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MEASURING NOISE AND CROSS CORRELATIONS AT HIGH

FREQUENCIES IN NANOPHYSICS

M. CREUX, A. ZAZUNOV, T.K.T. NGUYEN, A. CRÉPIEUX, AND T. MARTIN

Centre de Physique Théorique et Université de la Méditerranée

Case 907, 13288 Marseille, France

The purpose of the present paper is to propose two scenarios for measuring high fre-
quency noise. The first one uses inductive coupling to an LC circuit, and describes the
measurement of noise cross-correlations as in an Hanbury-Brown and Twiss geometry.
The second one uses the photo-assisted transfer of two electrons in a normal metal–
superconductor circuit, which is capacitively coupled to the mesoscopic circuit to be
measured.

1. Introduction

The measurement of finite frequency noise in mesoscopic systems provides a crucial

diagnosis of the carriers involved in the transport1,2. Here, we are interested in 2

types of systems where noise is detected via a measuring device – coupled to the

mesoscopic device which should pick up (via repeated time measurements) the noise

contribution at a specific frequency, without the manipulation of a time series. Such

proposals have been put forth and some have been implemented experimentally

within the last decade3,4,5,6,7,8. Low frequency noise cross-correlations measure-

ments have also been performed9,10, which showed that a fully degenerate electron

gas has negative noise correlations. Yet, finite frequency noise cross-correlations

are useful in the study of electronic entanglement in mesoscopic devices 11, and in

the identification of anomalous charges in Luttinger liquid wires12. The purpose of

the present paper is twofold: to suggest a way to measure noise cross-correlation

with inductive coupling, and to suggest a way to measure noise via photo-assisted

Andreev reflection in a capacitive coupling setup.

2. Measurement of noise cross-correlations with inducting coupling

For measuring cross-correlations with an LC circuit, two inductances (L1 and L2)

and a single capacitor (C) are needed. The two inductors, with coupling constants

α1 and α2, are placed next to the two outgoing arms of the three terminal mesoscopic

device (Fig. 1), and is placed in series. Depending on the wiring of these inductances

(Fig. 1a or Fig. 1b), the two inductances “see” the outgoing currents with the

opposite sign or with the same sign.

1



March 2, 2007 15:43 Proceedings Trim Size: 9.75in x 6.5in martin˙ms+s2006˙3

2

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������������������������������

��������������������������������������
������������������������
������������������������������������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������������������������������

��������������������������������������
������������������������
������������������������������������

α1α1 α2α2

a) b)

CC

MM

Figure 1. Schematic description of the noise cross-correlation setup. M is the mesoscopic circuit
to be measured, C is the capacitor and there are two inductors with coupling constants α1 and α2

to the mesoscopic circuit. The electrical components of the detector are in series and they “see”
the current with the same sign (a) or with the opposite sign (b).

It was shown4 that finite frequency noise can be detected by coupling induc-

tively an LC circuit to the wires connected to an arbitrary mesoscopic device. Here

we address two issues: a) we generalize this proposal to the measurement of noise

cross correlations; b) we briefly mention the role played by dissipation in this mea-

surement scheme. In the initial proposal4, the noise is measured at the resonant

frequency of the LC circuit, by performing repeated time measurements of the

charge fluctuations on the capacitor plates. The measured noise turns out to be a

mixture of the two unsymmetrized noise correlators, which correspond to emission

and absorption of radiation from the mesoscopic device.

For the case of cross correlations, one measures the charge fluctuations 〈x2(0)〉2+
with the geometry of Fig. 1a and subsequently one can switch the wiring and mea-

sure such fluctuations 〈x2(0)〉2− with the circuit of Fig. 1b. By subtracting the two

signals 13:

〈x2(0)〉2 =
1

2

(

〈x2(0)〉2+ − 〈x2(0)〉2−
)

, (1)

one isolates the contribution of cross-correlations, which is proportional to α1α2.

The following non-symmetrized current correlators are introduced in Fourier space:

S+
ij(ω) =

∫

dt

2π
eiωt〈Ii(0)Ij(t)〉 , S−

ij (ω) =

∫

dt

2π
eiωt〈Ii(t)Ij(0)〉 . (2)

with i, j = 1, 2 corresponding to the leads of the mesoscopic circuit. The charge

fluctuations take the final form:

〈x2(0)〉 =
πα1α2

η(2M)2
Re

[

(N(Ω) + 1)S+
12(Ω) − N(Ω)S−

12(Ω)
]

(3)

with N(Ω) = 1/(eβ~Ω + 1) is the Bose Einstein distribution at the detector circuit

temperature, which is not necessarily the mesoscopic device temperature, and M =

L1 + L2 is the “mass” of the detector circuit. Note the presence of the adiabatic

parameter η, which suggests that the measured noise diverges! If one includes

dissipation in the LC circuit due to a finite resitance of the circuit using the Caldeira-

Legett model14, it turns out15 that η is replaced by the linewidth of the LC circuit.

