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BILINEAR CONTROL OF DISCRETE SPECTRUM
SCHRÖDINGER OPERATORS

K. AMMARI AND Z. AMMARI

Abstract. The bilinear control problem of the Schrödinger equation i ∂
∂t
ψ(t)

= (A+ u(t)B)ψ(t), where u(t) is the control function, is investigated through

topological irreducibility of the set M = {e−it(A+uB), u ∈ R, t > 0} of bounded

operators. Under an appropriate assumption on B, this allows to prove the ap-

proximate controllability of such systems when the uncontrolled Hamiltonian
A has a simple discrete spectrum.

1. Introduction

Since the early days of quantum mechanics, chemists and physicists have been
interested in controlling molecular systems at the atomic scale. From a theoretical
standpoint, this is a control problem for infinite dimensional quantum systems.

This area of study has recently experienced a growing development with various
applications on a wide variety of physical and chemical systems (see [5],[6]). Most
of these applications are described by linear differential equations in which the
control inputs appear as linear coefficients, and are then part of bilinear control
theory. In this context, various mathematical results are known (see for instance
[1],[4],[10],[9],[2],[8],[7] and references therein).

The purpose of this paper is to study the approximate controllability of the
bilinear control system given formally by the Schrödinger equation

i
∂

∂t
ψ(t) = (A+ u(t)B)ψ(t), (1.1)

where u(t) is the control function, A is the uncontrolled Hamiltonian and B is
a given external field. The operator A is assumed to have a simple pure point
spectrum and no continuous spectrum (i.e., each eigenvalue is of multiplicity one
and A has a complete set of eigenvectors). We were inspired by the recent work
[3], where the same problem has been studied using techniques of finite dimension.
Here, we present a different approach which relies on the analysis of invariant
subspaces of the following set of bounded operators

M = {e−it(A+uB), u ∈ U, t > 0} ,
where U is a given subset of R. This method provides strong results and gives, in
the case of bounded operators, a necessary and sufficient condition for approximate
controllability of (1.1) (see Proposition 5.1).

The paper is organized as follows. In Section 2 we give some useful definitions.
The approximate controllability is studied in Section 3. Section 4 contains the main
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result on the bilinear control of discrete spectrum schrödinger operators. The last
section is devoted to some application examples.

2. Schrödinger control system

Consider for a non-empty subset U of R a family of self-adjoint operators

(H(u), u ∈ U)

acting on a Hilbert space H such that all the domains D(H(u)), u ∈ U, contain
a common subspace D dense in H. For any piecewise-constant function u(t) =∑n−1
j=0 1[tj ,tj+1)(t)uj , the abstract Schrödinger equation

i
∂

∂t
ψ(t) = H(u(t))ψ(t) , (2.1)

admits a unique weak solution in C0([0, tn),H) for any initial condition ψ(0) ∈ H, in
the sense that i∂t〈ψ(t), φ〉 = 〈ψ(t), H(u(t))φ〉 for any φ ∈ D and almost everywhere
for t ∈ [0, tn). This solution is explicitly given by

ψ(t) =


e−itH(u0)ψ(0) 0 ≤ t < t1
e−i(t−t1)H(u1)e−it1H(u0)ψ(0) t1 ≤ t < t2
...

...
e−i(t−tn−1)H(un−1) · · · e−it1H(u0)ψ(0) tn−1 ≤ t < tn .

This justifies the following definition, introduced in [3], for approximate controlla-
bility of a Schrödinger system (H(u), u ∈ U). The principal is that for any initial
and target states we can find a sequence of controls u1, · · · , uk ∈ U such that
starting from the initial state and evolving the system during a period of times
t1, · · · , tk > 0 with the dynamics of H(u1), · · · , H(uk), we end up as close as we
want to the target state. Due to the unitarity of the evolution of (2.1) the ini-
tial and target states have, a fortiori, the same norm. So that, the controllability
question reduces to the Hilbert sphere S = {ψ ∈ H : ‖ψ‖ = 1}.

Definition 2.1. The system (H(u), u ∈ U) is said approximately controllable if for
every ψ0, ψ1 ∈ S and every ε > 0 there exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈
U such that ∥∥∥ψ2 − e−itkH(uk) · · · e−it1H(u1)ψ1

∥∥∥ < ε.

We denote by B(H) the algebra of all bounded operators on H containing in
particular the identity operator 1l. It is worth to recall the following definitions.
• Invariant subspace: A subspace E ⊂ H is said invariant for A ∈ B(H) if E is
closed and AE ⊂ E (i.e., ∀ψ ∈ E, Aψ ∈ E). Similarly, E is said invariant for a set
of bounded operators M if E is invariant for each A ∈ M. In which case, we also
say E is M-invariant.
• Commutant: The commutant for a set of bounded operators M is the subalgebra
of B(H) defined by

M′ = {T ∈ B(H) : TA = AT, ∀A ∈M}.

