
HAL Id: hal-00479477
https://hal.science/hal-00479477

Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new efficient and flexible algorithm for the design of
testable subsystems

Stéphane Ploix, Abed Alrahim Yassine, Jean-Marie Flaus

To cite this version:
Stéphane Ploix, Abed Alrahim Yassine, Jean-Marie Flaus. A new efficient and flexible algorithm
for the design of testable subsystems. International Journal of Applied Mathematics and Computer
Science, 2010, 20 (1), pp.175-190. �hal-00479477�

https://hal.science/hal-00479477
https://hal.archives-ouvertes.fr

Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 1, 175–190
DOI: 10.2478/v10006-010-0013-7

A NEW EFFICIENT AND FLEXIBLE ALGORITHM FOR THE DESIGN OF
TESTABLE SUBSYSTEMS

STÉPHANE PLOIX, ABED ALRAHIM YASSINE, JEAN-MARIE FLAUS

G-SCOP lab, 46 avenue Félix Viallet, 38 031 Grenoble, France
e-mail: {stephane.ploix,jean-marie.flaus}@inpg.fr,

abed-alrahim.yassine@g-scop.inpg.fr

In complex industrial plants, there are usually many sensors and the modeling of plants leads to lots of mathematical
relations. This paper presents a general method for finding all the possible testable subsystems, i.e., sets of relations that
can lead to various types of detection tests. This method, which is based on structural analysis, provides the constraints
that have to be used for the design of each detection test and manages situations where constraints contain non-deductible
variables and where some constraints cannot be gathered in the same test. Thanks to these results, it becomes possible to
select the most interesting testable subsystems regarding detectability and diagnosability criteria. Application examples
dealing with a road network, a digital counter and an electronic circuit are presented.

Keywords: automatic test design, structural approach, fault diagnosis, analytical redundancy relations, relational algebra.

1. Introduction

Generally speaking, diagnostic analysis of physical sys-
tems relies on detection tests that make it possible to
detect abnormal behavior. In the scientific literature,
there are two main trends for diagnostic analysis. The
first one comes from the artificial intelligence commu-
nity (Reiter, 1987; De Kleer and Williams, 1987; Ligȩza
and Górny, 2000; Górny and Ligȩza, 2001; Dague, 2001;
Pulido and Alonso, 2002). It relies on component-based
approaches. The principle is to model the different com-
ponents with relations, also named constraints, and to di-
rectly check the consistency between the models and the
observations. This approach raises a practical problem: in
the industrial world, even if the constraints can be mod-
eled, the tests usually do not result from simple consis-
tency tests between constraints and data, especially in dy-
namic systems modeled by differential equations. Usu-
ally, constraints model only a part of the knowledge: noise
and modeling uncertainties are not taken into account in
the constraints a priori but only a posteriori. Conse-
quently, an engineer usually only needs to know the sets
of constraints that can lead to tests before designing and
validating test algorithms.

The second stream coming from the fault detection
and isolation community (Willsky, 1976; Patton et al.,
1989; Frank, 1990; Cassar and Staroswiecki, 1997) uses

a complete model, usually a state space representation,
of the system to be diagnosed. It is often called a struc-
tured or robust approach because it aims at projecting ob-
servations in different subspaces in order to distinguish
the different faults that may occur (and to remove uncer-
tain parts). These approaches raise another issue: projec-
tions do not trace the components that are involved in the
tests. It is therefore difficult to interpret the symptoms,
especially with formal analysis such as in (Nyberg and
Krysander, 2003; Ploix et al., 2003).

Complex industrial systems can be depicted by vari-
ous kinds of relations, also named constraints, depending
on the modeling approach: mathematical equations, qual-
itative relations, rules expressed in a natural language may
be encountered. Methods that can manage both complex-
ity and models of different types are necessary. This fact
necessitates the use of structural approaches and rules out
approaches founded on state space representations or on
Grobner bases (Frisk, 2000). In diagnosis, structural mod-
eling was introduced in (Davis, 1984). Using a semantic
theory of abstraction (Nayak and Levy, 1995; Chittaro and
Ranon, 2004), it was pointed out that structural modeling
is an abstraction of behavioral modeling. Then, discover-
ing testable sets of constraints can be achieved thanks to
a procedure based on a structural model such as the bi-
partite graph approach (Dulmage and Mendelsohn, 1959)
proposed in (Blanke et al., 2003; Cassar and Staroswiecki,

{stephane.ploix, jean-marie.flaus}@inpg.fr
abed-alrahim.yassine@g-scop.inpg.fr

176 S. Ploix et.al

1997; Declerck and Staroswiecki, 1991). Finding testable
sets of constraints may indeed be achieved thanks to an
elimination procedure that combines constraints in or-
der to eliminate all the unknown physical variables and
therefore get constraints containing only known data, i.e.,
testable constraints. However, as shown in this paper, this
approach leads to a high level of complexity when search-
ing all the testable sets of constraints. In (Travé-Massuyès
et al., 2006), an alternative method was proposed, but the
level of complexity is still high. Krysander et al. (2005)
proposed an improved algorithm which, however, does
not manage constraints containing non-deductible vari-
ables.

Propagation algorithms, such as value propaga-
tion (Fron, 1994) or constraint propagation (Russell and
Norvig, 2003; Dechetr, 2003), may also be considered as
candidate solutions to compute testable subsystems. If
it is possible to propagate, it is possible to pre-compute
propagation paths. Pre-computation of a propagation path
corresponds to a testable set of constraints, which leads
to a test, sometimes called an Analytical Redundancy Re-
lation (ARR). However, in diagnosis, there is usually a
high level of redundancy in information. Therefore, many
propagations have to be done: some may be consistent
with data, others may not, but each propagation provides
a symptom that is meaningful for diagnosis. Performing
all the propagations seems like a solution. However, some
propagations are equivalent or include others and it is not
possible to detect this during the propagation phase. Pre-
computation of propagation paths is required to avoid re-
dundant computations.

This paper presents a general method that provides
testable subsystems. A new algorithm, which improves
(Ploix et al., 2005) and is more general than (Krysander
et al., 2005), based on a join-operator coming from rela-
tional algebra is proposed. It relies also on a structural
abstraction of the constraints and traces all the constraints
that are involved in testable subsystems, thus making it
possible to determine what physical components are ex-
amined by each test. A computational tool has been devel-
oped and examples of applications are presented in order
to show the performance of the algorithm.

2. Relational algebra and join-operator

Relational Algebra (RA) can be viewed as a data manipu-
lation language for a relational model. It consists of sev-
eral basic operations which make it possible to specify re-
trieval requests. These operations are applied to several
relations (constraints) in order to produce new relation-
ships.

Three sets of relational operators are usually distin-
guished:

• unary operators (Project Π, Select ∇),

• set-membership binary operators (Union (∪), Inter-
sect (∩), Difference (−)),

• binary operators (Cartesian product (×), join (��)).

A relation R may be a class or a table. It is denoted
by R(A1, A2, . . . , An) such that A1, A2, . . . , An repre-
sent the attributes of the relationship R. A value domain
val(Ai) corresponds to each attribute Ai. Consequently,
the relation R(A1, A2, . . . , val(An)) corresponds to a
set of tuples ti = (a1,i, a2,i, . . . , an,i) ⊆ val(A1) ×
val(A2) × · · · × An. Further on, the Cartesian product
and the join operator are presented because they are use-
ful for our purpose.

Definition 1. (Selection)
A selection, also called restriction, leads to a set of tuples
belonging to a relation R(A1, A2, . . . , An) that satisfy a
logical condition defined over A1 × A2 × · · · × An. It is
denoted∇ER.

Definition 2. (Projection)
A projection of a relation R(A1, A2, . . . , An) ac-
cording to some attributes {A1, A2, . . . , Am} ⊆
{A1, A2, . . . , An} amounts to keeping the tuples corre-
sponding to attributes Am+1, . . . , An and removing the
resulting duplicated tuples.

Definition 3. (Cartesian product)
The Cartesian product of two relations R1 and R2 is the
set of all possible ordered pairs whose first tuple belongs
to R1 and whose second tuple belongs to R2. It is denoted
by R1 ×R2 = {(ri, rj) : ri ∈ R1 and rj ∈ R2}
Definition 4. (Join operator)
The join operator is an operator defined in the relational
data model (Codd, 1970; Mishra and Eich, 1992). It is
used to build a new relationship R by combining two re-
lationships R1 and R2. This relationship R includes all
possibilities of combining pairs of tuples coming respec-
tively from relationships R1 and R2, which satisfy a join
condition E.

The general join is called a theta-join. The theta op-
erator can be one of the following: =, �=,≤,≥, <, >. The
attributes used to define the join condition must be com-
parable using the theta operator. In its most general form,
the join condition E consists of multiple simple conditions
of the form described above. The join operation may be
said to be equivalent to a Cartesian product followed be a
select: R1 ��E R2 = ∇E(R1 × R2).

Definition 5. (Equi-join)
An equi-join is a theta-join such that the condition join E
is an equality between an attribute A1 of the relationship
R1 and an attribute A2 of the relationship R2. The equi-
join is denoted by R1 ��A1=A2 R2.

