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We extend here the finite-difference-time-domain �FDTD� algorithm working in oblique incidence to dis-

persive media. The split-field method �SFM� is used and adapted for taking into account the metal dispersion.

The additional equations to the FDTD algorithm are given. Instead of the 24 field components usually used in

the SFM, 38 and 112 field components are needed to implement the cases of Drude and Drude-Lorentz

dispersion models, respectively. Some tests are presented to validate our code as long as the angle of incidence

is lower than 76° in addition to an application dealing with enhanced transmission and showing original results.

DOI: 10.1103/PhysRevE.81.046705 PACS number�s�: 02.70.�c, 95.75.Pq

I. INTRODUCTION

The study of periodic structures �photonic crystals� or

samples exhibiting collective effects �enhanced transmission�
is still a challenge for theoreticians working in the domain of

nano-optic even if a lot of methods can hardly treat such a

problem. On the contrary of the determination of the band

diagram of a three-dimensional �3D� photonic crystal, the

calculation of reflection and transmission through a finite

structure is still difficult especially if this later is composed

of metallic parts that present large dispersion in the consid-

ered electromagnetic domain. Moreover, this difficulty be-

lieves when the symmetry of the problem is destroyed such

as the off-plane propagation inside a photonic crystal when

this last is illuminated at oblique incidence. So, it does not

exist only identified and rigorous method that is worth its

used for this large panel of calculations. In these circum-

stances, the finite-difference-time-domain �FDTD� method

seems a natural and competitive tool considering its large

domain of application �1�. Despite its popularity, it is neces-

sary to operate a development of the FDTD method that

follows the scientific evolution and allowing an extension of

its domain of application. In what concerns us here, this de-

velopment involves with the oblique incidence problem in

the case of light interaction with dispersive metallic periodic

structures.

More precisely, and after recently developing the split-

field method �SFM� in the FDTD algorithm �2� and use it to

make original study dealing with the enhanced transmission

�3�, it was necessary to integrate dispersion models to de-

scribe metal dispersion in the visible range. Let us note that

other techniques adapting the FDTD to the oblique incidence

case exist �see Ref. �4��. However, our aim here is to extend

the implementation of the SFM with integration of the metal

dispersion considering the well-known Drude and Drude-

Lorentz models. Thus this metal dispersion is implemented

with such a technique. Although, the Valuev team �5� re-

cently proposed and demonstrated an iterative technique that

can include dispersion models used in conventional FDTD

algorithm. However, this technique needs the consideration

of more than one spatial period of the structure and seems to

be very time consuming because of the large number of it-

erations necessary for its convergence. Let us mention that a

comparison between the SFM and the iterative method is

done in Ref. �4�.
In Ref. �4� a very brief description of the method which

includes only the Debye dispersion model with using the

auxiliary differential equation �ADE� method is presented.

However, this paper is devoted to the implementation of the

Drude and Drude-Lorentz models in the context of the SFM-

FDTD by using the ADE and recursive convolution methods,

respectively.

II. THEORETICAL DEVELOPMENTS

Let us begin by introducing the SFM technique: the

FDTD algorithm, in its basic version, is unable to treat the

oblique incidence problem in the case of a periodic structure.

In fact, for such periodic structure, only one period must be

considered in addition to the periodic conditions that enable

to process the infinite structure. When analytically expressed,

these periodic conditions let appear a term that depends ex-

plicitly on the frequency of the wave. Because of the tempo-

ral character of the FDTD, this term cannot be directly in-

corporated into the algorithm. Some solutions were

developed in order to solve this problem �1�. One of them,

called the SFM, was recently implemented by us �2� in the

case of nondispersive materials such as perfect conductors or

pure dielectrics. The SFM technique was chosen according

to its ability to be easily extended to the case of dispersive

media.

As it is well known, in the visible range, real metals are

no more perfect conductors and they have frequency-

dependent dielectric properties. To be taken into account by

the FDTD method, the dispersion must be analytically de-

scribed. Drude model �6� is one of the most used and effi-

cient way to describe the dispersion of some noble metals

�aluminum and silver, for example� in the visible range. For
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other noble metal, such as gold, the Drude model is not

efficient because of the contribution of the bound electrons to

the dielectric function in the visible range. So, a Drude-

Lorentz model is considered.