• Topological irreducibility: A set of bounded operators M is said topologically
irreducible if the only invariant subspaces for M are H and {0} (i.e., M have no
proper invariant subspace).



3

• Reducing subspace: A subspace E is said reducing for A ∈ B(H) if E and E⊥

are invariant subspaces of A.

3. Approximate controllability

In all the following we set

M := {e−itH(u), u ∈ U, t > 0}, M∗ := {eitH(u), u ∈ U, t > 0},
R := {Πn

k=1e
−itkH(uk),∀n ∈ N;u1, · · · , uk ∈ U ; t1, · · · , tk > 0}.

We first state a necessary condition for the approximate controllability.

Proposition 3.1. If (H(u), u ∈ U) is approximately controllable then the commu-
tant M′ consists of multiples of the identity operator (i.e. M′ = C1l).

Proof. Let ψ, φ be two analytic vectors of H(u) and T ∈M′ (see [12, Section X.6]
for a definition of analytic vectors). The functions

f(t) = 〈ψ, Te−itH(u)φ〉 and g(t) = 〈ψ, e−itH(u)Tφ〉, t > 0,

admit analytic extension to a strip Σθ := {z ∈ C : |Im(z)| < θ}. Since T satisfies

〈ψ, Te−itH(u)φ〉 = 〈ψ, e−itH(u)Tφ〉 , t > 0 ,

we get
f̃(z) = 〈ψ, Te−izH(u)φ〉 = 〈ψ, e−izH(u)Tφ〉 = g̃(z)

for any z ∈ Σθ, where f̃ and g̃ are respectively the analytic extensions to Σθ of f
and g. In particular, we have

〈ψ, TeitH(u)φ〉 = 〈ψ, eitH(u)Tφ〉 , ∀t > 0 .

Since the set of analytic vectors of a self-adjoint operator is dense in H, we see that
TeitH(u) = eitH(u)T for any t > 0 and u ∈ U . Therefore, by taking the adjoint
we obtain that T ∗ ∈ M′. Hence, there exists a self-adjoint operator C ∈ M′, for
instance C = T + T ∗. Moreover, by functional calculus any spectral projection
1∆(C) belongs to M′. If C is not a multiple of the identity then there exists an
orthogonal projection 1∆(C) 6= 1l and hence we will have

n∏
k=1

e−itkH(uk)1∆(C) = 1∆(C)
n∏
k=1

e−itkH(uk) , ∀n ∈ N.

This contradicts the approximate controllability of the system (H(u), u ∈ U). �
We also have the following sufficient condition for the approximate controllability.

Proposition 3.2. If M is topologically irreducible then (H(u), u ∈ U) is approxi-
mately controllable.

Proof. If the statement of the proposition is false then there exists ψ ∈ S such that
Rψ⊥ := {Tψ, T ∈ R}⊥ 6= {0}. This closed subspace is M∗-invariant since for any
φ ∈ Rψ⊥

〈eitH(u)φ,

n∏
k=1

e−itkH(uk)ψ〉 = 0 .

So that M(Rψ⊥) ⊂ Rψ⊥. Hence M∗ is not topologically irreducible and conse-
quently M neither since a subspace E is M∗-invariant iff E⊥ is M-invariant. �

In the following particular situation we provide a necessary and sufficient condi-
tion for the approximate controllability.
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Proposition 3.3. Assume that for each u ∈ U the spectrum of H(u) does not
separate the plan (i.e., σ(H(u)) 6= R, ∀u ∈ U). Then M = C1l iff M is topologically
irreducible.

Proof. Suppose that M is not topologically irreducible, then there exists a proper
M-invariant subspace E. Let P denote the orthogonal projection on E and lat
Rµ(H(u)) be the resolvent (µ1l − H(u))−1, Im(µ) 6= 0. The following relation
holds:

e−itH(u)P = Pe−itH(u)P , ∀t > 0,∀u ∈ U. (3.1)

Actually, under the assumption of non-separating spectrum e−itH(u)P = Pe−itH(u)

holds true for any u ∈ U and t > 0. For any ψ, φ ∈ H, the two functions

f(µ) = 〈ψ,Rµ(H(u))Pφ〉 and g(µ) = 〈ψ, PRµ(H(u))Pφ〉

are analytic on the resolvent set %(H(u)) which is a connected open subset of C.
Using the resolvent formula

Im(µ) > 0, Rµ(H(u)) = −i
∫ +∞

0

eitµe−itH(u)dt ,

and the relation (3.1), we easily see that f(µ) = g(µ), for Im(µ) > 0 and hence
f = g. Repeating the same argument yields

〈ψ,
n∏
k=1

Rµk
(H(u))Pφ〉 = 〈ψ, P

n∏
k=1

Rµk
(H(u))Pφ〉

for any µk ∈ C \ R. By Stone-Weierstrass theorem polynomials in (x ± i)−1 are
dense in the space of continuous functions vanishing at infinity C∞(R). Therefore,
for any v ∈ C∞(R), we have

〈ψ, v(H(u))Pφ〉 = 〈ψ, Pv(H(u))Pφ〉 .