Indeed, the equi-join is a Cartesian product followed
by a select: R1 ��A1=A2 R2 = ∇A1=A2(R1 ×R2).

A new efficient and flexible algorithm for the design of testable subsystems 177

Consider, for example, two relationships R1 et R2

presented in Fig. 1. The Cartesian product and the equi-
join are given by the relationships R3 and R4.

Fig. 1. Example of a Cartesian product.

The concept of value propagation between two con-
straints ki and kj (such that a constraint k is a relation
which models the behavior of a component c) is sim-
ilar to the projection of the equi-join of the two con-
straints. The propagation of a value v between the two
constraints ki and kj may be represented by the join oper-
ator: si ��v sj = Π(var(si)∪var(sj)\{v})(si ��si.v=sj .v sj)
such that si and sj represent the structures of the con-
straints ki and kj , var(si) and var(sj) represent the sets
of variables of the two structures si and sj .

The join operator si ��v sj is used as a basic concept
for the design of testable subsystems of a system.

3. Problem statement

This section introduces the concepts and the formalism
used in the paper. In order to manage testable subsystem
design, let us introduce a formalism for behavioral mod-
eling before considering structural modeling.

3.1. Behavioral modeling. Behavioral knowledge
starts with physical variables. A physical variable is a
potentially observable element of information about the
actual state of a system. It is modeled by an implicitly
time-varying variable, which has to be distinguished from
a parameter that is model-dependent. Generally speaking,
even if a physical variable is observable, it is not possible
to merge it with data because in fault diagnosis data are

only known provided that some actuators or sensors be-
have properly. Physical variables V (t) = {. . . , vi(t), . . . }
are modeled by a space F(T, V) = {V (t); t ∈ T }, where
T stands for continuous or discrete sets of time. At any
given time t in T , these physical variables belong to a do-
main dom(t, V) = dom(V (t)) representing all the pos-
sible values that may have physical variables. Conse-
quently, when considering all t ∈ T , {dom(V (t)); t ∈ T }
represents a tube in the physical variable space F(T, V).

A data flow models data provided by a source of
information concerning a physical variable. These data
can come from measurements or from set points related
to controlled variables. A data flow concerning a phys-
ical variable v is denoted by obs(t, v) with obs(t, v) ∈
dom(v(t)). It corresponds to a trajectory belonging to the
tube {dom(v(t)); t ∈ T } (see Fig. 2). When informa-
tion about v is coming from different sources, the differ-
ent data flows can be denoted by obsi(t, v). Formally, a
data flow provided by a component c can be linked to a
physical variable: ok(c) → ∀t ∈ T, obs(t, v) = v, which
means that, if the component named c is in the state ok,
then the data obs(t, v) correspond to the actual value of
the physical variable v at any time t ∈ T .

For testable subsystem design, it should be noted
that all the physical variables have to be considered un-
known. Therefore, a mapping is testable if it does not
contain any variable standing for physical variables but
only data flows. Then, after having identified phys-

Fig. 2. Physical variable space, tube and trajectory.

ical variables, cause-effect relationships between them
have been made up. Each relationship between physi-
cal variables corresponds to a subset of a domain that
models one or several behavioral modes (de Kleer and
Williams, 1992; Struss, 1992). In a diagnostic prob-
lem, the behavioral modes of a component modes(c)
must be a complete set of modes, i.e., at any given time,
the state of a component c is assumed to correspond to
one and only one mode from modes(c). Most com-
mon sets are modes(c) = {ok(c),¬ok(c)}, but more
complex modes may also be considered: modes(c) =
{ok(c), fault1(c), . . . , faultn(c), otherFault(c)}.

Each mode can be linked to a subset K ⊂ F(T, V),
which is often referred to as a constraint. Below,

178 S. Ploix et.al

the following notation is adopted: var(K) = V and
dom(t,K) = dom(t, var(K)). Then, generally speaking,
denoting by Ṽ a trajectory in the domain dom(t,K), be-
havioral modeling can be formalized, given the data flows,
by

mode1(c1) ∧mode2(c2) ∧ · · · → ∃Ṽ ∈ K, (1)

where c1, c2, . . . constitute components and mode1 ∈
modes(c1), mode2 ∈ modes(c2),

In order to represent mathematical constraints, map-
pings are used. For instance, consider the constraint
u − R × i = 0. It leads to two obvious following map-
pings: u = R × i and i = (1/R) × u. Indeed, design-
ing testable subsystems a priori requires combining map-
pings: it is not possible to check if values may satisfy a
set of constraints because data flows are not available dur-
ing the design stage. Because, at any time, they lead only
to one value, mapping ensures that combinations may be
made without loss. Note that, for the sake of simplicity,
only time invariant mappings are considered here. Gener-
ally speaking, a mapping over dom(t, V) is defined from
one subspace dom(t, V1) to another dom(t, V2), where
{V1, V2} is a partition of V . Note that several mappings κi

may model the same constraint K. If κi : dom(t, V1) �→
dom(t, V2) is a mapping modeling K, the description (1),
given the data flows, becomes

mode1(c1) ∧mode2(c2)→
∃Ṽ1 ∈ dom(t, V1), ∃Ṽ2 ∈ dom(t, V2)/Ṽ2 = κi(Ṽ1). (2)

Therefore structural abstraction must be considered.

3.2. Structural modeling. Generating testable subsys-
tems means that the descriptions (2) are combined, i.e.,
left-hand-side modes are combined with conjunctions and
variables that stand for physical variables are removed
when combining mappings so that only data flows are
kept. A general method must abstract mappings away as
they may be of very different types, ranging from auto-
mate to differential equations or qualitative modeling.

This is why structural modeling has to be consid-
ered although this advantage is offset by the fact that re-
sults may overestimate the effective testable subsystems
because knowledge about mappings is not fully taken into
account. Overestimation leads to testable subsystems that
refer to many more combined constraints than necessary.
A consequence is that, during test implementation, verifi-
cation is needed to see whether all the constraints involved
in a testable subsystem are effectively required.

As an abstraction of a mapping, the notion of struc-
ture of constraint is introduced: basically, the structure of
a constraint K corresponds to the variables var(K). Nev-
ertheless, a given constraint may be modeled by different
mappings.

Firstly, although mappings to multidimensional
spaces could be used, they are difficult to manage in
testable subsystem design. It is better to break them down
into equivalent sets of one-dimensional mappings. In the
following, one-dimensional mappings modeling a con-
straint K are named a realization of K.

Moreover, several realizations of a constraint may be
equivalent. Let κi be a realization from V \{v} to {v}.
There may be equivalent realizations defined on V that
also model the constraint. Therefore, the notion of the
structure of a constraint can be extended to represent all
the equivalent realizations representing a given constraint
K. For instance, consider a realization κ modeling a logi-
cal xor: x3 = x1 ⊗ x2. There is a mapping leading to x3

from x1 and x2 but also a mapping from x2 and x3 leading
to x1 and another one to x2. In that case, these variables
can be qualified as deductible or, when it is meaningful,
as calculable with reference to (Iwasaki and Simo, 1994).
This is denoted by var(κ) = var+(κ) = {x1, x2, x3}.
It is different for a realization κ′ modeling a logical or:
x3 = x1∨x2 where only x3 is deductible. This is denoted
by var(κ) = var+(κ′)∪var−(κ′) with var+(κ) = {x3}
and var−(κ) = {x1, x2}. The set of equivalent realiza-
tions modeling a constraintK is denoted by K(K). There-
fore, the structure of a constraint models at the same time
the variables of its physical variable space and a set of pos-
sible equivalent 1-dimensional mappings that model this
constraint. A structure may represent either a particular
realization or a set of equivalent realizations.

The variables V = var(K) can be broken down into
a set of deductible variables and a set of non-deductible
variables. A structure s will be written as �V −, V +�,
where V − and V + satisfy V − ∩ V + = ∅. There-
fore, the structure modeling a constraint K is denoted by
s (K) = �V −, V +�. Because ∀v ∈ V +, there is a real-
ization from K(K) leading to v:

∀v ∈ V +, ∃�(V − ∪ V +)\{v}, {v}�.

For the sake of simplicity, the following notation is
adopted: �∅, V +� = �V +� and, if S is a set of structures,
var(S) =

⋃
s∈S var(s). Finally, an empty structure s is a

structure satisfying var(s) = ∅. It is denoted by s = ��.
For the design of testable subsystem, some structures

are particularly useful because they model what is known
in a system, i.e., the controlled or measured variables—
they are named a terminal structure.

Definition 6. A terminal structure s satisfies card(var
(s)) = 1. It usually involves a data flow and models the
fact that a trajectory can be assigned to a variable. By
extension, a constraint containing only one variable is also
qualified as terminal.

Because of the possible over-estimations, it is useful
to introduce the following definition.

A new efficient and flexible algorithm for the design of testable subsystems 179

Definition 7. A structure of a constraint s1 wraps an-
other structure s2 if var(s1) ⊇ var(s2) and var+(s1) ⊇
var+(s2) . It is denoted by s1 ⊇ s2.

In order to show that values can be propagated be-
tween mappings, i.e., that the intersection of two con-
straints can be projected without any loss, a join opera-
tor is defined. It formalizes the elimination of a variable.
Thanks to this formalization, it is possible to abstract the
process of elimination and to find eliminations that cannot
be easy to find using graph theory. As a prerequisite, the
notion of a propagable variable has to be introduced.

