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Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule
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Plastoglobules, lipid-protein bodies in the stroma of plant chloroplasts, are enriched in nonpolar lipids, in particular prenyl quinols. Here we show that in addition to the thylakoids, plastoglobules also contain a considerable proportion of the plastidial plastoquinol-9 (PQ-9), the redox component of photosystem II, and of the cyclized product of PQ-9, plastochromanol-8 (PC-8), a tocochromanol with a structure similar to -tocopherol and -tocotrienol, but with a C40 prenyl side chain. PC-8 formation was abolished in the Arabidopsis thaliana tocopherol cyclase mutant vte1, but accumulated in VTE1 overexpression plants, in agreement with a role of tocopherol cyclase (VTE1) in PC-8 synthesis. VTE1 overexpression resulted in the proliferation of the number of plastoglobules which occurred in the form of clusters in the transgenic lines. Simultaneous overexpression of VTE1 and of the methyltransferase VTE4 resulted in the accumulation of a compound tentatively identified as 5-methyl-PC-8, the methylated form of PC-8. Our data suggest that the existence of a plastoglobular pool of PQ-9, along with the partial conversion of PQ-9 into PC-8, might represent a mechanism for the regulation of the antioxidant content in thylakoids and of the PQ-9 pool that is available for photosynthesis.

INTRODUCTION

Organisms performing oxygenic photosynthesis harbor a unique set of prenyl quinols, i.e. phylloquinol (vitamin K1), plastoquinol-9 (PQ-9) and tocochromanols (tocopherol, tocotrienol; vitamin E), which serve as electron carriers in photosystems I and II (PSI, PSII), and as lipid antioxidant, respectively. Eight forms of tocochromanols are commonly considered to occur in plants, i.e. four forms of tocopherol and tocotrienol each, carrying a phytyl or geranylgeranyl side chain, respectively [1]. The individual forms of tocopherols and tocotrienols are distinguished by the number and positions of methyl substituents on the chromanol ring. Tocopherols are synthesized from homogentisate and phytyl-diphosphate by homogentisate phytyltransferase (HPT1, VTE2) [START_REF] Soll | Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts[END_REF][START_REF] Collakova | Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp PCC 6803 and Arabidopsis[END_REF] (Fig. 1). After methylation by VTE3, the second ring of 2,3-dimethyl-5-phytyl-1,4-benzoquinol (DMPBQ) is closed by tocopherol cyclase (VTE1) yielding -tocopherol [START_REF] Motohashi | Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant[END_REF][START_REF] Cheng | Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes[END_REF][6][START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF]. Final methylation by -tocopherol methyltransferase (VTE4) results in formation of -tocopherol [START_REF] Shintani | Elevating the vitamin E content of plants through metabolic engineering[END_REF][START_REF] Grusak | Improving the nutrient composition of plants to enhance human nutrition and health[END_REF][10][START_REF] Dörmann | Functional diversity of tocochromanols in plants[END_REF] (Fig. 1). In many species including Arabidopsis thaliana, -tocopherol is the most abundant form in leaves, whiletocopherol is predominant in seeds [START_REF] Shintani | Elevating the vitamin E content of plants through metabolic engineering[END_REF][START_REF] Grusak | Improving the nutrient composition of plants to enhance human nutrition and health[END_REF]. Tocopherol is found in the thylakoid membranes of chloroplasts, where it presumably protects the photosynthetic apparatus against oxidative stress. Another fraction of tocopherol is associated with the plastoglobules which is in agreement with the finding that VTE1 was identified as a plastoglobular protein [START_REF] Ytterberg | Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes[END_REF][13][START_REF] Austin | Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes[END_REF][START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF].

