and so

S(0) = { lim n→∞ F ′ (θ n ), θ n → 0} = { lim n→∞ F ′ (θ n ), θ n → 0 + } ∪ {0} as for every θ < 0 F is constant. Let p M = sup{ lim n→∞ F ′ (θ n ), θ n → 0 + } ≥ 0 . Let θ n → 0 + be points of differentiability for F : then F ′ (θ n ) = b n -a n , for some (a n , b n ) ∈ K; therefore every point of S(
∂F (0) = coS(0) = [0, b -ā] ∋ λ 2 (ξ) -λ 1 (ξ) .
It is easy to see that there exists (ã, b) ∈ K such that b-ā = b-ã and max In fact by definition of bā, ∀ ε > 0 there exists θ ε n which goes to 0 for n → ∞ and a sequence (

a ε n , b ε n ) ∈ K such that (3.5) b -ā -ε ≤ lim n→∞ F ′ (θ ε n ) = lim n→∞ b ε n -a ε n ≤ b -ā.
We observe that, as θ ε n is a point of differentiability of F max

(a,b)∈K ab + θ ε n (b -a) = a ε n b ε n + θ ε n (b ε n -a ε n ) . Now, if we consider the points (a ε n , b ε n ) ∈ K, as K is compact, we can say, up to a sub-sequence that (a ε n , b ε n ) → (a ε , b ε ) ∈ K . For the same reason, if ε → 0 (a ε , b ε ) → (ã, b) ∈ K .
Passing to the limit for n → ∞ in the last relation, we obtain from the continuity in θ of the function max

(a,b)∈K ab + θ(b -a) lim n→∞ max (a,b)∈K ab + θ ε n (b -a) = max (a,b)∈K ab = lim n→∞ a ε n b ε n + θ ε n (b ε n -a ε n ) = a ε b ε ,
and so max

(a,b)∈K ab = λ 1 (ξ)λ 2 (ξ) = lim ε→0 a ε b ε = ãb . From the relation (3.5) we get, b -ā ≤ lim ε→0 lim n→∞ b ε n -a ε n = b -ã ≤ b -ā ⇐⇒ b -ā = b -ã .
Then we have that λ 1 (ξ)λ 2 (ξ) = ãb and λ 2 (ξ)λ 1 (ξ) ≤ bã, that is λ 2 (ξ) ≤ b . This is equivalent, thanks to remark 3.3, to say that ξ ∈ RcoA ⊆ RcoE, where

A = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) = (ã, b)} . step 2) We study the case θ ∈ (0, max (a,b)∈K b). As in step 1, if p m = inf{ lim n→∞ F ′ (θ n ), θ n → θ} p M = sup{ lim n→∞ F ′ (θ n ), θ n → θ} , we have for some (a i , b i ) ∈ K, i = 1, 2 ∂F ( θ) = [b 2 -a 2 , b 1 -a 1 ] .
Following the same kind of study as in step 1, one can show that there exist (ã i , bi ) ∈ K, i = 1, 2 such that

λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) = F ( θ) = max (a,b)∈K {ab + θ(b -a)} = = ãi bi + θ( bi -ãi ), bi -ãi = b i -a i .
We now show that ξ ∈ Rco A, where

A = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) = ( ãi , bi ), i = 1, 2} :
for this, thanks to lemma 3.2, it is sufficient to show that b2 ≤ λ 2 (ξ) ≤ b1 , 

ã1 b1 ≤ λ 1 (ξ)λ 2 (ξ) ≤ ã2 b2 , ã1 < ã2 . For every θ ∈ [0, max (a,b) 
ã2 b2 + θ( b2 -ã2 ) < λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) < ã1 b1 + θ( b1 -ã1 )
for every θ ≥ θ and in particular for θ = λ 2 (ξ) we have that b2 ≤ λ 2 (ξ) ≤ b1 , that is the first condition is verified. As b2 -ã2 ≤ λ 2 (ξ)λ 1 (ξ) ≤ b1 -ã1 , then ã1 b1 ≤ λ 1 (ξ)λ 2 (ξ) ≤ ã2 b2 and ã1 < ã2 .

step 3) We study the case θ = max 

p m = inf{ lim n→∞ F ′ (θ n ), θ n → max (a,b)∈K
b} and we have, as in the previous steps