Definition 8. Let s1 and s2 be two structures related to
κ1 ∈ K(K1) and κ2 ∈ K(K2). The propagation of a vari-
able v between s1 = s1(κ1) and s2 = s2(κ2) is possible
only if v ∈ var(s1) ∩ var(s2) and if v is deductible in at
least one structure. If this condition is satisfied, v is qual-
ified as propagable between s1 and s2. By extension, v
is also said to be propagable between κ1 and κ2 and also
between K(K1) and K(K2).

The join operator can now be defined.

Definition 9. Let s1 and s2 be two structures, with V +
1 =

var+(s1), V −
1 = var−(s1), V +

2 = var+(s2) and V −
2 =

var−(s2). The join operator, denoted by ��v , where v is
a propagable variable between s1 and s2, is defined only
in the following two situations:

• if {v} ∈ V +
1 ∩ V −

2 , then
s1 ��v s2

= �
(
V −

1 ∪ V +
1 ∪ V −

2

) \ (
V +

2 ∪ {v}
)
, V +

2 �,

• if {v} ∈ V +
1 ∩ V +

2 , then
s1 ��v s2

= �
(
V −

1 ∪ V −
2

) \ (
V +

1 ∪ V +
2

)
,
(
V +

1 ∪ V +
2

) \{v}�.

If a formula s1 ��v s2 satisfies one of the previous two
points, it is qualified as evaluable.

Using this operator results in a definition of a prop-
agation method, i.e., if the value of a variable can be de-
duced from one realization, then this value can be propa-
gated into the other one. A link is thus created between
two constraints—it corresponds partially to the join oper-
ator in relational algebra.

Theorem 1. Let K1 and K2 be two sets of equivalent re-
alizations. Then a wrapping structure of the set of equiva-
lent realizations resulting from the propagation of a vari-
able v between K1 and K2 can be obtained using the ��v

operator on s(K1) and s(K2).

Proof. Write

s(K1) = �V −
1 , V +

1 �, s(K2) = �V −
2 , V +

2 �

and let K be the set of equivalent realizations resulting
from the propagation of v between K1 and K2. The set

K depends on the presence of other propagable variables.
If v is the only propagable variable between K1 and K2,
the exact structure of K can be deduced; otherwise, only
a wrapping structure can be found.

Consider the situation where there is only one
propagable variable v ∈ V +

1 ∩ V −
2 . Then there is a

κ1,v ∈ K1 such that v = κ1,v

((
V +

1 \{v}
) ∪ V −

1

)
and

v can be propagated into K2. If V +
2 �= ∅, ∀w ∈ V +

2 ,
∃κ2,w ∈ K2/w = κ2,w

((
V +

2 \{w}
) ∪ V −

2

)
. Because

v ∈ V −
2 , it yields that there is a κw such that

w =κw

(((
V +

2 \{w}
) ∪ (

V −
2 \{v}

))

∪ ((
V +

1 \{v}
) ∪ V −

1

))
.

Because v is the only propagable variable, w /∈(
V +

1 ∪ V −
1

)
and therefore, κw is a realization. Because

this result is true, ∀w ∈ V +
2 , the structure of the resulting

set of equivalent realizations is �(V −
1 ∪V +

1 ∪V −
2)\(V +

2 ∪
{v}), V +

2 �. Moreover, if V +
2 is empty, the previous re-

sult remains true: �(V −
1 ∪ V +

1 ∪ V −
2)\{v}, ∅�. It yields

∀v ∈ V +
1 ∩ V −

2 , s(K) = s(K1) ��v s(K2).
If the unique propagable variable satisfies v ∈ V +

1 ∪
V +

2 , additional deductible variables can be found. Indeed,

• if V +
2 \{v} �= ∅, ∃κ1,v ∈ K1 such that

v = κ1,v

((
V +

1 \{v}
) ∪ V −

1

)

and v can be propagated into K2:
∀w ∈ V +

2 \{v}, ∃κ2,w ∈ K2/w
= κ2,w

((
V +

2 \{w}
) ∪ V −

2

)
.

Because v ∈ V +
2 , it yields

∃κw/w = κw

(((
V +

2 ∪ V +
1

) \{v, w})
∪V −

1 ∪ V −
2

)
;

• if V +
1 \{v} �= ∅, ∃κ2,v ∈ K2 such that

v = κ2,v

((
V +

2 \{v}
) ∪ V −

2

)

and v can be propagated into K1:
∀w ∈ V +

1 \{v}, ∃κ1,w ∈ K1/w
= κ1,w

((
V +

1 \{w}
) ∪ V −

1

)
.

Because v ∈ V +
1 , it yields

∃κw/w = κw

(((
V +

1 ∪ V +
2

) \{v, w})
∪V −

1 ∪ V −
2

)
.

Because v is the only propagable variable, it yields
that κw is a realization and then that the structure of
the resulting constraint is given by �(V −

1 ∪ V −
2)\(V +

1 ∪
V +

2), (V +
1 ∪ V +

2)\{v}�. Consequently, ∀v ∈ V +
1 ∩ V +

2 ,
s(K) = s(K1) ��v s(K2). These results remain true if
V +

1 or V +
2 are empty.

When there are several propagable variables, it is no
longer possible to prove that the functions κw are realiza-
tions and hence the previous results become

• ∀v ∈ V +
1 ∩ V −

2 , s(K) ⊆ s(K1) ��v s(K2),

• ∀v ∈ V +
1 ∩ V +

2 , s(K) ⊆ s(K1) ��v s(K2).

�

180 S. Ploix et.al

This section introduced the structures of constraints
and a join operator that models value propagations be-
tween structures. These tools can then be used to de-
sign testable subsystems containing many different kinds
of mappings. The way to use these tools is described in
the next section.

4. Testable subsystem design

A testable subsystem is a set of constraints which leads to
an analytical redundancy relation. An ARR is a static or
dynamic constraint which links time evolution of known
variables when the system operates according to its nor-
mal operation model.

Some basic concepts have to be first introduced be-
fore tackling the design of testable subsystems. Then,
some particular modeling contexts are examined.

4.1. Combining structures into formulae. A test re-
sults from consecutive propagations that can be modeled
by a propagation formula: f = (((s1 ��v1 s2) ��v2

s3) ��v3 (s4 ��v4 s2)) A formula is composed of sub-
formulas linked to the join operator, where the elementary
formulas are structures. Thanks to this operator, a propa-
gation formula f can be evaluated as a structure s(f). The
set of all the formulas is denoted by F.

Taking into account that the most basic formula looks
like si ��v sj , the definition of an evaluable formula can
be introduced.

Definition 10. A formula is qualified as evaluable if all its
subformulas and the formula itself are evaluable.

Definition 11. The support of a formula f ∈ F , de-
noted by σ(f), is the set of all the structures involved in
the formula.

Definition 12. The degree of a formula f ∈ F, denoted
by d(f), is equal to the number of times the join oper-
ator appears in the formula—it represents the number of
elementary propagations.

Definition 13. Two formulas f1 and f2 are comparable if
σ(f1) = σ(f2) and if var(s(f1)) = var(s(f2)), i.e., they
have the same constraints and the same variables. This is
denoted by f1 ∼ f2.

Moreover, during propagations, a given variable can
be instantiated only once. However, in some formulas, a
variable can appear several times and then be instantiated
in different ways. In this situation, there will be a sim-
pler formula where the variable has been instantiated only
once.

Definition 14. A formula f1 is simpler than a formula f2

if

• σ(f1) ⊂ σ(f2) and var(s(f1)) ⊂ var(s(f2)), or

• f1 ∼ f2 and d(f1) < d(f2), or

• f1 ∼ f2 and d(f1) = d(f2) and var+(s(f1)) ⊃
var+(s(f2)).

This is denoted by f1 ≺ f2. It is said that f2 overestimates
f1.

A testable propagation formula f ∈ F is an evalu-
able formula that leads to an empty structure. A testable
propagation formula is minimal over a set of structures S
if there is no simpler formula over S. It is called the Min-
imal Testable Propagation Formula (MTPF) over S.

According to the definition of the join operator, all
the formulas correspond to wrapping structures of con-
straints that can be found by combining elementary con-
straints K = {. . . ,Ki, . . . } of a diagnostic problem.
Therefore, the formulas may over-estimate the propaga-
tions that lead to a test. Fortunately, it is easy to check if
all the constraints related to the support σ(f) of an MTPF
f have been used during the design of a test.

4.2. Characteristic of the combining procedure. Ap-
plying the join operator ��v on a variable v belonging to
two formulas fi and fj yields a new formula: fi ��v fj ,
while removing fi and fj . The number of formulas is
therefore reduced by one. Applying the join operator ��v

on a variable v belonging to three formulas fi, fj and
fk yields three new formulas: fi ��v fj , fi ��v fk and
fj ��v fk. The number of formulas remains constant. Ap-
plying the join operator ��v on a variable v belonging to
four formulas fi, fj , fk and fl yields six new formulas:
fi ��v fj , fi ��v fk, fi ��v fl, fj ��v fk, fj ��v fl and
fk ��v fl.