In order to give a clear insight of our algorithm, we

should explicitly give some equations.

First, let us consider a plane wave impinging on the bidi-

mensional �two-dimensional �2D�� periodic structure at ob-

lique incidence �see Fig. 1�. The electromagnetic field of this

plane wave can be expressed as

E� �x,y,z,t� = E0
��t�e j�kxx+kyy+kzz�, �1�

H� �x,y,z,t� = H0
��t�e j�kxx+kyy+kzz�, �2�

where kx=
�

vi
sin � cos �, ky =

�

vi
sin � sin �, and kz=

�

vi
cos � are

the three Cartesian components of the incident wave vector

and vi is the light speed in the medium of incidence.

As mentioned above, only one period of the structure is

considered for the FDTD calculations. The periodic condi-

tions can then be written as

E� �x + px,y,z,t� = E� �x,y,z,t�e jkxpx, �3a�

E� �x,y + py,z,t� = E� �x,y,z,t�e jkypy , �3b�

H� �x,y,z,t� = H� �x + px,y,z,t�e−jkxpx, �3c�

H� �x,y,z,t� = H� �x,y + py,z,t�e−jkypy . �3d�

As described in Ref. �2�, a set of variables �P� ,Q� �, also

called the global variables, are necessary to implement these

last equations;

P� = E� e−j�kxx+kyy�, �4a�

Q� = H� e−j�kxx+kyy�. �4b�

According to this transformation, additional variables

�P� ia ,Q� ka with �i ,k�=x ,y or z�, named intermediate variables,

are also introduced and the Maxwell equations lead to two

separable systems of equations. The first system allows the

determination of the intermediate variables versus the global

ones. It is given by

�
�Pxa

�t
=

�Qz

�y
−

�Qy

�z
, �5�

�
�Pya

�t
=

�Qx

�z
−

�Qz

�x
, �6�

�
�Pza

�t
=

�Qy

�x
−

�Qx

�y
, �7�

�
�Qxa

�t
=

�Py

�z
−

�Pz

�y
, �8�

�
�Qya

�t
=

�Pz

�x
−

�Px

�z
, �9�

�
�Qza

�t
=

�Px

�y
−

�Py

�x
. �10�

In the same way, the second system grants the global vari-

ables versus the intermediate ones:

Pz = � �

� − �
��Pza +

sin���cos���

�vi

Qya −
sin���sin���

�vi

Qxa� ,

�11�

Qz = � �

� − �
��Qza +

sin���sin���

�vi

Pxa −
sin���cos���

�vi

Pya� ,

�12�

Px = Pxa +
sin���sin���

�vi

Qz, �13�

Py = Pya −
sin���cos���

�vi

Qz, �14�

Qx = Qxa −
sin���sin���

�vi

Pz, �15�

Qy = Qya +
sin���cos���

�vi

Pz, �16�

with �=
sin2 �

�vi
2 .

The explicit dependence of these last equations on the

permittivity � requires a specific treatment in the case of

dispersive material. One can verify through Eqs. �11�–�16�
that, at normal incidence, the intermediate variables are

equal to the global ones and consequently, the second system

of equations disappears.

A. Drude model adaptation

Because of the dispersion ��=�����, these two systems

�Eqs. �5�–�16�� cannot be directly incorporated in the FDTD

FIG. 1. Scheme of a 2D periodic structure with the geometrical

parameters needed for the description of the incident field and for

the expansion of the periodic conditions.
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algorithm. The resolution needs a new set of variables that

can be expressed similarly to the constitutive equation con-

necting the electric displacement field �D� � to the electric field

�E� �. To illustrate this relation, let us consider the x compo-

nent of the intermediate variables Pxa for which the intro-

duced variable is Lxa=����Pxa. By injecting this equality

into Eq. �5�, one obtains

�Lxa

�t
=

�Qz

�y
−

�Qy

�z
. �17�

The discretization of this last equation allows the calculation

of the variable Lxa as follows:

Lxa
n+1�i, j,k� = Lxa

n �i, j,k� +
�t

�y
�Qz

n�i, j,k� − Qz
n�i, j − 1,k��

−
�t

�z
�Qy

n�i, j,k� − Qy
n�i, j,k − 1�� , �18�

where �x and �y are the spatial steps and �t is the temporal

one.