The synthesis of plasotquinol (PQ-9) depends on the prenylation of homogentisate [START_REF] Norris | Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation[END_REF] employing a long hydrocarbon side chain derived from solanesyl-diphosphate (nonaprenyldiphosphate). An A. thaliana gene, HST, presumably involved in the transfer of the solanesyl group onto homogentisate, was described [START_REF] Sadre | Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis[END_REF][START_REF] Venkatesh | Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog[END_REF]. Methylation by VTE3, a methyltransferase shared by the tocopherol and PQ-9 pathways, results in the formation of PQ-9 [START_REF] Motohashi | Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant[END_REF][START_REF] Cheng | Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes[END_REF][6]. Two molecules of PQ-9 are associated with photosystem II, one (Q A ) which is firmly bound to the PSII reaction center, and a second one (Q B ) which can be exchanged with the mobile pool of PQ-9 in the thylakoid membranes [START_REF] Loll | Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II[END_REF]. Furthermore, PQ-9 was identified in the plastoglobules of chloroplasts, but the pool size of plastoglobular PQ-9 and its function remained unknown [START_REF] Tevini | Composition and function of plastoglobuli. II. Lipid composition of leaves and plastoglobuli during beech leaf senescence[END_REF]. Whittle et al. [21] were the first to describe a derivative of PQ-9 in plants which was designated "plastochromanol-8" (PC-8). PC-8 contains the very same head group astocopherol and -tocotrienol ("plastochromanol-3"), but differs with respect to its prenyl side chain which contains 40 carbon atoms (8 isoprene units; Fig. 1). PC-8 was detected in rubber trees and in the seed oils of flax, rape and maize [START_REF] Thompson | Determination of tocopherols and tocotrienols in foods and tissues by high performance lipid chromatography[END_REF][23][24][START_REF] Mayer | Über die Chemie des Vitamins E. Die Sterochemie von natürlichem -Tocotrienol (Plastochromanol-3), Plastochromanol-8 und Plastochromenol-8[END_REF][START_REF] Olejnik | Isolation and some properties of plastochromanol-8[END_REF], and later in the seed oils of Turkish pine, hemp and caper [START_REF] Bagci | Fatty acid and tocochromanol patterns of Turkish pines[END_REF][28][START_REF] Matthäus | Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens (Coss.) Heywood[END_REF]. The fact that -tocopherol and PC-8 share the same head group suggested that PC-8 is derived from a cyclization reaction of PQ-9 catalyzed by VTE1 (Fig. 1). In agreement with this hypothesis, VTE1 overexpression in seeds of Brassica napus resulted in a simultaneous increase in tocopherols and in PC-8 [START_REF] Sadre | Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis[END_REF][START_REF] Raclaru | Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis[END_REF][START_REF] Kumar | Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds[END_REF].

To study the localization and function of PQ-9 and PC-8 in leaves, subfractions of chloroplast membranes were isolated and PQ-9 and PC-8 quantified. From these experiments it became clear that a considerable proportion of these two prenyl quinol lipids is associated with plastoglobules. Measurements of prenyl quinols in different A. thaliana mutants and transgenic lines revealed that PQ-9/PC-8 metabolism is closely linked with tocopherol metabolism by sharing a number of enzymatic steps. lines were used: vte1, ethylmethane sulfonate mutant carrying a premature stop codon in the tocopherol cyclase gene [START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF]; vte2-1, ethylmethane sulfonate mutant with an amino acid exchange in the homogentisate phytyltransferase gene [START_REF] Havaux | Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[END_REF]; vte2-3, mutant allele carrying a T-DNA insertion (line GABI_867G08; Gabi Kat Collection, Bielefeld, Germany) [START_REF] Rosso | An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[END_REF]. The position of the T-DNA insertion in vte2-3 was confirmed by PCR using primers for amplification of genomic DNA (PD294, 5'-TGTTCTGGGCTCTTTTTGTGA; PD256, 5'-AAATTGGAGCGCATAAAAAGGCAGTA) and of the sequence flanking the insertion (T-DNA left boarder primer, 5'-CCCATTTGGACGTGAATGTAGACAC; PD256). Sequencing of the flanking DNA amplified by PCR confirmed the position of the T-DNA in the 11th exon after Val 319 .

Overexpression of VTE1 and VTE4 in A. thaliana leaves

Overexpression of the VTE1 cDNA under control of the cauliflower mosaic virus 35S promoter in A. thaliana was described previously [34]. Two lines (WT-VTE1#40 and vte1-VTE1#1 in WT and vte1 background, respectively) showing strong expression of VTE1 in Northern and Western analysis were selected for further analyses. The full-length VTE4 cDNA was released from clone RAFL07-18-C14 (RIKEN BioResource Center, Tsukuba, Japan) with EcoRI, BamHI and ligated into pBluescriptIISK+ (Stratagene). After digestion with KpnI and XbaI, the VTE4 cDNA was cloned behind the 35S promoter of the binary vector pBINAR-Hyg [START_REF] Höfgen | Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum)[END_REF]. The VTE4 construct was transferred into the line WT-VTE1#40 by floral dip [START_REF] Clough | Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana[END_REF]. Double transgenic lines selected for hygromycin B resistance were screened by fluorescence HPLC for alterations in tocochromanol composition. gradient elution (100 % methanol from 0-10 min, to 3 % methanol/97 % isopropanol at 30 min, hold until 40 min; flow rate, 0.5 mL min -1 ).