Thus, for any ε > 0, e−εH(u)2eitH(u)P = Pe−εH(u)2eitH(u)P , with t ∈ R. Since the
strong limit s− limε→0 e

−εH(u)2 = 1l holds, we conclude that

eitH(u)P = PeitH(u)P, ∀t ∈ R .

This means that E is a proper reducing subspace for each A ∈ M and hence P is
a non-trivial projection belonging to M′. This contradicts M′ = C1l. �

Remark 3.4. We notice that if either H is finite dimension or H(u), u ∈ U, are
bounded operators then the assumption of non separating spectrum is satisfied.

Remark 3.5. We recall that an operator A ∈ B(H) is said completely normal if
it is normal and every invariant subspace is reducing. Therefore, if e−itH(u) are
completely normal operators for any u ∈ U and t > 0 the conclusion of Proposition
3.3 holds true.

4. Bilinear control system

In this section we consider a specific Schrödinger system, often called bilinear
control system. Let A,B be two self-adjoint operators on H. We assume for u ∈ U :
(H1) There exists a self-adjoint extension H(u) of A+uB defined on D(A)∩D(B).
(H2) A has simple eigenvalues with an orthonormal basis (φn)n∈N of eigenvectors.
(H3) φn ∈ D(B) for every n ∈ N.
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We assign to this bilinear control system (A,B,U) a graph G = (N,Γ), where Γ is
a subset of unordered pairs in N× N, given by

Γ := {{i, j} ∈ N2 : 〈φi, Bφj〉 6= 0} .

We say that G is connected if for every pair {i, j} ∈ N2, the graph G contains a
path connecting i and j, i.e.,

∀{i, j} ∈ N2,∃{i0, i1}, · · · , {ik−1, ik} ∈ Γ : i0 = i and ik = j .

Theorem 4.1. Let (A,B,U) be a bilinear control system satisfying (H1)-(H3) such
that 0 ∈ U and U 6= {0}. Then (H(u), u ∈ U) is approximately controllable if the
graph

G = (N,Γ) is connected . (4.1)

Proof. Let E be a M-invariant subspace and P the orthogonal projection on E. It
follows that

e−itH(u)P = Pe−itH(u)P , ∀u ∈ U,∀t > 0 .
In particular, if u = 0 we get the relation e−itAP = Pe−itAP , t > 0. By the
spectral theorem

e−itλn ||Pφn||2 = 〈φn, e−itAPφn〉 = 〈Pφn, e−itAPφn〉 =
∫

R
e−itxdµPφn

= µ̂Pφn
(t) ,

where µPφn
is the spectral measure associated to Pφn and µ̂Pφn

its Fourier trans-
form. Since µ̂Pφn

(t) = µ̂Pφn
(−t) for any t > 0 we easily see that µ̂Pφn

(t) =
e−itλn ||Pφn||2 for all t ∈ R. So that, µPφn

= δλn
||Pφn||2 and hence by functional

calculus we see that APφn = λnPφn. More precisely, let χκ be a bounded sequence
of Borel compactly supported functions such that χκ(λn) = 1 and χκ(x) → 1 for
every x ∈ R then by the spectral theorem we get limκ→∞ χκ(A)Pφn = Pφn and

||(A− λn1l)χκ(A)Pφn||2 = 〈Pφn, (A− λn1l)2χ2
κ(A)Pφn〉

=
∫

R
(x− λn)2χ2

κ(x) dµPφn
= 0 .

Hence, using the fact that the graph of A is closed and limκ→∞(A−λn)χκ(A)Pφn =
0, we see that Pφn ∈ D(A) and (A − λn)Pφn = 0. Since the eigenvalues λn of A
are simple, we conclude that

APφn = cnφn, ∀n ∈ N and cn ∈ {0, 1} .

The projection P satisfies the relation Pe−itH(u)P = e−itH(u)P , u ∈ U and t > 0
which leads to the following identity

cncm〈φn, e−itH(u)φm〉 = cm〈φn, e−itH(u)φm〉 , ∀(n,m) ∈ N2 . (4.2)

By differentiating (4.2), we obtain for all n,m ∈ N

cncm〈φn, Bφm〉 = cm〈φn, Bφm〉 .