The number of formulas from a set F where a vari-
able v appears is named the order of v in σ(F). It is
denoted by oF (v). Figure 3 shows the link between the
number of structures before and after applying the join
operator. It points out that it is better to start applying the
join operator to variables with lowest order to keep the
number of formulas low.

4.3. Algorithms for the design of testable subsystems.
For the design of Testable SubSystems (TSSs), all the pos-
sible MTPFs have to be found because TSSs are given by
the support of MTPFs. The principle is to iteratively prop-
agate values until MTPFs are found. But, unlike value
propagation, a propagation can be envisaged even if re-
lated variables have not been instantiated. In order to re-
duce the computations, the propagations related to a vari-
able that involve the fewest structures are achieved first.

Sets of formulas (Definition 10) are represented by
the letter F while the corresponding structures by s(F) =
{s(f); f ∈ F}. Consider a set of constraints intervening
in a diagnostic problem and F0, the corresponding struc-
tures, which are also elementary formulas. Here s(F0)

A new efficient and flexible algorithm for the design of testable subsystems 181

Fig. 3. Influence of the join operator on the number of formulas.

denotes the structures corresponding to F0. The number
of structures from a set s(F) where a variable v appears is
named the order of v in σ(F). It is denoted by oF (v)

Firstly, a propagation cannot be achieved when a
variable appears only once in the structures s(F0). There-
fore, structures containing these variables, and their cor-
responding formulas, should be removed because they
have no usefulness in an MTPF. Nevertheless, when some
structures are removed, it is possible to find new variables
that appear only once. The procedure is then repeated un-
til no more single-occurrence variables remain. This step
is a clearing step. It is summarized by the following algo-
rithm.

Algorithm 1 Remove useless structures
Require: F0, a set of formulae

F ← F0

repeat
V ← {v ∈ var(s(F)); oF (v) = 1}
F ← {f ∈ F ; var(s(f)) ∩ V = ∅}

until V = ∅
return F

The resulting cleared set is named F1. The propa-
gations can now be achieved according to the orders of
variables. The variables of the lowest order are selected
first. Let v be one of these variables. All the formulas
where v appears are selected and, using the join operator,
new evaluable formulas are then deduced and added to the
current set of formulas. Formulas that overestimate others
are removed along with formulas that contain v. This pro-
cedure is repeated until all the variables have been consid-
ered. The remaining structures are then empty and thus
all the MTPFs have been found. The procedure is sum-
marized by the algorithm below.

Algorithm 2 Compute MTPF
Require: F1, a set of formulae

F ← F1

while var(s(F)) �= ∅ do
select v ∈ var(s(F)) such that oF (v) ≤
oF (vi), ∀vi ∈ var(s(F))
F ′ ← {f/v ∈ var(s(f))}
F ′′ ← {fi ��v fj ; (fi, fj) ∈ F ′2, i �= j, fi ��v

fj evaluable}
F ← (F\F ′) ∪ F ′′

F ← F\{f ∈ F ; ∃fi ∈ F, fi �= f, f � fi}
end while
return F

Sometimes, because the number of testable propaga-
tion formulas is very high, it is quicker to find only a sub-
set of all the MTPFs. In order to reduce to number of prop-
agations but also to check all the constraints, propagations
of variables that are known because they have been mea-
sured or controled can be reduced—propagations may in-
deed be stopped when a known variable is found. The re-
sulting MTPFs are called basic MTPFs. They are valuable
because they constitute a small subset of all the MTPFs
that covers all the exploitable structures present in all the
MTPFs. Algorithm 2 can still be used, but when a vari-
able v is involved in a terminal structure the join operator
��v is only applied, on the one hand, between the terminal
structures and the other structures involving v and, on the
other hand, between the terminal structures themselves if
many of them include the variable v—it corresponds to
the so-called material redundancy.

4.4. Particular modeling contexts. In this section,
two particular contexts are examined: dynamic systems
and systems with branchings.

4.4.1. Dynamical systems. There are two kinds of dy-
namic systems depending on the way they are modeled:

• a variable appears several times in a system but at
different time stamps, or

• a variable and some of its derivatives or summations
(whatever the order is) appear in the system.

The first case mainly concerns time-delays and dis-
crete time recurrent systems. According to Section 3, each
variable stands for a tube in a physical variable space.
Therefore, a time delay, modeled by y(t + Δ) = x(t),
is a constraint that establishes a link between two tubes:
{dom(y(t + Δ)); t ∈ T } and {dom(x(t))}; t ∈ T .
Therefore, even if the two variables model the same
physical variable in the structural model, they cannot be

182 S. Ploix et.al

merged. Consider now the following discrete-time recur-
rent model:

x((k + 1)Te) = Ax(kTe) + Buk(kTe),
y(kTe) = Cx(kTe), k ∈ N,

where Te stands for the sampling period.
The physical variable modeled by x appears twice.

Therefore, the constraint must be implicitly completed
by a time delay between the variables x((k + 1)Te) and
x(kTe). Structurally speaking, these constraints are mod-
eled by the following structures:

�{x(kTe), x((k + 1)Te), u(kTe)}�,

�{x(kTe), x((k + 1)Te)}�,

�{x(kTe), y(kTe)}�.

Moreover, if the tube corresponding to x((k + 1)Te)
appears only in this constraints (which is usually the
case in practice), the join operator ��x((k+1)Te) can be
applied between �{x(kTe), x((k + 1)Te), u(kTe)}� and
�{x(kTe), x((k + 1)Te)}�, and it results in

�{x(kTe), u(kTe)}�,

�{x(kTe), y(kTe)}�.

The second case mainly concerns integrations and
differential equations. Consider, for instance, the follow-
ing model: dx

dt = u. dx
dt corresponds to a tube, which

can be connected to x by adding the implicit constraint:
x =

∫
dx
dt dt. The initial condition could also be taken into

account by considering x =
∫ tf

0
dx
dt dt + x0. In this case,

the structures become �{dx
dt , u}� and �{x, dx

dt , x0}�. In
the same way as time-delays, the join operator �� dx

dt
can

be applied to obtain the following structure: �{u, x}� or,
if the initial condition is considered, �{u, x, x0}�. This
result remains true for summations and derivatives of any
order. Let us now consider the ordinary differential equa-
tion

dx

dt
= Ax + Bu,

y = Cx.

Here, too, an implicit constraint has to be added: x =∫
dx
dt dt. The following structures arise:

�{x,
dx

dt
, u}�,

�{x,
dx

dt
)}�,

�{x, y}�.

Using the join operator �� dx
dt

, it yields

�{x, u}�
�{x, y}�.

4.4.2. Systems with branchings. Using a structural
approach for the design of testable subsystems leads to
a general method that may potentially be applied to any
kind of systems. The case of dynamic systems have
been examined, but another context requires also a special
attention—systems with branchings. These systems can
be managed by the method presented in Section 4.3, but
the amount of computations can be drastically reduced.

Compared with other structural approaches for the
generation of a TSS, such cases cannot be taken into ac-
count easily. Let us examine how it can be managed with
the proposed approach. Consider, for instance, the roads
in Fig. 4. Denoting by Rvivj a road section linking vi to
vj , a structural model of the road network is given by

s1 = s(Rv1v2) = �v1, v2�,

s2 = s(Rv3v5) = �v3, v5�,

s3 = s(Rv4v6) = �v4, v6�,

s4 = s(crossroad) = �v2, v3�,

s5 = s(crossroad) = �v2, v4�,

s6 = s(crossroad) = �v3, v4�.

Generally speaking, if a car goes from v1 to v5,
it is unlikely that its route could also pass through
v4. Then, a testable subsystem gathering all the con-
straints of the crossroad would not make sense. If
it is not taken into account, the number of generated
TSSs will be too much important. In that simple
case, unrealistic routes would appear: (v1, v2, v3, v4, v6),
(v1, v2, v4, v3, v5), (v5, v3, v2, v4, v6), Imagine now
a complete network with many crossroads. Unrealistic
combinations of constraints will be recombined and this
will provide new unrealistic constraints and so on, until a
possibly huge number of unrealistic TSSs is obtained. In
order to avoid these physical variables, junctions have to
be taken into account during the generation of formulae.

v1

v2
v3

v4

v5

v6

Fig. 4. Simple road network is a system with branchings.

In order to avoid unrealistic TSSs, a set of exclusions
can be defined. In order to model that only two constraints
of the crossroad can be gathered in one formula, the fol-
lowing exclusion set can be defined: {s4, s5}. This means
that these structures cannot appear in the same formula.
Generally speaking, a set of exclusion sets, denoted by

A new efficient and flexible algorithm for the design of testable subsystems 183

X = {{s4, s5}, {s4, s6}, {s5, s6}}, can be defined. Thus,
during the computations of formulas (Section 4.3), once a
new formula is found, it is examined in order to determine
if it does not gather all the structures belonging to an ex-
clusion set of X. In that case, the new formula is removed
from F ′′ in Algorithm 2. It then becomes Algorithm 3.