Analysis of quinol lipids by mass spectroscopy

Quinol lipids were isolated by HPLC as described above and mass spectra recorded using a quadrupole-time of flight mass spectrometer (Q-TOF 6530, Agilent, Waldbronn, Germany). The lipids were dissolved in chloroform/methanol/ammonium acetate (300:665:35) and directly infused at a flow rate of 1 µl min -1 using a chip-based nanospray ion source (HPLC Chip/MS 1200 with infusion chip, Agilent, Waldbronn, Germany). Samples were analyzed in positive mode with a fragmentor voltage of 270 V. Molecular ions were selected in the quadrupole, fragmented in the collision cell with nitrogen gas and a collision energy of 33 V ( -tocopherol) and 40 V (PC-8). Data were processed with the Mass Hunter Workstation software (Version B.02.00; Agilent technologies, Inc 2008).

Fractionation of A. thaliana chloroplasts

Chloroplasts were isolated from leaves of 6 or 8 week old A. thaliana plants, as indicated, hypotonically ruptured and subplastidial compartments isolated by centrifugation using a standard sucrose density gradient [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]. The different subfractions were pooled into five fractions according to Western blot analysis using antibodies against plastoglobulin 35 (AtPGL35, plastoglobule marker), translocon at the outer envelope membrane 75 (AtTOC75, envelope marker) and chlorophyll a binding protein (CAB, thylakoid marker). The gradient fractions F1 and F2 contained mostly plastoglobules, F3 envelopes, and F4 and F5 thylakoids [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]. Tocochromanols were extracted from the five fractions with chloroform/methanol (2:1), and quantified by fluorescence HPLC.

Subcellular localization of VTE4 using green fluorescent protein

The coding region of VTE4 was amplified from the cDNA clone RAFL07-18-C14 (RIKEN) using the primers PD590 (5'-AGG GAT CCA ATG AAA GCA ACT CTA GCA G) and PD591 (5'-ATC CAT GGA GAG TGG CTT CTG GCA AGT G) adding flanking BamHI and NcoI restriction sites. The PCR product was cloned into pCL60, 5' and in frame to the green fluorescent protein (GFP) sequence under control of the 35S promoter [42]. The other GFP constructs (PGL35-GFP, AtTIC110-GFP, pSSU-GFP) were described previously [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]43]. A. thaliana leaves were transiently transformed by particle bombardment as follows: Gold particles (1.0 µm, BioRad; 1.5-3 µm, Aldrich) were sterilized in ethanol and re-suspended in water to a final concentration of 60 µg/µL. Plasmid DNA (5 µg) was precipitated on the gold carrier (50 µL aliquots consisting of a 1:1 mixture of microcarrier from BioRad and Aldrich) by adding 50 µL of 2.5 M CaCl 2 and 20 µl of 0.1 M spermidine free base under continuous vortexing. After washing with ethanol, DNA-coated gold particles were suspended in ethanol, spread on 4 macrocarrier discs (BioRad) and used for ballistic transformation. Leaves of mature A. thaliana plants grown on soil for 4 to 7 weeks were placed upside-down on 0.5 x MS medium and bombarded with a PDS-1000/He BIOLISTIC R Particle Delivery System (BioRad) operating at 1100 PSI He pressure. 24 to 48 h after transformation, leaves were placed onto glass slides with lanolin. Transient transformation of protoplasts was done with polyethyleneglycol [START_REF] Jin | A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis[END_REF], but reducing cellulase and macerozyme (Serva) contents to 1 % and 0.25 % (w/v), respectively. Fluorescence in transiently transformed leaves and protoplasts was monitored 48 h after transformation by confocal laser scanning microscopy (LEICA TCS 4D microscope). The FITC (488 nm) laser line was used to detect GFP fluorescence, and chlorophyll autofluorescence was monitored using the TRITC (568 nm) excitation wavelength. Chloroplast ultrastructures of four week-old wild type, vte1 and WT-VTE1#40 A. thaliana plants were examined by electron microscopy. Leaves were fixed in 1 % glutaraldehyde in 0.05 M phosphate buffer overnight at 4° C, and postfixed in osmium tetroxide for 2 h at room temperature. After dehydration and embedding in LRWhite resin, ultra-thin sections (80-90 nm) were obtained on a Reichert Ultracut S microtome and mounted on copper grids. Ultra-thin sections were poststained with uranyl acetate and lead citrate and observed with a Philips CM 100 transmission electron microscope at 60 kV. Chloroplast area and PG diameter were measured using the ImageJ software.