By injecting the dielectric function given by the Drude

model, we can determine the intermediate variable Pxa ver-

sus Lxa through:

Lxa = �0�1 −
�p

2

�2 + i�	D

�Pxa, �19�

where �0 is the permittivity of vacuum. Assuming time de-

pendence in e−i�t, a simple Fourier transform ��→ t� of this

last equation �7� leads to

�
2Lxa

�t2
+ 	D

�Lxa

�t
= �0� �

2Pxa

�t2
+ 	D

�Pxa


t
+ �p

2Pxa� . �20�

The partial derivatives of this equation are then replaced

by their expression through the centered finite difference

schema. A discretized equation is then obtained:

�Pxa
n+1 = − �Pxa

n−1 + 4�0Pxa
n + Lxa

n+1�	D�t + 2� − 4Lxa
n

+ �− 	D�t + 2�Lxa
n−1, �21�

where �=�0��p
2�t2+	D�t+2� and �=�0��p

2�t2−	D�t+2�.
This last equation connects the Pxa component at the moment

�n+1��t to the same component at the moments n�t and

�n−1��t in addition to the new component Lxa that is given

by Eq. �18� at the two moments n�t and �n−1��t. The same

strategy of calculation is then used to determine the two

other components Pya and Pza.

The next step consists of the calculation of the global

variables P� and Q� . For this purpose, we have to inject the

dielectric function given by the Drude model into Eqs.

�11�–�16�. After some algebraic operations we obtain the fol-

lowing four equations:

�Pz +
sin � cos �

vi

Qya −
sin � sin �

vi

Qxa

= �0�1 − �p
2
/��2 + i�	D���Pz − Pza� , �22�

�Qz = �0�1 − �p
2
/��2 + i�	D���Qz − Qza −

sin � sin �

�vi

Pxa

+
sin � cos �

�vi

Pya� , �23�

�0�Px − Pxa��1 − �p
2
/��2 + i�	D�� =

sin � sin �

vi

Qz,

�24�

�0�Py − Pya��1 − �p
2
/��2 + i�	D�� = −

sin � cos �

vi

Qz.

�25�

To illustrate the rest of the calculations, we present the

step to be followed for the calculation of the Pz component

from Eq. �22�. We define

Lz = ����Pz = �0�1 − �p
2
/��2 + i�	D��Pz. �26�

According to Eq. �22�, we have

Lz = Lza + �Pz +
sin � cos �

vi

Qya −
sin � sin �

vi

Qxa, �27�

where Lza=����Pza, is one of the components calculated

above and used to determine Pza.

Once Lz is calculated, we determine Pz through Eq. �26�.
Using an inverse Fourier transform to the time domain fol-

lowed by a centered finite difference discretization of the

partial derivatives with respect to time, we get

�Pz
n+1 = − �Pz

n−1 + 4�0Pz
n + Lz

n+1�	D�t + 2� − 4Lz
n

+ �− 	D�t + 2�Lz
n−1. �28�

Replacing Lz
n+1 given in expression �27� into Eq. �28�, we

finally obtain the equation for updating Pz at time �n+1�:

Pz
n+1 = − �Pz

n−1 + 4�0Pz
n + �	D�t + 2��Lza

n+1

+
sin � cos �

vi

Qya
n+1 −

sin � sin �

vi

Qxa
n+1�

− 4Lz
n + �− 	D�t + 2�Lz

n−1, �29�

where = ��− �	D�t+2���.
The other components, namely, Qz, Px, and Py are ob-

tained in a similar way.