Algorithm 3 Compute MTPF with exclusions
Require: F1, a set of formulae
Require: X, a set of exclusion sets

F ← F1

while var(s(F)) �= ∅ do
select v ∈ var(s(F)) such that oF (v) ≤
oF (vi), ∀vi ∈ var(s(F))
F ′ ← {f/v ∈ var(s(f))}
F ′′ ← {fi ��v fj; (fi, fj) ∈ F ′2, i �= j, fi ��v

fj evaluable}
for all f ∈ F ′′, do

if ∃x ∈ X/x ⊂ σ(f) then
F ′′ ← F ′′\{f}

end if
end for
F ← (F\F ′) ∪ F ′′

F ← F\{f ∈ F ; ∃fi ∈ F, fi �= f, f � fi}
end while
return F

Systems with branchings are not rare—they can be
encountered in discrete event systems with conveyors,
transportation networks, but also in the diagnosis of cogni-
tive skills (Ploix et al., 2004), where different alternatives
in reasoning may be adopted.

5. Comparison with other approaches

The bipartite graph-based approach, Travé-Massuyès’s
approach and Krysanders approach are compared with the
proposed solution. Because the complexity of algorithms
is highly dependent on the problem to be solved and be-
cause upper bounds for complexity are not meaningful,
the different approaches already in use have been com-
pared with the proposed one using an example. The ex-
ample has been chosen without non-deductible variables
because deductibility has not been taken into account in
the existing approaches. Consider a system composed by
four iterations of a electronic counter equipped with a dig-
ital display. The system is modeled by the following con-
straints:

K1 : x1 = x0 + 1,

K2 : x2 = x1 + 1,

K3 : x3 = x2 + 1,

K4 : x4 = x3 + 1, (3)

K5 : x̃0 = x0,

K6 : x̃1 = x1,

K7 : x̃2 = x2,

K8 : x̃3 = x3,

K9 : x̃4 = x4.

5.1. Bipartite graph approach. The bipartite graph
approach (Dulmage and Mendelsohn, 1959) was used in
(Blanke et al., 2003; Declerck and Staroswiecki, 1991;
Staroswiecki and Declerck, 1989) to compute analytical
redundancy relations—it corresponds to the supports of
the MTPF. The bipartite graph approach is a structural
one, which only requires the knowledge of the variables
that occur in constraints. The bipartite graph is defined
by G = (K, var(K), E), where K gathers available sets
of equivalent realizations and E = K × var(K) stands
for edges in the graph. Each set K = K(K) of equiva-
lent realizations from K generates the edges {(K, v); v ∈
var(K)}. Complete matchings within a connected graph,
i.e., a sub-graph containing all the variables var(K) and
whose edges contain no common vertex, neither con-
straint nor variable, are then selected in order to find all
the ARRs.

A matching directs the search of ARRs, which are
composed of alternated chains starting with a terminal
constraint and ending with an unmatched constraint. In a
connected bipartite graph, for a given matching, the num-
ber of ARRs that can be found is equal to the number
of unmatched sets of equivalent realizations. From these
constraints, the bipartite graph in Fig. 5 can be drawn up.

Fig. 5. Bipartite graph with a matching for the counter.

The following matching can firstly be chosen:
{(K5, x0) , (K6, x1) , (K7, x2) , (K8, x3) , (K9, x4)}. By
applying the approach proposed in (Blanke et al.,
2003), four ARRs are obtained. Nevertheless, there
are obviously ten ARRs in this example. In or-
der to obtain the other ARRs, other matchings
have to be considered. For instance, the match-
ing {(K1, x0) , (K6, x1) , (K7, x2) , (K8, x3) , (K9, x4)}
leads to a new ARR.

This example shows that a matching makes it pos-
sible to obtain only one part of the set of all the ARRs.
The whole set can be obtained provided that all the possi-
ble matchings have been considered. In this example, 62
possible matchings can be found. For each one, the num-

184 S. Ploix et.al

ber of ARRs that can be found is equal to the number of
constraints not matched (four in this example). Therefore,
in order to finally keep only ten ARRs, 64 × 4 redundant
ARRs are obtained in this simple example.

The bipartite graph approach induces great complex-
ity even for simple systems. Let us reconsider this exam-
ple with the join operator.

5.2. Travé-Massuyès’s approach. Travé-Massuyès et
al., (2006) proposed a method for finding all the ARRs
in a physical system. This method was designed for di-
agnosability assessment. It starts from a structural model
augmented by causal information. The starting point of
this method is to assume that all variables of a system are
measured. It proceeds by consecutively removing the hy-
pothetical sensors. The successive removal of sensors is
equivalent to successively combining ARRs.

This method computes all the possible causal in-
terpretations of the system relations, and therefore all
the ARRs can be found. The support of an ARR
(Supp(ARR)) consists of a components set and a sen-
sor set (i.e., a set of elementary constraints modelling a
component set and a set of terminal constraints modelling
a sensor set).

Consider the counter where the variables
are {x0, x1, x2, x3, x4} and the data flows are
{x̃0, x̃1, x̃2, x̃3, x̃4}. When all the variables are measured,
ARRs are simply given by the primary relations in which
every variable is replaced by its data flow.

ARR1 : x̃1 = x̃0 + 1, Supp(ARR1) = {K1,K5,K6},
ARR2 : x̃2 = x̃1 + 1, Supp(ARR2) = {K2,K6,K7},
ARR3 : x̃3 = x̃2 + 1, Supp(ARR3) = {K3,K7,K8},
ARR4 : x̃4 = x̃3 + 1, Supp(ARR4) = {K4,K8,K9}.
These ARRs can be interpreted causally. It yields

ARR1 : x̃1 = x̃0 + 1, Supp(ARR1) = {K1,K5,K6},
ARR2 : x̃0 = −x̃1 + 1, Supp(ARR2) = {K1,K5,K6},
ARR3 : x̃2 = x̃1 + 1, Supp(ARR3) = {K2,K6,K7},
ARR4 : x̃1 = −x̃2 + 1, Supp(ARR4) = {K2,K6,K7},
ARR5 : x̃3 = x̃2 + 1, Supp(ARR5) = {K3,K7,K8},
ARR6 : x̃2 = −x̃2 + 1, Supp(ARR6) = {K3,K7,K8},
ARR7 : x̃4 = x̃3 + 1, Supp(ARR7) = {K4,K8,K9},
ARR8 : x̃3 = −x̃4 + 1, Supp(ARR8) = {K4,K8,K9}.

In order to find all the ARRs, the successive re-
moval of sensors (terminal constraints modelling these
sensors) is applied. In this example, there are 32 pos-
sible removals. Consider that the sensor measuring the
variable x1 is removed, one new ARR is obtained by
combining one ARR from {ARR1, ARR2} with one
ARR from {ARR3, ARR4}. By combining ARR1 with
ARR3, a new ARR is obtained: ARR9 : x̃2 = x̃0 + 2,
Supp(ARR9) = {K1,K2,K5,K7}.

This method makes it possible to find all the ARRs
of a system. The main disadvantage of this method is

that the complexity is exponential according to variables.
Moreover, this complexity increases taking into account
the causal interpretation.

5.3. Krysander’s approach. Krysander et al. (2008)
proposed an algorithm for finding all MSOs (Minimal
Structurally Over-constrained subsystems), i.e., testable
subsystems. This algorithm is based on the Dulmage-
Mendelshon decomposition (Dulmage and Mendelsohn,
1959) and on a top-down approach. It starts with the en-
tire model and then reduces the size of the model step by
step until a TSS remains.

To understand this algorithm, the notion of structural
redundancy must be presented.

Given a bipartite graph G = (K, var(K), E), where
K is the set of constraints of a system, var(K) is the
subset of variables connected to at least one constraint
in K and E = K × var(K) stands for edges in the
graph, the structural redundancy ϕK is defined by ϕK =
|K+| − |var(K+)|, where K+ is the structurally overde-
termined part of K . This part is equal to the vertical tail of
the Dulmage-Mendelshon decomposition of G. In a TSS,
the structural redundancy is 1.

A digital system is used to illustrate this
method. This system may be represented by
the structural matrix given in Table 1, where
K = {K1,K2,K3,K4,K5,K6,K7,K8,K9} is the
constraint set of the system. The structural redundancy of
the system is 4.

Table 1. Structural matrix of a system.
x0 x1 x2 x3 x4

K1 1 1 0 0 0
K2 0 1 1 0 0
K3 0 0 1 1 0
K4 0 0 0 1 1
K5 1 0 0 0 0
K6 0 1 0 0 0
K7 0 0 1 0 0
K8 0 0 0 1 0
K9 0 0 0 0 1

In order to find TSSs, the algorithm proposed in
(Krysander et al., 2008) is applied:

• If K1 is removed, the Dulmage-Mendelshon de-
composition of K \ {K1} is (K \ {K1})+ =
{K2,K3,K4,K6,K7,K8}, (K\{K1})0 = {K5} and
(K\{K1})− = {∅}. The set K

′
= (K\{K1})+ does

not verify ϕK

′
= 1; then the set K

′
is not a TSS.

• If K1,K2 are removed, the Dulmage-Mendelshon
decomposition of K\{K1,K2} is (K\{K1,K2})+ =

A new efficient and flexible algorithm for the design of testable subsystems 185

{K3,K4,K7,K8}, (K \ {K1,K2})0 = {K5,K6}
and (K \ {K1,K2})− = {∅}. The set K

′
= (K \

{K1,K2})+ does not verify ϕK

′
= 1; then the set

K

′
is not a TSS.