∂F ( θ) = [ b -ā, β( θ)] , (ā, b) ∈ K .
It is easy to show that there exists (ã, b) ∈ K such that b-ā = b-ã and max

(a,b)∈K ab+ θ(b -a) = [ max (a,b)∈K b] 2 = ãb + θ( b -ã). Therefore b = max (a,b)∈K b . Defining A = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) = (ã, b)} we have that ξ ∈ Rco A ⊆ Rco E, thank to remark 3.3: in fact λ 2 (ξ) -λ 1 (ξ) ≥ b -ã = max (a,b)∈K b -ã , that is λ 1 (ξ) ≤ ã , and λ 2 (ξ) = b .
The formula for the interior of Rco E follows from proposition 2.5 and from the fact that Pco E = Rco E , as we have just showed.

The existence theorem

In this section we are going to show theorem 1.1. The proof will be a direct combination of theorem 4.5 and of proposition 4.2. To do this it will be useful to define the so called approximation property (this definition is given in [START_REF] Dacorogna | Implicit partial differential equations[END_REF]). Definition 4.1. Let E ⊂ K(E) ⊂ R 2×2 . We say that E and K(E) have the approximation property if there exists a family of closed sets E δ and K(E δ ), δ > 0, such that 1) E δ ⊂ K(E δ ) ⊂ intK(E) for every δ > 0; 2) for every ε > 0 there exists δ 0 = δ 0 (ε) > 0 such that dist(η, E) ≤ ε for every η ∈ E δ and δ ∈ [0, δ 0 ]; 3) if η ∈ intK(E) then η ∈ K(E δ ) for every δ > 0 sufficiently small.

We can now show the following result. Proposition 4.2. Let E be defined by (1.4). Then E and RcoE have the approximation property with

E = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) ∈ K} with K compact satisfying
K(E δ ) = Rco E δ , if E δ = (a,b)∈K E (a,b) δ , E (a,b) δ = {ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) = (a -δ, b -δ)}, for 0 ≤ δ ≤ min (a,b)∈K a/2.
It will be useful the following result due to Cardaliaguet and Tahraoui [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF]: Proposition 4.3. For every θ ≥ 0 the function H θ : R 2×2 → R defined by

H θ (ξ) = max{λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) -θ 2 , 0}
is rank one convex. Remark 4.4. In [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF] Cardaliaguet and Tahraoui show that the function H θ is polyconvex.

We can now prove proposition 4.2.

Proof. We remark that E δ is compact: this will let us use the representation theorem 3.1. In the following three steps, we show the three conditions of the approximation property respectively. 1)Rco(E δ ) ⊂ intRcoE, ∀ δ > 0 :

Let (a, b) ∈ K be fixed. Then we have

E (a,b) δ ⊆ {ξ ∈ R 2×2 : λ 1 (ξ)λ 2 (ξ) < ab, λ 2 (ξ) < b} = int Rco{ξ ∈ R 2×2 : (λ 1 (ξ), λ 2 (ξ)) = (a, b)} ⊆ int RcoE;
this implies, if we pass to the union over K, that

E δ ⊆ int RcoE .
From this inclusion we can infer that

RcoE δ ⊆ Rco(int RcoE) = int RcoE ,
as the interior of Rco E is rank one convex. In fact let ξ, ξ + A ∈ int RcoE, with rk(A) = 1, that is, thank to theorem 3.1, for every θ ∈ [0, max

(a,b)∈K b] (4.1) λ 1 (ξ)λ 2 (ξ) + θ(λ 2 (ξ) -λ 1 (ξ)) < max (a,b)∈K ab + θ(b -a) λ 1 (ξ + A)λ 2 (ξ + A) + θ(λ 2 (ξ + A) -λ 1 (ξ + A)) < max (a,b)∈K ab + θ(b -a) .
We want to show that ξ + sA ∈ int RcoE, s ∈ [0, 1].