B. Drude-Lorentz model adaptation

The dielectric function given by the Drude-Lorentz

model, which corrects the Drude model for some noble met-

als in the visible range, is written as follows �8�:

���� = �� −
�p

2

�2 + i�	D

−
���L

2

�2 − �L
2 + i	L�

. �30�

The components which need a particular treatment in the

dispersive media described by this model are the same as in

the Drude model case.
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The determination of the intermediate variables Pxa, Pya,

and Pza is done through equations that are analog to the ones

used for normal incidence case. For example, the calculation

of the Pxa component needs replacing the Eq. �5� by the set

of the three following equations:

�Dxa
n = CD

� �Dxa
n−1 + CD


 Pxa
n , �31a�

�Lax
n = CL

��Lxa
n−1 + CL


Pxa
n , �31b�

Pxa
n+1 = C�Pxa

n + C�� �Qz
n+1/2

�y
−

�Qy
n+1/2

�z
�

+ C� Re��Dxa
n + �Lxa

n � , �31c�

where the constants C�, C�, C�, CD
� , CD


 , CL
�, and CL


 are

defined in �8�. The �DXa and �Lxa are recursive accumulators

functions.

The calculation of Pya and Pza is carried out exactly in the

same manner. The total field components P� and Q� requires

the introduction of other variables leading to new equations.

To illustrate the manner in which these components are cal-

culated, let us consider the Pz component given by Eq. �11�.
By introducing Mz= Pz− Pza into this later, we obtain

�Mz = �Pz +
sin � cos �

vi

Qya −
sin � sin �

vi

Qxa. �32�

To use the same technique used with Pxa, let us transform

this Eq. �32� in such a way it looks like Eq. �5�. For this

purpose, we differentiate the Eq. �32� with respect to time

and obtain

�
�Mz

�t
= �

�Pz

�t
+

sin � cos �

vi

�Qya

�t
−

sin � sin �

vi

�Qxa

�t
.

�33�

Similarly to the scheme used above, Eq. �33� is replaced

by

�Dz
n = CD

� �Dz
n−1 + CD


 Mz
n, �34a�

�Lz
n = CL

��Lz
n−1 + CL


Mz
n, �34b�

Mz
n+1 = C�Mz

n + C���
�Pz

�t
+

sin � cos �

vi

�Qya

�t

−
sin � sin �

vi

�Qxa

�t
� + C� Re��Dz

n + �Lz
n � .

�34c�

Time derivatives of the Eq. �34c� are then transformed

into centered finite differences which leads to

�1 − C�
/�t��Pz

n+1 = Pza
n+1 + C�Mz

n + C�
/�t�− �Pz

n

+
sin � cos �

vi

�Qya
n+1 − Qya

n �

−
sin � sin �

vi

�Qxa
n+1 − Qxa

n ��
+ C� Re��Dz

n + �Lz
n � . �35�

Finally, in addition to Eqs. �34a�, �34b�, and �35�, a fourth

equation is necessary to the determination of the Pz compo-

nent:

Mz
n+1 = C�Mz

n + C�
/�t���Pz

n+1 − Pz
n� +

sin � cos �

vi

�Qya
n+1

− Qya
n � −

sin � sin �

vi

�Qxa
n+1 − Qxa

n ��
+ C� Re��Dz

n + �Lz
n � , �36�

where Px, Py, and Qz are then obtained by following a simi-

lar procedure.

As in Ref. �2�, the PML technique is also adapted and

used to solve the boundary conditions in the z direction.

Finally, we remind that the temporal step �t must satisfy

the stability criterion given by

�t �
min��x,�y,�z��vi

2�� − sin2 ��

vi�	sin � cos �	 + 	sin � sin �	 + 
3vi
2�� − 2 sin2 ��1 − 	sin � cos �	��

, �37�

where �=min�� ,��� with � as the minimal dielectric permit-

tivity of the nondispersive media in the calculation domain

and �� as the smallest permittivity of the considered disper-

sive media at infinite frequencies. � is the smallest magnetic

permeability of these different materials and vi is the phase

velocity of the wave in the incident medium.

According to this stability criterion, one can see that the

SFM-FDTD algorithm is limited to angles of incidence less

than a virtual value � given by sin �=vi

��. Note that this

limit disappears in the case where the incident media is

vacuum and ��=�0.