• If K1,K2,K3 are removed, the Dulmage-
Mendelshon decomposition of K \ {K1,K2,K3}
is

(K \ {K1,K2,K3})+ = {K4,K8,K9},
(K \ {K1,K2,K3})0 = {K5,K6,K7},
(K \ {K1,K2,K3})− = {∅}.

The set K

′
= (K \ {K1,K2,K3})+ satisfies ϕK

′
=

1; then the set K

′
= {K4,K8,K9} is a TSS.

In order to find all the testable subsystems, all the
combinations of elimination must be made. In this exam-
ple, 119 combinations were achieved in oder to find the
ten possible TSSs of the system.

The same TSS can be found more than once. Accord-
ingly, this algorithm is not optimal in terms of efficiency.
Krysander et al. (2008) presented improvements in order
to increase the efficiency.

Even if the complexity of this method is lower
than for the last approach, the main disadvantage of this
method is that it cannot take into account the notion of
deductibility of variables—all variables of the system are
treated as deductibles and, therefore, some ARRs may not
be achievable. Of course, systems with branchings cannot
be managed.

5.4. Assessment of the proposed approach. The
method proposed in Section 4 will now be applied.
Because no structure has to be cleared, it starts with
the definition of the set F1, which is composed of the
following formulas:

f1 with s(f1) = �{x0, x1}�,
f2 with s(f2) = �{x1, x2}�,
f3 with s(f3) = �{x2, x3}�,
f4 with s(f4) = �{x3, x4}�,
f5 with s(f5) = �{x0}�,
f6 with s(f6) = �{x1}�,
f7 with s(f7) = �{x2}�,
f8 with s(f8) = �{x3}�,
f9 with s(f9) = �{x4}�.

The variable x0 is one of the variables with the
lowest order in F1. It is selected first. The operator ��x0

is then used for all formulas where it applies. Then,
removing the formulas containing the variable x0, the
following set of formulas F is obtained:

f1 ��x0 f5 with s (f1 ��x0 f5) = �{x1}�,
f2 with s(f2) = �{x1, x2}�,

f3 with s(f3) = �{x2, x3}�,
f4 with s(f4) = �{x3, x4}�,
f6 with s(f6) = �{x1}�,
f7 with s(f7) = �{x2}�,
f8 with s(f8) = �{x3}�,
f9 with s(f9) = �{x4}�.

Then, x4 is selected. The operator ��x4 is then used
for all formulas where it applies. Then, removing the
formulas containing the variable x4, the following set of
formulae F is obtained:

f1 ��x0 f5 with s (f1 ��x0 f5) = �{x1}�,
f2 with s(f2) = �{x1, x2}�,
f3 with s(f3) = �{x2, x3}�,
f4 ��x4 f9 with s (f4 ��x4 f9) = �{x3}�,
f6 with s(f6) = �{x1}�,
f7 with s(f7) = �{x2}�,
f8 with s(f8) = �{x3}�.

Then, x1, x2 or x3 can be selected because their
order is 3. Let us choose x1. The operator ��x1 is then
used for all formulas where it applies. Then, removing
the formulas containing the variable x1, the following set
of formulas F is obtained:

f3 with s(f3) = �{x2, x3}�,
f4 ��x4 f9 with s (f4 ��x4 f9) = �{x3}�,
f7 with s(f7) = �{x2}�,
f8 with s(f8) = �{x3}�,
(f1 ��x0 f5) ��x1 f2

with s ((f1 ��x0 f5) ��x1 f2) = �{x2}�,
(f1 ��x0 f5) ��x1 f6

with s ((f1 ��x0 f5) ��x1 f6) = �∅�,
f2 ��x1 f6 with s (f2 ��x1 f6) = �{x2}�.

The formula (f1 ��x0 f5) ��x1 f6 is an MPTF. Then,
variable x3 should be selected. The operator ��x3 is then
used for all formulas where it applies. Then, removing
the formulas containing the variable x3, the following set
of formulas F is obtained:

(f1 ��x0 f5) ��x1 f6

with s((f1 ��x0 f5) ��x1 f6) = �∅�,
f7 with s(f7) = �{x2}�,
(f1 ��x0 f5) ��x1 f2

with s ((f1 ��x0 f5) ��x1 f2) = �{x2}�,
f2 ��x1 f6 with s (f2 ��x1 f6) = �{x2}�,
f3 ��x3 (f4 ��x4 f9)

with s (f3 ��x3 (f4 ��x4 f9)) = �{x2}�,
f3 ��x3 f8 with s (f3 ��x3 f8) = �{x2}�,
(f4 ��x4 f9) ��x3 f8

with s ((f4 ��x4 f9) ��x3 f8) = �∅�.

A new MTPF has been found: (f4 ��x4 f9) ��x3 f8.
Only the variable x2 remains. The operator ��x2 is then
used for all formulas where it applies. Then, removing the

186 S. Ploix et.al

formulas containing the variable x2, the resulting struc-
tures are

• (f1 ��x0 f5) ��x1 f6 with
s ((f1 ��x0 f5) ��x1 f6) = �∅�,

• (f4 ��x4 f9) ��x3 f8 with
s((f4 ��x4 f9) ��x3 f8) = �∅�,

• f7 ��x2 ((f1 ��x0 f5) ��x1 f2) with
s (f7 ��x2 ((f1 ��x0 f5) ��x1 f2)) = �∅�,

• f7 ��x2 (f2 ��x1 f6) with
s (f7 ��x2 (f2 ��x1 f6)) = �∅�,

• f7 ��x2 (f3 ��x3 (f4 ��x4 f9)) with
s (f7 ��x2 (f3 ��x3 (f4 ��x4 f9))) = �∅�,

• f7 ��x2 (f3 ��x3 f8) with
s (f7 ��x2 (f3 ��x3 f8)) = �∅�,

• ((f1 ��x0 f5) ��x1 f2) ��x2 (f3 ��x3 (f4 ��x4 f9))
with s(((f1 ��x0 f5) ��x1 f2) ��x2 (f3 ��x3

(f4 ��x4 f9))) = �∅�,

• ((f1 ��x0 f5) ��x1 f2) ��x2 (f3 ��x3 f8) with
s (((f1 ��x0 f5) ��x1 f2) ��x2 (f3 ��x3 f8)) = �∅�,

• (f2 ��x1 f6) ��x2 (f3 ��x3 (f4 ��x4 f9)) with
s ((f2 ��x1 f6) ��x2 (f3 ��x3 (f4 ��x4 f9))) = �∅�,

• (f2 ��x1 f6) ��x2 (f3 ��x3 f8) with
s ((f2 ��x1 f6) ��x2 (f3 ��x3 f8)) = �∅�.

The formulas ((f1 ��x0 f5) ��x1 f2) ��x2 (f2 ��x1 f6)
and (f3 ��x3 (f4 ��x4 f9)) ��x2 (f3 ��x3 f8) were cal-
culated and then removed because the formulas (f1 ��x0

f5) ��x1 f6 and (f4 ��x4 f9) ��x3 f8 are respectively sim-
pler. Only 17 elementary propagations were necessary to
find all the MPTFs instead of 256 ways of propagations
with the Bipartite graph approach, 119 eliminations with
Krysander’s approach, and 32 eliminations (without tak-
ing into account the causal interpretation) with the Travé-
Massuyès’ approach.

6. Application example

The algorithm presented in Section 4 has been imple-
mented as a specialized language interpreter1 in order to
facilitate the search for all the possible tests that can be
performed in a system.

6.1. System description. Consider the following elec-
tronic circuit in Fig. 6. Because of the number of obser-
vations, this example is so complex that it is hard to solve
manually.

1The software can be obtained from the authors.

Fig. 6. Diagram of an electronic circuit.

There are four voltage sensors measuring v1, v2, v3

and v4, and one voltage generator applying the voltage v0.
The system is modeled by the following constraints:

amplifier : k1 :v1c = v2,

connection1 : k2 :i1 = i2 + i3,

connection1 : k3 :v1 = v1a,

connection1 : k4 :v1 = v1b,

connection1 : k5 :v1 = v1c,

resistor1 : k6 :v0 − v1 = R1i1,

capacitor : k7 :C(v1a − v3) =
∫ t

0

i2 dt,

resistor2 : k8 :v3 − v4a = R2i2,

resistor3 : k9 :v1 − v4b = R3i3,

resistor4 : k10 :v2 = R4i4,

connection2 : k11 :v4 = v4a,

connection2 : k12 :v4 = v4b,

generator : k13 :ṽ0 = v0,

sensor1 : k14 :ṽ1 = v1,

sensor2 : k15 :ṽ2 = v2,

sensor3 : k16 :ṽ3 = v3,

sensor4 : k11 :ṽ4 = v4.