This implies that if 〈φn, Bφm〉 6= 0 then cn = cm. It is clear that under the
assumption (4.1) that cn = 0 for all n ∈ N or cn = 1 for all n ∈ N. This means
that P = 1l or P = 0 and therefore M is topologically irreducible. By Proposition
3.2 we obtain the claimed result. �

Remark 4.2. We notice that if 〈φn+1, Bφn〉 6= 0 for every n ∈ N then (4.1) is
satisfied.
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We show a non approximate controllability result in the proposition below when
the graph G has a finite disconnected component. In Subsection 5.1, we will show
that if A and B are bounded then disconnectedness of the graph G implies the non
approximate controllability of the system (A,B,U).

Proposition 4.3. Let (A,B,U) be a bilinear control system satisfying (H1)-(H3)
such that 0 ∈ U and U 6= {0}. If the graph G = (N,Γ) admits at least one finite
connected component then (H(u), u ∈ U) is not approximately controllable.

Proof. Suppose that G is a disconnected graph with at least one finite connected
component (J,Γ0) which is a subgraph of G with J a finite subset of N. Hence, we
have

〈φi, Bφj〉 = 0 ∀i ∈ Jc,∀j ∈ J .
Let E be the closed subspace spanned by (φi)i∈J . Then, E ⊂ D(A) ∩ D(B) ⊂
D(H(u)). For any ψ ∈ E, we check that 〈ψ, (A + uB)φj〉 = 0 for all j ∈ Jc

and u ∈ U . As a consequence H(u)ψ is orthogonal to any φj , j ∈ Jc and hence
H(u)ψ ∈ E. Since E is finite dimension and H(u)E ⊂ E then the restriction
H(u) : E → E is a bounded operator. This, in particular, means that any ψ ∈ E
is an analytic vector for H(u) and the series

e−itH(u)ψ =
∞∑
k=0

(−it)
k!

k

H(u)kψ

is absolutely convergent in E. So, we conclude that e−itH(u)E ⊂ E for any t ∈ R and
any u ∈ U . Hence, E is a reducing subspace for M and the orthogonal projection
P on E belongs to the commutant M′. Thus, we have proved that M′ 6= C1l and
hence by Proposition 3.1 the system (A,B,U) is not approximately controllable. �

5. Application examples

5.1. A and B bounded. Let (A,B,U) be a bilinear control system as in Section 4.
If A and B are bounded operators then the assumptions (H1) and (H3) are satisfied.
Actually, the assumption (4.1) in Theorem 4.1 is a necessary and sufficient condition
when A and B are bounded operators.

Proposition 5.1. Let (A,B,U) be a bilinear control system satisfying (H2) with
A and B bounded operators and such that 0 ∈ U and U 6= {0}. Then (H(u), u ∈ U)
is approximately controllable if and only if the graph G = (N,Γ) is connected.

Proof. Suppose that the graph G is disconnected and let (J,Γ0) be one of its con-
nected component. Then 〈φi, Bφj〉 = 0 for all i ∈ Jc,j ∈ J and the closed subspace
E spanned by (φ)i∈J is preserved by A + uB since A and B are bounded. This
shows that E is a reducing subspace for M and hence M′ 6= C1l. By Proposition
3.1 we see that (A,B,U) is not approximately controllable. �

5.2. Harmonic oscillator. We consider a concrete example of a Schrödinger equa-
tion describing the evolution of a one-dimensional harmonic oscillator,

i
∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x) +

(
E(t)x+ x2

)
ψ(t, x), (5.1)

with the strength of the electric field E(·) representing the control function. Here
E(t) is a piecewise-continuous function taking values in a subset U of R+. In this
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framework, the operator A is the one-dimensional harmonic oscillator

A = − ∂2

∂x2
+ x2 ,

which is essentially self-adjoint on the Schwartz space S(R) and also on C∞0 (R),
with explicit discrete spectrum

σ(A) = {λk = 2k + 1 | k ∈ N} .

Each eigenvalue λk is simple with a corresponding eigenfunction

φk(x) =
1√

k!2k
√
π
Hk(x) e−

x2
2 , (5.2)

where Hk(x) = (−1)kex
2 dk

dxk e
−x2

is the kth Hermite polynomial. The set (φk)k∈N
spans L2(R). It is well known that the operator sum A+ux is essentially self-adjoint
on C∞0 (R) and also on S(R) for any u ∈ R (see [12, Theorem X.28]). Moreover, we
easily check

〈φk, xφk+1〉 =

√
(k + 1)

2
6= 0 .

Hence, the system (A, x, U) satisfies (H1)-(H3) and consequently it is approximately
controllable whenever 0 ∈ U and U 6= {0}.

Remark 5.2. Several other examples can be found in [3].
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