Electron microscopy

RESULTS

Accumulation of PC-8 in A. thaliana plants affected in expression of genes of tocopherol synthesis

Plastochromanol-8 (PC-8), an unusual prenyl quinol lipid, was originally identified in leaves of rubber trees [21] and later, in the seeds of other plant species [START_REF] Thompson | Determination of tocopherols and tocotrienols in foods and tissues by high performance lipid chromatography[END_REF]. To address the question of its distribution, we analyzed different additional plants for the occurrence of PC-8. PC-8 was detected in leaves of tobacco, rice, pumpkin, potato, tomato and Lotus japonicus and in tomato fruits in varous amounts (data not shown). This suggests that PC-8 is widely distributed in the plant kingdom, and it occurs both in monocot and dicot plants and in different plant organs. The occurrence of PC-8 in A. thaliana WT leaves was confirmed by co-elution with PC-8 from linseed oil in fluorescence HPLC at 23 min (diol column) (Fig. 2A, top panel). PC-8 in A. thaliana leaves constitutes about 1.2 nmol g -1 FW (equivalent to 5 -10 mol% of total tocochromanols, i.e. all tocopherols and PC-8) depending on growth conditions and age (Fig. 2A, top panel; Table 1). Therefore, the abundance of PC-8 in leaves is in the range of that of -tocopherol, indicating that it represents an important form of tocochromanols in leaves. Due to the very high content of -tocopherol in WT seeds (ca. 1200 nmol g -1 FW), the amount of PC-8 (ca. 13 nmol g -1 FW) was equivalent to only 1 mol% of total tocochromanols (Table 1).

Previously, overexpression of tocopherol cyclase (VTE1) under control of the 35S promoter in A. thaliana leaves was reported to result in a strong increase of tocochromanols [34]. After separation of tocochromanols from the VTE1 overexpressing line WT-VTE1#40 by diol column HPLC [START_REF] Balz | Trennung von Tocopherolen und Tocotrienolen duch die HPLC[END_REF], it became clear that the PC-8 peak was drastically increased while the -tocopherol peak remained similar to WT (Fig. 2A, middle panel). High amounts of PC-8 were also found in leaves of a second line overexpressing VTE1 (vte1-VTE1#1; Table 1). The amounts of individual tocopherols in leaves of WT-VTE1#40 and vte1-VTE1#1 were only slightly increased (Table 1). In addition to the increase of PC-8 in leaves of lines WT-VTE1#40 and vte1-VTE1#1, PC-8 also accumulated in the seeds of the transgenic lines (Table 1).

To unambiguously identify PC-8 in A. thaliana leaves, fractions containing PC-8 were collected from HPLC and subjected to mass spectrometry via quadrupole time of flight (Q-TOF) mass spectrometry. Fig. 3 shows the mass spectra of PC-8 samples collected from linseed oil and A. thaliana WT-VTE1#40, and -tocopherol collected from WT leaves. All quinol lipids were ionized as cation radicals [M] + . The cation radical for PC-8 from line WT-VTE1#40 was detected at 750.6294 m/z in agreement with the calculated mass of 750.6309 m/z (C 53 H 82 O 2 ). After selecting the molecular ions in the quadrupole and fragmentation by collision-induced dissociation, the mass spectra of PC-8 and -tocopherol were recorded. All quinol lipids showed peaks at m/z 151.07 and 191.10 which is in good agreement with the calculated masses of two fragments derived from the PC-8/ -tocopherol head groups (also see: [START_REF] Mayer | Über die Chemie des Vitamins E. Die Sterochemie von natürlichem -Tocotrienol (Plastochromanol-3), Plastochromanol-8 und Plastochromenol-8[END_REF][START_REF] Cheng | Isolation and identification of novel estrogenic compounds in yam tuber (Dioscorea alata cv. Tainung No. 2)[END_REF]).

Tocopherol and PQ-9/PC-8 synthesis are closely linked because the two biosynthetic pathways depend on the availability of a common precursor molecule, homogentisate, and in A c c e p t e d M a n u s c r i p t Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

part employ the same biochemical reactions (VTE3, VTE1; Fig. 1). To study the role of the enzymes of tocopherol synthesis in PC-8 production, two A. thaliana mutants were selected: The vte1 mutant carrying a null mutation in tocopherol cyclase [START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF][START_REF] Sattler | Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination[END_REF], and two alleles of vte2 affected in homogentisate phytyltransferase (VTE2; [START_REF] Sattler | Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination[END_REF]): vte2-1 contains very low amounts of tocopherol [START_REF] Havaux | Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[END_REF] due to an amino acid exchange in VTE2, and the T-DNA mutant vte2-3 is completely devoid of tocopherol (this study). Tocochromanols were absent from vte1 leaves or seeds (Table 1). This is in agreement with the scenario that PC-8 synthesis depends on VTE1. Leaves and seeds of vte2-1 and of vte2-3 contained low amounts of PC-8 similar to WT, indicating that PC-8 synthesis is independent of VTE2 (Fig 3A ,B). Therefore, although the vte2-3 mutant is devoid of tocopherol, it still contains PC-8 as a residual form of tocochromanol.