6.2. Solutions and discussion. According to Section
4.4.1, the capacitor’s constraint is structurally modeled.
The following formulas arise:

• amplifier:f1 with s(f1) = �{v1c, v2}�,

• connection1f2 with s(f2) = �{i1, i2, i3}�,

• connection1:f3 with s(f3) = �{v1, v1a}�,

• connection1:f4 with s(f4) = �{v1, v1b}�,

• connection1: f5 with s(f5) = �{v1, v1c}�,

• resistor1: f6 with s(f6) = �{v0, v1, i1}�,

A new efficient and flexible algorithm for the design of testable subsystems 187

• capacitor:f7 with s(f7) = �{v1a, v3}, {i2}�,

• resistor2:f8 with s(f8) = �{v3, v4a, i2}�,

• resistor3: f9 with s(f9) = �{v1, v4b, i3}�,

• resistor4:f10 with s(f10) = �{v2, i4}�,

• connection2:f11 with s(f11) = �{v4, v4a}�,

• connection2:f12 with s(f12) = �{v4, v4b}�,

• generator:f13 with s(f13)�{v0}�,

• sensor1:f14 with s(f14)�{v1}�,

• sensor2:f15 with s(f15) = �{v2}�,

• sensor3:f16 with s(f16) = �{v3}�,

• sensor4:f17 with s(f17) = �{v4}�.

Note that for the capacitor only the variable i2 is con-
sidered deductible in order to avoid derivations that am-
plify high frequency noises. Then, the following test for-
mulas are obtained thanks to the proposed method:

• t1 = (f14 ��v1 (f16 ��v3 (f17 ��v4 ((f3 ��v1a

f7) ��i2 ((((f2 ��i3 f9) ��v4b
f12) ��i1 f6) ��v0

f13))))),

• t2 = ((f16 ��v3 (f17 ��v4 ((f3 ��v1a f7) ��i2

((((f2 ��i3 f9) ��v4b f12) ��i1 f6) ��v0 f13)))) ��v1

(f16 ��v3 (f17 ��v4 (((((f2 ��i3 f9) ��v4b f12) ��i1

f6) ��v0 f13) ��i2 (f11 ��v4a f8))))),

• t3 = (f14 ��v1 (f16 ��v3 (f17 ��v4 (((((f2 ��i3

f9) ��v4b
f12) ��i1 f6) ��v0 f13) ��i2 (f11 ��v4a

f8))))),

• t4 = ((f15 ��v2 (f5 ��v1c f1)) ��v1 (f16 ��v3

(f17 ��v4 ((f3 ��v1a f7) ��i2 ((((f2 ��i3 f9) ��v4b

f12) ��i1 f6) ��v0 f13))))),

• t5 = (((f17 ��v4 ((f3 ��v1a f7) ��i2 (f11 ��v4a

f8))) ��v3 f16) ��v1 f14),

• t6 = ((f15 ��v2 (f5 ��v1c f1)) ��v1 f14),

• t7 = (f14 ��v1 ((f17 ��v4 ((f3 ��v1a f7) ��i2

((((f2 ��i3 f9) ��v4b
f12) ��i1 f6) ��v0 f13))) ��v3

((((((f2 ��i3 f9) ��v4b
f12) ��i1 f6) ��v0 f13) ��i2

(f11 ��v4a f8)) ��v4 ((f3 ��v1a f7) ��i2 (f11 ��v4a

f8))))),

• t8 = (((f17 ��v4 ((f3 ��v1a f7) ��i2 (f11 ��v4a

f8))) ��v3 f16) ��v1 (f15 ��v2 (f5 ��v1c f1))),

• t9 = (f14 ��v1 (f16 ��v3 ((((((f2 ��i3 f9) ��v4b

f12) ��i1 f6) ��v0 f13) ��i2 (f11 ��v4a f8)) ��v4

((f3 ��v1a s7) ��i2 (f11 ��v4a s8))))),

• t10 = ((f15 ��v2 (f5 ��v1c f1)) ��v1 ((f17 ��v4

((f3 ��v1a f7) ��i2 ((((f2 ��i3 f9) ��v4b
f12) ��i1

f6) ��v0 f13))) ��v3 ((((((f2 ��i3 f9) ��v4b

f12) ��i1 f6) ��v0 f13) ��i2 (f11 ��v4a f8)) ��v4

((f3 ��v1a f7) ��i2 (f11 ��v4a f8))))),

• t11 = ((f15 ��v2 (f5 ��v1c f1)) ��v1 (f16 ��v3

(f17 ��v4 (((((f2 ��i3 f9) ��v4b
f12) ��i1 f6) ��v0

f13) ��i2 (f11 ��v4a f8))))),

• t12 = ((f15 ��v2 (f5 ��v1c f1)) ��v1 (f16 ��v3

((((((f2 ��i3 f9) ��v4b
f12) ��i1 f6) ��v0 f13) ��i2

(f11 ��v4a f8)) ��v4 ((f3 ��v1a f7) ��i2 (f11 ��v4a

f8))))).

In gathering the structures modeling the same com-
ponents, the checked components can be deduced:

• t1: connection2, connection1, resistor2, amplifier,
sensor4, capacitor, sensor3, sensor2,

• t2: connection1, amplifier, sensor2, sensor1,

• t3: amplifier, generator, resistor3, capacitor, resis-
tor2, resistor1, connection2, connection1, sensor4,
sensor2,

• t4: sensor1, generator, resistor3, resistor2, resistor1,
connection2, connection1, sensor4, sensor3,

• t5: sensor1, generator, resistor3, capacitor, resistor2,
resistor1, connection2, connection1, sensor4,

• t6: sensor1, generator, resistor3, capacitor, resistor2,
resistor1, connection2, connection1, sensor3,

• t7: amplifier, generator, resistor3, capacitor, resis-
tor2, resistor1, connection2, connection1, sensor3,
sensor2,

• t8: amplifier, generator, resistor3, resistor2, resis-
tor1, connection2, connection1, sensor4, sensor3,
sensor2,

• t9: connection2, resistor2, connection1, capacitor,
sensor4, sensor3, sensor1,

• t10: amplifier, generator, resistor3, capacitor, re-
sistor1, connection2, connection1, sensor4, sensor3,
sensor2,

• t11: generator, resistor3, capacitor, resistor2, resis-
tor1, connection2, connection1, sensor4, sensor3,

• t12: sensor1, generator, resistor3, capacitor, resis-
tor1, connection2, connection1, sensor4, sensor3.

A signature table, where rows correspond to tests and
columns to components, summarized the results. In study-
ing the signature of each component, it is possible to study
diagnosability (see (Console et al., 2000) for a definition).

188 S. Ploix et.al

Detectability, i.e., the possibility of detecting a fault on a
component, and diagnosability, i.e., the possibility of iso-
lating a fault on a component, can now be studied thanks
to the signature table (Travé-Massuyès et al., 2003). Be-
cause all the ARRs have been found, it is easy to deter-
mine the best properties for this system:

• Diagnosable components are: connection2, connec-
tion1, resistor2, sensor4, capacitor, sensor3, sensor1;

• Detectable but not discriminable components are:

– amplifier, sensor2,

– generator, resistor3, resistor1.

Detection tests can then be designed using various
tools including state observers or parity relations (see
(Staroswiecki et al., 1991) for an example) for constraints
containing ordinary differential equations. Consider, for
instance, the formula t9. It may yield the state observer:

⎧
⎪⎪⎨

⎪⎪⎩

C
dx

dt
= − 1

R2 + R3
x +

R3

R1(R2 + R3)
(ṽ0 − ṽ1)

+K (x− ṽ1 − ṽ3) ,

ṽ1 − ṽ3 = x.

The gain matrix can be adjusted to improved the de-
tection capabilities in the presence of noise.

7. Conclusion

This paper formalizes structural modeling and shows how
it can support engineers in constructing detection tests for
the system to be diagnosed. The proposed methods pro-
vide the constraints to be used to design each test, but also
a way of combining one with another. It then lets the engi-
neer choose its preferred detection test (for instance, par-
ity relations, Luenberger state observers or Kalman filters
in dynamic continuous time systems), the way of tuning
the detection tests a posteriori in order to take into ac-
count modeling uncertainties.

The main advantage of structural modeling is that it
makes it possible to handle any kind of systems, e.g., dy-
namic continuous-time, discrete event or rule-based sys-
tems. In the paper, it was shown on a road network that,
even if the behavioral constraints are not available, it is
still possible to compute the composition of all the possi-
ble ARRs.

The drawback of structural approaches is that over-
estimations of some solutions may occur. Even if this can
be partially avoided in taking into account the realizabil-
ity of the constraints, some over-estimations are still pos-
sible. A consequence is that some provided constraints in
an ARR may not be required. They have to be removed
afterwards when designing the detection tests. This draw-
back is not a major issue because the main problem that

has to be tackled when designing tests in complex systems
is to determine the sets of constraints that lead to an ARR.

The proposed procedure was designed in order to re-
duce as much as possible the number of computations. It
was compared with two alternative approaches and sig-
nificant improvements were pointed out: it requires fewer
computations and handles deductibility and exclusions.

Because the constraints included in all the ARRs
are provided, a complete signature table can be writ-
ten. Therefore, it becomes possible to determine the best
achievable performances of diagnostic procedures. More-
over, because the supports of tests are provided, the results
are particularly suitable for bridge approaches to fault di-
agnosis.

References
Blanke, M., Kinnaert, M. and Staroswiecki, M. (2003). Diagno-

sis and Fault Tolerant Control, Springer, Berlin.