Surely ξ + sA ∈ RcoE, because ξ, ξ + A ∈ RcoE. Now, let us suppose that there exists θ ∈ [0, max

(a,b)∈K b] such that (4.2) max (a,b)∈K ab + θ(b -a) = λ 1 (ξ + sA)λ 2 (ξ + sA) + θ(λ 2 (ξ + sA) -λ 1 (ξ + sA)) .
We can assume that θ = max b . This is a contradiction as λ 2 is a norm over

R 2×2 . Therefore we can write θ2 < max (a,b)∈K ab + θ(b -a) = λ 1 (ξ + sA)λ 2 (ξ + sA) + θ(λ 2 (ξ + sA) -λ 1 (ξ + sA)) .
Using the expression of the function Hθ defined in proposition 4.3, we have

Hθ(ξ + sA) = λ 1 (ξ + sA)λ 2 (ξ + sA) + θ(λ 2 (ξ + sA) -λ 1 (ξ + sA)) -θ2 = max (a,b)∈K ab + θ(b -a) -θ2 > 0.
Thanks to the fact that Hθ(ξ) is rank one convex, from proposition 4.3

0 < Hθ(ξ + sA) ≤ sHθ(ξ + A) + (1 -s)Hθ(ξ) ≤ max{Hθ(ξ), Hθ(ξ + A)} .
Without loss of generality we can assume that max{Hθ(ξ), Hθ(ξ +A)} = Hθ(ξ +A) .

If Hθ(ξ + A) = 0 we have a contradiction. If Hθ(ξ + A) > 0, we have, as ξ + A ∈ int RcoE

Hθ(ξ + A) = λ 1 (ξ + A)λ 2 (ξ + A) + θ(λ 2 (ξ + A) -λ 1 (ξ + A)) -θ2 < max (a,b)∈K ab + θ(b -a) -θ2
and so we have obtained

Hθ(ξ + sA) = max (a,b)∈K ab + θ(b -a) -θ2 ≤ Hθ(ξ + A) < max (a,b)∈K ab + θ(b -a) -θ2 which is a contradiction. 2)∀ ε > 0 ∃ δ 0 = δ 0 (ε) > 0 : dist(η, E) ≤ ε ∀ η ∈ E δ , δ ∈ [0, δ 0 ] : Let η ∈ E δ ; then there exists (a, b) ∈ K such that η ∈ E (a,b) δ . We define X = a 0 0 b ∈ E . Let A, B ∈ O(2) be such that AηB = λ 1 (η) 0 0 λ 2 (η) . Then η -A -1 XB -1 = AηB -AA -1 XB -1 B = AηB -X = √ 2δ 2 . This implies that dist(η, E) ≤ η -A -1 XB -1 = √ 2δ 2 → 0, δ → 0;
moreover this limit is uniform with respect to η.

3)If η ∈ intRcoE then η ∈ RcoE δ ∀ δ > 0 sufficiently small: Let η ∈ intRcoE; if (λ 1 (η), λ 2 (η)) = (x, y) thanks to theorem 3.1 we have to show the following implication:

xy + θ(y -x) < max (a,b)∈K ab + θ(b -a) ∀ θ ∈ [0, max (a,b)∈K b] ⇓ xy + θ(y -x) < max (a,b)∈K (a -δ)(b -δ) + θ(b -a)
uniformly with respect to θ ∈ [0, max 4.1. Proof of the existence theorem. We are going to recall an abstract existence theorem (established by Dacorogna and Pisante [START_REF] Dacorogna | A general existence theorem for differential inclusions in the vector valued case[END_REF]) that we will apply. Then there exists u ∈ ϕ + W 1,∞ 0 Ω; R 2 such that Du (x) ∈ E, a.e. in Ω.

Our theorem then follows immediately. In fact, E is compact and we verified that E and RcoE have the approximation property in proposition 4.2. Then we obtain the existence theorem 1.1 thanks to theorem 4.5.

Representation of Rco E

In this section we are going to give an explicit formula of Rco E for a set E (1.2) defined by a set K composed by a finite number of points. We will treat the cases in which K is composed by one, two elements, and finally a particular K composed by three elements; for the general formula and for its proof we refer to [2]. We recall that the representation of Rco E, for E defined by K composed by one element was already obtained by Dacorogna and Marcellini (see [START_REF] Dacorogna | Implicit partial differential equations[END_REF]); Cardaliaguet and Tahraoui in [START_REF] Cardaliaguet | Equivalence between rank-one convexity and polyconvexity for isotropic sets of R 2×2[END_REF] showed the formula for the case of K composed by two elements.