The amount of tocopherol increases in leaves during abiotic stress, e.g. high light, and during senescence [START_REF] Motohashi | Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant[END_REF][START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF][START_REF] Collakova | The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress[END_REF]48]. The accumulation of tocopherol during stress is correlated with an increase in expression of tocopherol synthesis genes, e.g. HPPD, VTE2 and VTE1 [34,[START_REF] Collakova | The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress[END_REF]. Table 2 shows that the amount of PC-8 also accumulates in leaves of A. thaliana plants exposed to high light. The proportion of PC-8 relative to total tocochromanols during high light remains unchanged.

Quantification of plastoquinol-9 in A. thaliana lines altered in tocochromanol metabolism

The synthesis of PC-8 by VTE1 depends on the availability of the precursor PQ-9. Therefore, the accumulation of PC-8 in VTE1 overexpression lines and the increase during light stress might result in a depletion of the PQ-9 pool in the chloroplasts. PQ-9 was quantified by HPLC in different A. thaliana lines (Table 2). PQ-9 content was not altered in the vte1 and vte2 mutants, indicating that a decrease in tocopherol or PC-8 does not affect PQ-9 synthesis. Similar to tocopherol, PQ-9 was increased under high light. In the lines WT-VTE1#40 and vte1-VTE1#1, PQ-9 content was slightly decreased (Table 2). The changes of PQ-9 and PC-8 were recorded in separate HPLC experiments because the separation conditions were optimized for tocochromanols or PQ-9, respectively (Table 2; see methods). However, PQ-9 can also be measured via UV absorption during chromatography of tocochromanols which are recorded by fluorescence. Thus, the ratios of peak areas of PQ-9 (measured by UV absorption) and of PC-8 (measured by fluorescence) were recorded simultaneously in one HPLC experiment. The ratios of PQ-9 to PC-8 peak areas are drastically decreased upon VTE1 overexpression when measured in the very same chromatogram (2.12 ± 0.67, 0.20 ± 0.08 and 0.12 ± 0.05 for WT, WT-VTE1#40 and vte1-VTE1#1, respectively; n =3, mean ± SD). This is in good accordance with the relative changes in PC-8 and PQ-9 measured in individual chromatograms as shown in Table 2. In conclusion, the strong accumulation of PC-8 in VTE1 overexpressing lines resulted in a decrease in PQ-9 content which is in agreement with the role of PQ-9 as a precursor for PC-8 synthesis.

Plastochromanol-8 and plastoquinol-9 accumulate in thylakoids and plastoglobules of A. thaliana chloroplasts

Most tocopherol synthesis enzymes localize to the envelope membranes of chloroplasts, while tocopherol cyclase (VTE1) was found in the plastoglobules [START_REF] Ytterberg | Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes[END_REF][START_REF] Austin | Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes[END_REF][START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]. To study the localization of PC-8 experimentally, different fractions were isolated from ruptured chloroplasts of 8 week old plants by sucrose density centrifugation. The gradient subfractions were pooled into five fractions enriched in plastoglobules (F1, F2), envelope membranes (F3) and thylakoids (F4, F5) according to the distribution of marker proteins as visualized by immunoblot analysis (Fig. 4A) [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]. Tocochromanols were measured by fluorescence HPLC and calculated as nmol per ml fraction volume [START_REF] Balz | Trennung von Tocopherolen und Tocotrienolen duch die HPLC[END_REF]. The amount of PC-8 in each of the five fractions was obtained after multiplication with the fraction volume. A large proportion of plastidial PC-8 localizes to plastoglobules (fractions F1 and F2) while the remainder is mostly 4B (bottom panel), the content of PC-8 relative to the other tocochromanols remained similar in all chloroplast fractions. A large fraction of PC-8 accumulated in the plastoglobule fractions F1 and F2, and the amount of PC-8 associated with thylakoids (F4, F5) was also increased (Fig. 4B).

To study the subplastidial distribution of the PC-8 precursor, PQ-9 was also quantified by HPLC in the chloroplast sucrose gradient fractions from WT. Fig. 4B (middle panel) shows that a large proportion of total PQ-9 is associated with plastoglobules and with thylakoids.

PC-8 was previously shown to harbor antioxidant activity comparable to that of tocopherols [START_REF] Olejnik | Isolation and some properties of plastochromanol-8[END_REF]. Therefore, the accumulation of PC-8 in the transgenic line WT-VTE1#40 might contribute to the antioxidant activity of leaves. To analyze the effect of overexpression of VTE1 on photosynthesis, the two lines WT-VTE1#40 and vte1-VTE1#1 were exposed to high light for 4 days and employed for the measurement of chlorophyll fluorescence [START_REF] Schreiber | Continuous recording of photochemical and nonphotochemical quenching with a new type of modulation fluorometer[END_REF]. Quantum yield at normal and high light conditions in the PC-8 accumulating plants was similar to WT (data not shown), indicating that PC-8 accumulation had no major impact on photosynthesis under normal or high light at ambient temperature.