III. DEMONSTRATION OF THE ACCURACY OF OUR

CODE

We choose to present both 2D and full 3D calculations in

order to validate the developed algorithm. In addition, and in

order to check the accuracy of our code according to inci-

BELKHIR et al. PHYSICAL REVIEW E 81, 046705 �2010�

046705-4



dence angle, we will start presenting one-dimensional �1D�
tests with Drude and Drude-Lorentz models. A quantitative

comparison is established between our SFM-FDTD results

and those obtained analytically. This is shown in Fig. 2. Let

us mention that the wavelength is fixed to �=650 nm and

the incidence angle � varies from 0° to 76°. For incidence

angles greater than 76°, the temporal step �t given by the

stability criterion of Eq. �37� becomes very small requiring

considerable computing time.

As seen in Fig. 2, the relative error, which remains lower

than 10%, is maximal for angles close to 76° in TE polariza-

tion for both cases �gold and silver�. In all cases the calcu-

lated relative error for ��60° remains lower than 1%. This

last value can be decreased by increasing the PML layer

number and/or by decreasing the spatial step. Since the most

experimental procedures in nano-optics frequently occurs

with incidence angle ��60°, we can conclude that our algo-

rithm is sufficiently accurate for simulating such experi-

ences.

The 2D test deals with enhanced transmission through a

2D metallic grating made in silver. The considered structure

�see Fig. 3�a�� was theoretically and experimentally studied

by Blaikie et al. in Ref. �9�. The structure is composed of

three layers deposited on a glass substrate �n=1.512�. The

first one is a 35-nm-thick silver layer followed by 200 nm of

a dielectric layer �n=1.454�. The third one is the grating
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FIG. 2. �Color online� Transmission coefficients through 30-nm-thick silver ��b� and �c�� and gold ��e� and �d�� films suspended in air �a�.
The circles correspond to the FDTD calculations �TFDTD�, the solid curves are analytical data �Tana�, and the dashed curves correspond to the

error signals. The error signals are calculated as 	TFDTD−Tana	 /Tana. The wavelength is fixed to �=650 nm. The silver and gold dispersions

are described by the Drude and Drude-Lorentz models, respectively. The spatial step is set to 1 nm.
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itself which is composed of slits engraved into a silver film

of 35 nm of thickness. The grating period is set to 485 nm

and the slit width is of 220 nm. In order to compare our

results with the ones published in Ref. �9�, we first determine

the Drude-Lorentz model that matches faithfully the experi-

mental data of Ref. �10� used in Ref. �9�. Thus, using a

genetic algorithm we find the constants of Eq. �30�: ��

=3.600, �p=1.406�1016 rad /s, 	D=2.794�1013 rad /s,

��=0.663, �L=1.632�1016 rad /s, and 	L=1.827

�1016 rad /s. The obtained Drude-Lorentz model is then

FIG. 3. �Color online� Results corresponding to the 2D test: �a� schematic of the studied structure with all the geometrical parameters. �b�
and �c� show the transmission spectra calculated by both SFM-FDTD and FMM methods for �=0° and �=5°, respectively.
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FIG. 4. �Color online� Comparison between the FMM and the SFM-FDTD in the case of a TM polarized incident plane wave. �a� Scheme

of the square annular aperture array with all the geometrical parameters. �b� The transmission spectra versus the angle of incidence obtained

with the FMM. �c� The same spectra calculated with the SFM-FDTD developed algorithm. �d� Comparison between two specific spectra at

�=20°. In all simulations the azimuthal angle � is fixed to 0°.
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used in both homemade Fourier modal method �FMM� and
SFM-FDTD codes to determine the transmission through the
structure when it is illuminated by a TM-polarized plane
wave �the slits are perpendicular to the electric field of the
incident wave�. The plane wave impinges on the structure at
�=0° or �=5° from the substrate side.

The obtained results are presented in Fig. 3 where a com-

parison is done between our own results obtained by SFM-

FDTD and FMM codes. A good agreement is found when

comparing these results to the one of Figs. 3�b� �dashed red

curve� and Fig. 4�a� �full blue curve� of Ref. �9�.
A full 3D calculations in the case of a square annular

apertures is performed in order to compare the FDTD results

with the ones published in Ref. �11� obtained with FMM.