Next, this proposal is tested on a system of three terminals (Fig. 2), a so called

“Y junction”, described by scattering theory. We consider the case where the voltage

biases satisfy µ13 > µ12 > µ23 > 0 (µij ≡ µi−µj). At a low temperature, the charge
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fluctuations stay negative and singularities are present at frequencies equal to µ23,

µ12, µ13. When the temperature becomes larger than the bias voltages, the charge

fluctuations become positive. However, when the temperature goes to zero, the

measured charge fluctuations become equal to S+
23(ω).
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Figure 2. In the left, a system with three terminals (Y junction) with chemical potentials µ1, µ2

and µ3 with µ1 ≥ µ2 ≥ µ3. In the right, measured charge fluctuations as a function of frequency
for different temperatures kBT , “measured” in units of µ13. The frequency and the biases are in
units of µ13. µ12 = 0.7µ13, µ23 = 0.3µ13 have been chosen.

3. Noise measurement via photo-assisted Andreev reflection

A high frequency noise measurement setup was proposed, which used capacitive

coupling5 between a double quantum dot and a nearby mesoscopic conductor. This

idea was implemented recently6 using a superconductor-insulator-superconductor

(SIS) junction for the detector circuit: a DC measurement of quasiparticle tunnel-

ing provided information on high frequency noise. The purpose of the present work
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Figure 3. a) Schematic description of the set up: the mesoscopic device to be measured is coupled
capacitively to the detector circuit. The latter consists of a normal metal lead–quantum dot–
superconductor circuit with a DC bias. b), c), d) Photo-assisted Andreev reflection: b), c) Emission
of a Cooper pair in a normal metal in the case of a “photon” is provided to or provided by a
neighboring environment. d) Case of absorption of a Cooper pair with photo-assisted Andreev
reflection, where a “photon” is provided by a neighboring environment. Notice that the tunneling
of electrons is sequential.

is to analyze a similar situation, except that the SIS junction is replaced by a cir-

cuit which transfers two electrons via Andreev reflection. Here, Andreev reflection
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processes occur through a quantum dot, allowing to filter electron energies: two

inelastic electron jumps are required for a current to pass through the measurement

circuit, the energy being injected/emitted by a “photon” provided/absorbed by the

mesoscopic circuit to be tested. The circuit is depicted in Fig. 3a. The charging

energy of the quantum dot is large enough that double occupancy is prohibited.

This dot is in tunneling contact with a superconductor. Two capacitors are placed

between each side of the mesoscopic device and each side of the quantum dot–

superconductor junction. Current fluctuations in the mesoscopic device generate

voltage fluctuations across the dot–superconductor tunnel junction, which trans-

late into phase fluctuations at the junction, in the spirit of the dynamical Coulomb

blockade16.

The Hamiltonian which describes the decoupled normal metal lead–dot–

superconductor–environment (mesoscopic circuit) system reads

H0 =
∑

k,σ

ǫkc+

k,σck,σ +
∑

σ

ǫDc+
D,σcD,σ+Un↑n↓+

∑

q,σ

Eqγ
+
q,σγq,σ +µSNS +Henv , (4)

which correspond to the normal metal lead, the quantum dot (single occupancy

only), and the (BCS) superconductor, described in terms of quasiparticle operators

(γq,σ) which are related to cq,σ by the Bogoliubov transformation. The tunneling

Hamiltonian reads:

HT =
∑

q,σ

TD,qc
+
D,σcq,σe−iφ +

∑

k,σ

Tk,Dc+
k,σcD,σ . (5)

The fluctuating phase factor represents the coupling to the mesoscopic circuit. All

the information about the environment is contained in the autocorrelation of the

phase operators J(t) = 〈[φ(t) − φ(0)]φ(0)〉. The phase operator is related to the

voltage by φ(t) = e
∫ t

−∞
dt′V (t′). Indeed, because of the capacitive coupling between

the sides of the dot-superconductor junction and the mesoscopic circuit, current

fluctuations of the mesoscopic device translate into voltage fluctuations of the dot-

superconductor junction across the trans-impedance5 δV (ω) = Z(ω)δI(ω).