Chloroplast ultrastructure in PC-8 accumulating A. thaliana lines

The fact that PC-8 accumulates in plastoglobules (Fig. 4) suggested that plastoglobule number or size might be altered in chloroplasts after PC-8 accumulation. Analysis by transmission electron microscopy revealed that leaves of four weeks old plants accumulating PC-8 (WT-VTE1#40) showed a high increase in plastoglobule number (Fig. 5A, bottom panel). While the diameter of the individual plastoglobules remained similar to WT, the number of plastoglobules per chloroplast cross-sectional area in WT-VTE1#40 (2.60 ± 0.30) was strongly increased as compared to WT (1.05 ± 0.10), and this number was significantly reduced in the vte1 mutant (0.80 ± 0.08) (n = 20 chloroplasts analyzed for each line). In line WT-VTE1#40, PC-8 increases to 68 nmol g -1 FW, while the content of its precursor, PQ-9 (20 nmol g -1 FW), is only slightly reduced as compared to WT (24 nmol g -1 FW) (Table 2). Therefore, the increase in plastoglobule number presumably originates from the accumulation of PC-8. However, it is also possible that the accumulation of the VTE1 protein itself affects plastoglobule size because VTE1 also localizes to the plastoglobules.

The plastoglobules in WT-VTE1#40 are organized in grape-like clusters and localize to the stroma in proximity to the thylakoid membranes, suggesting that they are interconnected (Fig. 5A, bottom panel; see: [START_REF] Austin | Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes[END_REF]). The number of plastoglobules in clusters was strongly increased in line WT-VTE1#40. While WT and vte1 contained single plastoglobules or clusters of 2 or 3 plastoglobules, line WT-VTE1#40 contained clusters containing up to 17 plastoglobules (Fig. 5B). The count of plastoglobules grouped in a cluster was done on twodimensional images of ultrathin-sections likely under-estimating the actual number of plastoglobules per cluster.

Overexpression of -tocopherol methyltransferase (VTE4) in PC-8 accumulating plants

PC-8 and -tocopherol each lack one methyl group as compared to the head group oftocopherol which contains three methyl groups (Fig. 1). -Tocopherol is converted totocopherol by -tocopherol methyltransferase (VTE4) [START_REF] Shintani | Elevating the vitamin E content of plants through metabolic engineering[END_REF]. The fact that PC-8 occurs in the nonmethylated form in WT and WT-VTE1#40 suggested that VTE4 activity is limiting or that this enzyme is not specific for PC-8. Therefore, VTE4 was co-overexpressed in line WT-VTE1#40, and double transgenic lines (WT-VTE1-VTE4) selected by HPLC screening for alterations in tocochromanol composition. In the double transgenic line WT-VTE1-VTE4, the peak for PC-8 in diol column HPLC was strongly reduced with a concomitant increase in the -tocopherol 2A, bottom panel). Because methylation of PC-8 in line WT-VTE1-VTE4 was expected to result in the accumulation of 5methyl-PC-8 (MPC-8), it was considered that -tocopherol and MPC-8 might co-elute during HPLC analysis on the diol column. Therefore, the peak eluting at 9 min in diol column HPLC of WT-VTE1-VTE4 (Fig. 2A, bottom panel) was collected and separated by reversed phase HPLC. It became clear that this peak contains two substances, -tocopherol, and a second, nonpolar compound eluting at 32 min tentatively identified as MPC-8 (data not shown). Direct injection of a WT-VTE1-VTE4 leaf extract onto reversed phase HPLC confirmed this result, because it revealed the presence of two peaks co-eluting at 32 min (MPC-8) and PC-8 (33 min) (Fig. 2B). The identity of the PC-8 peak eluting at 33 min on reverse phase HPLC was confirmed by co-elution with authentic PC-8 isolated from linseed via diol column HPLC (data not shown).

MPC-8 was isolated from line WT-VTE1-VTE4 via diol column HPLC and subjected to Q-TOF mass spectrometry in positive mode (Supplemental Figure 1). MPC-8 was ionized as radical cation with a mass of 764.7166 m/z in agreement with the calculated mass of 764.6466 m/z (C 54 H 84 O 2 ). After fragmentation, a prominent peak at m/z 382.3086 appeared that can be explained by a cleavage of the molecular ion into two fragments of 382.2866 (C 26 H 38 O 2 ) and 382.3594 (C 28 H 46 ). The peak at 165.0848 which can also be observed in the -tocopherol spectrum is derived from a headgroup fragment (C 10 H 13 O 2 , 165.0916 m/z).