To give the representation of Rco E it is sufficient to give the formula of the function σ defined by (2.1): indeed Rco E = {ξ ∈ R 2×2 : λ 2 (ξ) ≤ σ(λ 1 (ξ))} . x , b 3 , xθ(j, j + 1) + a j b j + θ(j, j + 1)(b ja j )

x + θ(j, j + 1) , j = 1, 2 .

2 = a 2 +

 22 b 2 a.e. in Ω, (a, b) ∈ K, |det Du(x)| = ab a.e. in Ω, (a, b) ∈ K, u(x) = ϕ(x)

  (a,b)∈K {ab + θ(ba)} throughout all this article.

b

  then for every (a, b) ∈ K one has ab + θ(ba) ≤ θa + θ(ba) = θb ≤ θ 2

  {ab + θ(ba)}

  (a,b)∈K {ab + θ(ba)} .

b

  respectively in the steps 1, 2, 3.

  ∈K b] we have that θ 2 ≤ max (a,b)∈K ab + θ(ba), as seen in proposition 2.4: writing this inequality for θ = θ we get λ 2 (ξ) > θ. As

4 λ 2

 42 we have, as we saw in proposition 2.(ξ) = max (a,b)∈K b. We define

  (a,b)∈K b. In fact, due to (2.3) [ max (a,b)∈K b] 2 = max (a,b)∈K {ab + [ max (a,b)∈K b](ba)} ; therefore if we choose θ = max (a,b)∈K b in (4.1) and in (4.2) we have λ 2 (ξ), λ 2 (ξ + A) < max (a,b)∈K b and λ 2 (ξ + sA) = max (a,b)∈K

  (a,b)∈K bδ]. For this it is to show that lim δ→0 max (a,b)∈K(aδ)(bδ) + θ(ba) = max (a,b)∈K ab + θ(ba) uniformly with respect to θ ∈ [0, max (a,b)∈K b-δ]. We have, as (a-δ)(b-δ)+θ(b-a) ≥ 0 ∀ δ ∈ [0, min (a,b)∈K a/2], | max (a,b)∈K (aδ)(bδ) + θ(ba)max(a,b)∈K ab + θ(ba)| ≤ max (a,b)∈K |(aδ)(bδ) + θ(ba)abθ(ba)| ≤ max (a,b)∈K δ(a + b + δ) → 0, δ → 0 , uniformly with respect to θ ∈ [0, max (a,b)∈K bδ]. Consequently we showed the third condition of the approximation property too.

Theorem 4 . 5 .

 45 Let Ω ⊂ R 2 be an open set. Let E ⊂ R 2×2 be a compact set.Assume that E and Rco E have the approximation property withK(E δ ) = Rco E δ . Let ϕ ∈ C 1piec Ω; R 2 be such that Dϕ (x) ∈ E ∪ int Rco E, a.e. in Ω.
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 51213253 Let E be defined by(1.2) with K = {(a, b), 0 < a ≤ b}. Thenσ(x) = inf ab x , b . Proposition 5.2. Let E be defined by (1.2) with K = {(a 1 , b 1 ), (a 2 , b 2 ), 0 < a i ≤ b i , i = 1, 2}. Without loss of generality we can assume that a 1 ≥ a 2 . Then 1) If a 1 b 1 > a 2 b 2 and b 2 > b 1 then σ(x) = inf a 1 b 1 x , b 2 , θ(1, 2)x + a 1 b 1 + θ(1, 2)(b 1a 1 ) x + θ(1, 2) where θ(1, 2) = a 1 b 1a 2 b 2 b 2a 2 -(b 1a 1 ) . If b 1 ≥ b 2 then σ(x) = inf a 1 If b 1 < b 2 and a 1 b 1 ≤ a 2 b 2 , then σ(x) = inf a 2Proposition Let E be defined by(1.2) with K = {(a i , b i ), 0 < a i ≤ b i , i = 1, 2, 3}. We define θ(i, j) = a i b ia j b j b ja j -(b ia i ) . Let us suppose that a 1 b 1 > a 2 b 2 > a 3 b 3 , b 3 > max{b 1 , b 2 }, b 2a 2 >b 1a 1 and θ(1, 2) < θ(1, 3) . Then σ(x) = inf a 1 b 1
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