The current through the normal lead/quantum dot/superconductor (NDS) junc-

tion, due to the tunneling of two electrons, is calculated using the Fermi Golden

Rule generalized with the T–matrix. Here one needs to carry out calculations of the

matrix element to fourth order in the tunneling Hamiltonian in order to describe

electron transfer. The inelastic current through the NDS detector reads:

Iinel ≃ 16π2e

RK

N 4
NT 4

1 T 4
2

∫ ∞

∆

dE

∫ ∞

∆

dE′ ∆2

√
E2 − ∆2

√

E′2 − ∆2

×
{

∫ eV

−∞

dǫ

∫ eV

−∞

dǫ′
|Z(ǫ + ǫ′)|2
(ǫ + ǫ′)2

SI(ǫ + ǫ′)

Dinel

−
∫ ∞

eV

dǫ

∫ ∞

eV

dǫ′
|Z(−(ǫ + ǫ′))|2

(ǫ + ǫ′)2
SI(−(ǫ + ǫ′))

Dinel

}

, (6)

where Dinel is an energy denominator product17, RK = 2π/e2 is the quantum of

resistance, Z(ω) is the trans-impedance of the circuit and SI(ω) = S+(−ω), with
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Figure 4. Left pannel: PAT current plotted as a function of detector bias voltage for some values
of the device bias voltage eVd from 0.1 to 0.2 (see legend), with ǫD = 0.1. Right pannel: PAT
current depends on dot level ǫD with some values of detector bias voltage eV : 0.14, 0.16, 0.18, 0.2
(see legend) at eVd = 0.2.

S+(ω) =
∫

dteiωt〈〈I(0)I(t)〉〉. The first term in Eq. (6) describes the tunneling of

a Cooper pair from the normal lead to the superconductor via the quantum dot:

as depicted in Figs. 3b,c the tunneling between the dot and the superconductor

involves the emission/absorption of a photon. The second term describes the inverse

tunneling process: a Cooper pair absorbing energy from the neighboring device

(Figs. 3d), its constituent electrons then tunneling from the superconductor to the

normal lead.

We illustrate the present results by considering a point contact for the meso-

scopic circuit. We compute the photon assisted tunneling (PAT) current through

the detector due to the high frequency current fluctuations of the device, as a func-

tion of detector bias voltage IPAT (eV ) = I(eVd 6= 0, eV ) − I(eVd = 0, eV ) (excess

current), at zero temperature for simplicity. The left panel of Fig. 4 depicts the PAT

current as a function of detector bias voltage for a fixed dot energy level position,

but for different values of eVd. When the bias of the mesoscopic device increases,

the noise increases, energy emitted or absorbed also increases, which triggers the

PAT current. ¿From eVd = ǫD, if we decrease eVd, the PAT current is reduced,

approaching 0 and the step disappears hereafter. This is realized at the point when

the spectral density of noise of the mesoscopic device (point contact) contains a

singularity in its derivative.

In the right panel of Fig. 4, we plot the dependence of the PAT current on

the dot energy level for several values of the bias voltage of the detector circuit,

which is chosen smaller than the device bias voltage eVd = 0.2, specifying eV >

eVd/2. By choosing this range of eV , only the current from the normal metal to

the superconductor contributes: the dominant contribution comes from emission

processes. The PAT current decreases when the dot level is raised, however, it

displays a step at ǫD = eV , provided that eV < eVd. At the step location, the PAT
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current drops fast, then it decreases more slowly and saturates. For eV > eVd/2, if

we increase eV , the step height decreases and eventually vanishes when eV = eVd.

Hereafter, if one continues to increase eV , the PAT current is still the same as

it with eV = eVd because the energy emission to the mesoscopic device reaches

saturation.

4. Conclusion

We have shown how a careful wiring of the detector circuit can isolate the noise

cross-correlations signal. This promises to have applications in the detection of

fractional charges in carbon nanotubes12 as well as in the detection of electronic

entanglement18.

For capacitive coupling to an NS circuit, by controlling the detector circuit

(varying eV and ǫD), we can make a mapping of the spectral density of noise. Here

the frequency ω = eVd corresponds to the point where the excess noise of the point

contact contains a singularity in its derivative. This constitutes an encouraging

scenario for detecting specific features in the noise spectrum.
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