To study the impact of PC-8 and MPC-8 accumulation on the amount of the precursor molecule, PQ-9 was measured in leaves of the transgenic line WT-VTE1-VTE4. In analogy to the single overexpression lines WT-VTE1#40 and vte1-VTE1#1, the amount of PQ-9 in line WT-VTE1-VTE4 was decreased, however to an even stronger extent (Table 2). Taken together, these data strongly suggest that overexpression of VTE4 in line WT-VTE1#40 results in the partial conversion of PC-8 to MPC-8 via methylation.

A possible explanation for the low degree of PC-8 methylation in leaves might be the localization of the corresponding enzymes to different subplastidial compartments. While the VTE1 protein was previously localized to the plastoglobules of A. thaliana [START_REF] Ytterberg | Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes[END_REF][START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF], Soll et al. [START_REF] Soll | Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts[END_REF] suggested that the -tocopherol methyltransferase (VTE4) activity is associated with the envelope membranes of spinach chloroplasts. To study the localization of A. thaliana VTE4, a VTE4 fusion protein with the green fluorescent protein (GFP) was transiently expressed in leaves, and fluorescence analyzed by confocal microscopy (Fig. 6). VTE4-GFP fluorescence was observed as a peripheral ring around the chloroplasts (Fig. 6A, top panel). This pattern was similar to the GFP fusion of the envelope membrane marker protein TIC110, but different from that of PGL35 and VTE1 which both localize to plastoglobules and show a dotted pattern inside the chloroplasts (Fig. 6A) [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF]. Transient expression of the VTE4-GFP fusion protein in A. thaliana protoplasts also revealed a ring-like pattern of fluorescence surrounding the chloroplasts (Fig. 6B). Western blotting using anti-GFP antibodies demonstrated the expression of the VTE4-GFP fusion protein with the correct size in the protoplast expression system. These data suggest that the VTE4 protein localizes to the envelope membranes in accordance with the localization of -tocopherol methyltransferase activity previously determined [START_REF] Soll | Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts[END_REF].

DISCUSSION

Accumulation of PQ-9 and PC-8 in plastoglobules

Fig. 4 suggests that considerable proportions of the plastidial pools of PQ-9 and PC-8 are associated with plastoglobules. The separation of plastidial subfactions by sucrose density centrifugation was followed by analyzing marker proteins via Western blotting (Fig. 4A). The individual plastidial compartments (plastoglobules, envelopes, thylakoids) are distributed across several gradient fractions which is reflected by the accumulation of marker proteins in the different fractions. For example, PGL35 and VTE1 which are considered as markers for plastoglobules are enriched in fractions F1, F2 and F3, but also occur in F4 and F5, albeit at lower level. The presence of these two proteins in fractions F4 and F5 might indicate that they also occur in thylakoids, or that some of the plastoglobules remain connected to the thylakoids, possibly through membraneous filaments [50], and thus are co-isolated with thylakoid fractions. The low levels of the thylakoid marker CAB in F1 and F2 suggest that the prenyl quinols found in these fractions originate from plastoglobules per se, rather than from thylakoid contamination. Thus, although an exact quantification of the lipid distribution is not possible, these data suggest that the quinol lipids PC-8 and PQ-9 are enriched in thylakoid and plastoglobules of chloroplasts [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF][START_REF] Lohmann | Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance and anthocyanin accumulation in the Arabidopsis AtmenG mutant[END_REF]. This finding is in full agreement with results previously obtained for tocopherols, PQ-9 and phylloquinol [START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF][START_REF] Tevini | Composition and function of plastoglobuli. II. Lipid composition of leaves and plastoglobuli during beech leaf senescence[END_REF][START_REF] Lohmann | Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance and anthocyanin accumulation in the Arabidopsis AtmenG mutant[END_REF][START_REF] Steinmüller | Composition and function of plastoglobuli. I. Isolation and purification from chloroplasts and chromoplasts[END_REF].