Cassar, J. and Staroswiecki, M. (1997). A structural approach for
the design of failure detection and identification systems,
IFAC, IFIP, IMACS Conference on Control of Industrial
Systems, Belfort, France, pp. 329–334.

Chittaro, L. and Ranon, R. (2004). Hierarchical model-based
diagnosis based on structural abstraction, Artificial Intelli-
gence 155(1-2): 147–182.

Codd, E. (1970). A relational model of data for large shared data
banks, Communications of the ACM 13(6): 377–387.

Console, L., Picardi, C. and Ribando, M. (2000). Diagnosis and
diagnosability analysis using process algebra, Proceedings
of the Eleventh International Workshop on Principles of
Diagnosis (DX-00), MX, Morelia, Mexico, pp. 25–32.

Dague, P. (2001). Théorie logique du diagnostic à base de
modèles, in B. Dubuisson (Ed.), Diagnostic, Intelligence
artificielle et reconnaissance de formes, Hermès Science,
Paris, pp. 17–104.

Davis, R. (1984). Diagnostic reasoning based on structure and
behavior, Artificial Intelligence 24(1–3): 347–410.

De Kleer, J. and Williams, B. C. (1987). Diagnosing multiple
faults, Artificial Intelligence 32(1): 97–130.

de Kleer, J. and Williams, B. C. (1992). Diagnosis with behav-
ioral modes, in W.C. Hamscher, I.de Kleer and L. Console
(Eds), Readings in Model-Based Diagnosis, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, pp. 124–130.

Dechetr, R. (2003). Constraint Processing, Morgan Kaufmann
Publishers, San Francisco, CA.

Declerck, P. and Staroswiecki, M. (1991). Characterization of
the canonical components of a structural graph for fault
detection in large scale industrial plants, European Control
Conference, Grenoble, France, pp. 298–303.

Dulmage, A. L. and Mendelsohn, N. S. (1959). A structure the-
ory of bi-partite graphs of finite exterior extension, Trans-
actions of the Royal Society of Canada 53(III): 1–13.

Frank, P. M. (1990). Fault diagnosis in dynamic systems us-
ing analytical and knowledge-based redundancy—A sur-
vey and some new results, Automatica 26(3): 459–471.

A new efficient and flexible algorithm for the design of testable subsystems 189

Frisk, E. (2000). Residual generator for non-linear polynomial
systems—A Grobner basis approach, IFAC Fault Detec-
tion, Supervision and Safety for Technical Processes, Bu-
dapest, Hungary, pp. 979–984.

Fron, A. (1994). Programmation par contraintes, Addison-
Wesley, Paris.

Górny, B. and Ligȩza, A. (2001). Review of systematic conflict
generation in model-based diagnosis of dynamic systems,
IFAC Workshop on Manufacturing, Modelling Manageent
and Control, Prague, Czech Republic, pp. 86–91.

Iwasaki, Y. and Simo, H. A. (1994). Causality and model ab-
straction, Artificial Intelligence 67(1): 143–194.

Krysander, M., Åslund, J. and Nyberg, M. . (2008). An effi-
cient algorithm for finding minimal overconstrained sub-
systems for model-based-diagnosis, IEEE Transactions on
Systems, Man, and Cybernetics—Part A: Systems and Hu-
mans 38(1): 197–206.

Krysander, M., Aslund, J. and Nyberg, M. (2005). An efficient
algorithm for finding over-constrained sub-systems for
construction of diagnostic tests, 16th International Work-
shop on Principles of Diagnosis (DX-05), Pacific Grove,
CA, USA.

Ligȩza, A. and Górny, B. (2000). Systematic conflict genera-
tion in model-based diagnosis, SAFEPROCESS’2000: 4th
IFAC Symposium on Fault Detection and Supervision and
Safety for Technological Processes, Budapest, Hungary,
Vol. II, pp. 1103–1108.

Mishra, P. and Eich, M. (1992). Join processing in relational
databases, ACM Computing Surveys 24(1): 63–113.

Nayak, P. P. and Levy, A. Y. (1995). A semantic theory of ab-
stractions, 14th International Joint Conference on Artifi-
cial Intelligence IJCAI-95, Montreal, Canada, pp. 196–
203.

Nyberg, M. and Krysander, M. (2003). Combining AI, FDI, and
statistical hypothesis-testing in a framework for diagnosis,
IFAC SAFEPROCESS’03, Washington, DC, USA, pp. 813–
818.

Patton, R., Frank, P. and Clark (Eds), R. (1989). Fault Diagnosis
in Dynamic Systems, International Series in Systems and
Control Engineering, Prentice Hall, London.

Ploix, S., Désinde, M. and Michau, F. (2004). Assessment and
diagnosis for virtual reality training, International Sym-
posium on Advanced Robot Systems and Virtual Reality,
Grenoble, France.

Ploix, S., Desinde, M. and Touaf, S. (2005). Automatic design
of detection tests in complex dynamic systems, 16th IFAC
World Congress, Prague, Czech Republic.

Ploix, S., Touaf, S. and Flaus, J. M. (2003). A logical
framework for isolation in fault diagnosis, SAFEPRO-
CESS’2003, Washington, DC, USA.

Pulido, B. and Alonso, C. (2002). Possible conflicts, arrs, and
conflicts, 13th International Workshop on Principles of Di-
agnosis (DX02), Semmering, Austria, pp. 122–128.

Reiter, R. (1987). A theory of diagnosis from first principles,
Artificial Intelligence 32(1): 57–95.

Russell, S. and Norvig, P. (2003). Artificial Intelligence, A Mod-
ern Approach, 2nd Ed., Prentice Hall, Upper Saddle River,
NJ.

Staroswiecki, M., Cocquempot, V. and Cassar, J. P. (1991). Ob-
server based and parity space approaches for failure detec-
tion and identification, IMACS-IFAC International Sympo-
sium, Lille, France, Vol. 25, pp. 536–541.

Staroswiecki, M. and Declerck, P. (1989). Analytical redun-
dancy in nonlinear interconnected systems by means of
structural analysis, IFAC AIPAC’89 Symposium, Nantes,
France, Vol. 2, pp. 23–27.

Struss, P. (1992). What’s in SD? Towards a theory of modeling
for diagnosis, in W. Hamscher, L. Console and J. De Kleer
(Eds), Readings in Model-Based Diagnosis, Morgan Kauf-
man, San Francisco, CA, pp. 419–448.

Travé-Massuyès, L., Escobet, T. and Olive, X. (2006). Di-
agnosability analysis based on component supported an-
alytical redundancy relations, IEEE Transactions on Sys-
tems, Man, And Cybernetics—Part A: Systems and Hu-
mans 36(6): 1146–1160.

Travé-Massuyès, L., Escobet, T. and Spanache, S. (2003). Di-
agnosability analysis based on component supported ana-
lytical redundancy relations, IFAC Workshop SAFEPRO-
CESS’2003, Washington, DC, USA, pp.897–902.

Willsky, A. (1976). A survey of design methods for failure de-
tection in dynamic systems, Automatica 21(4): 601–611.

Stéphane Ploix is Maı̂tre de Conférences at
the Grenoble Institute of Technology in the G-
SCOP lab. After an engineer degree in me-
chanics and electricity, in 1998 he obtained a
Ph.D. from Institut National Polytechnique de
Lorraine in control engineering and signal pro-
cessing. He is a specialist in supervision, mon-
itoring and diagnosis, and his studies focus on
human-machine cooperative mechanisms. He
is involved in different industrial projects deal-

ing with the supervision of distributed plants, the diagnosis of human
skills, iterative diagnosis tool for companies and power management in
buildings.

Abed Alrahim Yassine occupies a postdoc-
toral position at the Grenoble Institute of Tech-
nology in the G-SCOP lab. In 1998, he ob-
tained an engineer degree in electronic en-
gineering from Tishrine University, Faculty
of Mechanical and Electrical Engineering, in
Syria. In 2008, he obtained a Ph.D. from
Joseph Fourrier University in France in auto-
matic control and industrial automation. His
research focuses on fault diagnosis of industrial

plants. He has developed tools for the design of testable subsystems and
sensor placement.

190 S. Ploix et.al

Jean-Marie Flaus received a Ph.D. degree in
automatic control in 1990 from the Grenoble
Institute of Technology, after obtaining an elec-
trical engineering degree. He worked for three
years for a large chemical company and then
joined CNRS for six years. He is currently
a full professor at Joseph Fourier University,
where he teaches mainly process safety. He
joined the G-SCOP lab in 2006. His research
interests include risk analysis methods, diagno-

sis, system safety and interval analysis for the monitoring and control of
complex systems.

Received: 23 October 2008
Revised: 24 July 2009

	Introduction
	Relational algebra and join-operator
	Problem statement
	Behavioral modeling
	Structural modeling

	Testable subsystem design
	Combining structures into formulae
	Characteristic of the combining procedure
	Algorithms for the design of testable subsystems
	Particular modeling contexts
	Dynamical systems
	Systems with branchings

	Comparison with other approaches
	Bipartite graph approach
	Travé-Massuyès's approach
	Krysander's approach
	Assessment of the proposed approach

	Application example
	System description
	Solutions and discussion

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