The structure consists on a 100-nm-thick silver film depos-

ited on a glass substrate and engraved with square annular

grooves according to the parameters of Fig. 4�a�. The disper-

sion of silver is described by a Drude model with �p

=1.374�1016 rad /s and �=3.21�1013 rad /s. The incident

plane wave illuminates the silver film from the air side. The

transmission spectra versus the angle of incidence in the case

of a TM polarization are depicted in Figs. 4�b� and 4�c� for

both the FMM and the FDTD methods, respectively. These

spectra agree qualitatively very well with the ones of Fig. 3a

of Ref. �11�. A more qualitative comparison is shown in Fig.

4�d� where the same spectrum �for �=20°� is calculated by
the two methods. According to us, the difference between
these two curves is directly linked to the spatial discretiza-
tion of the sample that is performed in the FDTD method.
On the contrary of the FMM, this spatial description leads to
a smoothing of the structure edges. On the other hand, the
convergence of the FMM greatly depends on the truncation

order that was fixed here to 15 ��15�2+1�2=961 Fourier

harmonics�.
A third application which is an original study is also pre-

sented: it consists on the extension of the TEM-like mode

excitation �12� of an annular aperture arrays to the case of a

real metal. It is well known that this mode does not have

cut-off frequency and consequently, it can be of big impor-

tance for applications such as enhanced transmission. In this

context, this guided mode was evoked in some papers

�13–15� but its excitation was often doubtful. In fact, it was

recently analytically demonstrated �3� that, to excite this pe-

culiar guided mode, the incident plane wave must fulfill two

conditions. Namely, it must be TM polarized and impinges

the metallic film under oblique incidence. The excitation of

such a mode was also demonstrated in the same paper �3� but

only in case of a perfectly conducting metal.

In this paper, we only point out the contribution of this

mode in the process of the enhanced transmission through
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FIG. 5. �Color online� �a� Transmission spectra in the case of an annular aperture arrays made in silver or gold films. For both the tow

metals, the inner and outer radii of each aperture are set to 50 and 100 nm, respectively, and the structure is supposed to be self-suspended

in air and has 240 nm thickness. ��b�–�d�� The three cylindrical components of the electric field �Er�x ,y� in �b�, E��x ,y� in �c�, and Ez�x ,y�
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the metal is not perfectly conductor. As in Fig. 4, the azimuthal angle � is set to zero.
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annular aperture arrays. A complete study including the
variation in the geometrical parameters together with the
metal nature is to be performed if we attempt to optimize the

excitation and the propagation of this specific mode.

So, let us consider an annular aperture arrays �apertures

with circular sections instead of a square ones as shown in

Fig. 4�a�� engraved into a self-suspended �in vacuum� silver

film. First, we set the values of the inner and the outer radius

of each aperture to 50 and 100 nm, respectively, and the

metal thickness to 240 nm. For this specific structure, the

excitation of the TEM-like mode is clearly demonstrated on

Fig. 5�a� where additional peak of transmission occur only in

the TM polarization and for oblique incidence but for both

silver and gold. The light distribution inside one annular ap-

erture is plotted in Figs. 5�b�–5�d� at the TEM peak

��=900 nm here� in order to confirm the TEM-like charac-

teristics of this mode.

The case of a gold structure is also presented in the same

figure and shows, as expected, redshift of all the transmission

peaks accompanied with a transmission decreasing. This

property is directly linked to the metal dispersion, i.e., to its

absorption in the considered spectral domain �13�. For this

simulation, the gold dispersion is obtained through a Drude-

Lorentz model �Eq. �30�� with parameters given in Ref. �8�
that fit the experimental data of Ref. �16�.

IV. CONCLUSION

In summary, we demonstrate the implementation of the

Drude and the Drude-Lorentz dispersion models in a SFM-

FDTD algorithm working at oblique incidence. The SFM is

demonstrated to be very compatible with this implementation

and allows a competitive efficiency compared to recent re-

sults published in �5� based on an iterative technique. Our

algorithm is very explicit and can be used for several metals

over a large spectral domain. The integration of a dispersion

model that includes a sum of Lorentzian terms is conceiv-

able. This opens the way to numerically perform quasirigor-

ous calculations involving with metallodielectric photonic

crystals that are now widely used in nano-optics.
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