The proportions of the two prenyl quinol lipids in the plastoglobules relative to the thylakoids might depend on plant development, because only relatively low numbers of plastoglobules were found in chloroplasts of younger, four weeks old leaves (Fig. 5A), and the plastoglobule number and size is known to increase in older leaves and during stress or senescence. For this reason, the amount of PQ-9 and PC-8 in the plastoglobule fraction might correlate with the number of plastoglobules per chloroplast, and therefore with plant age, development and stress. We obtained similar distributions of PC-8 or PQ-9 to the different subplastidial fractions in chloroplasts isolated from 6 or 8 week old plants (data not shown). Lower proportions of prenyl quinols might be found in leaves from younger plants or plants grown in tissue culture, since these leaves are likely to contain fewer plastoglobules (e.g. [START_REF] Matringe | Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves[END_REF]). The pool of PQ-9 in plastoglobules not associated with thylakoids might provide a reservoir for antioxidant molecules and electron carriers for photosynthetic electron transport. It is known that the numbers of photosystem II as well as PQ-9 in chloroplasts are present in excess and therefore are not limiting for photosynthesis [START_REF] Bailey | Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses[END_REF].

Accumulation of PC-8 in WT and in overexpressing plants

PC-8 was first discovered in rubber tree leaves (Hevea brasiliensis) more than 40 years ago [21]. Since that time, PC-8 was identified in the seeds of a number of plant species [22-24, 27, 28, 31, 39]. However, reports on the occurrence of PC-8 in plant leaves remained scarce. PC-8 was not measured in the recent studies on tocopherol synthesis and function in A. thaliana leaves [START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF][START_REF] Sattler | Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination[END_REF][START_REF] Sattler | Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function[END_REF][START_REF] Maeda | Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis[END_REF]. The two tocochromanols, PC-8 and -tocopherol, are difficult to separate because they share the same head group and therefore, have very similar physical characteristics. During normal phase HPLC, PC-8 can co-elute with -tocopherol, while in reverse phase HPLC, PC-8 is eluted under highly non-polar conditions at the end of the gradient (Fig. 2). Using diol column HPLC [START_REF] Balz | Trennung von Tocopherolen und Tocotrienolen duch die HPLC[END_REF], all four forms of tocopherol and PC-8 can be separated and quantified. Previous studies and results presented here clearly demonstrate that PC-8 represents an authentic form of tocochromanol in leaves, seeds and other organs of plants including A. thaliana in considerable amounts of ca. 5 -10 mol% of total tocochromanols. Previously, overexpression of VTE1 in A. thaliana leaves was found to result in an apparent increase in the -tocopherol peak in normal phase HPLC [34]. Re-evaluation of the tocochromanol composition of line WT-VTE1#40 by diol column HPLC revealed that this peak contains two compounds, -tocopherol and PC-8 (Table 1). Thus, it is now clear that VTE1 overexpression in A. thaliana leaves causes a drastic increase in PC-8 content from ca. 1 to 70 nmol g -1 FW, such that PC-8 becomes the most abundant tocochromanol. The amounts of the individual tocopherol forms were only slightly increased in the leaves of the two lines WT-VTE1#40 and vte1-VTE1#1 (Table 1; [34]). In seeds of transgenic plants, PC-8 also accumulates while the amounts of the different tocopherol forms are comparable to WT levels. Overexpression of VTE1 under control of the 35S promoter presumably results in the accumulation of low levels of VTE1 in seeds which can explain the fact that less pronounced tocochromanol changes are observed in seeds. Previous studies demonstrated that seed-specific overexpression of corn or A. thaliana VTE1 in rape using the napin promoter resulted in a strong accumulation in PC-8 accompanied with moderate increases in other tocopherol forms, particularly -tocopherol [START_REF] Raclaru | Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis[END_REF][START_REF] Kumar | Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds[END_REF]. The increase in PC-8 and tocopherols was observed in lines overexpressing VTE1 as a single construct, or VTE1 in combination with VTE2 or HPPD. In contrast to VTE1, the overexpression of VTE2 in A. thaliana leaves resulted in a much stronger increase in total tocopherols by a factor of 4.4, while PC-8 was not measured [START_REF] Collakova | Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis[END_REF]. Taken together, these data indicate that VTE2 is limiting for tocopherol accumulation because it is required for the conversion of homogentisate to MPBQ (Fig. 1). The impact of VTE1 overexpression on tocopherol synthesis is much lower due to the limitation in supply of the precursors MPBQ/DMPBQ. However, VTE1 overexpression results in a strong increase in PC-8 by cyclization of PQ-9 which itself is present in chloroplasts in high amounts (Table 2).

During a 12 day high light stress experiment, the transcripts of HPPD and VTE2 were found to be strongly upregulated via real-time PCR analysis, while the expression patterns of VTE1 and VTE4 were less affected with a moderate induction for the two latter genes around day three (see Fig. 5 of [START_REF] Collakova | The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress[END_REF]). It was concluded that HPPD and VTE2 are limiting for tocopherol synthesis during high light stress. On the other hand, Northern blot experiments revealed that VTE1 expression is upregulated during the first four days of high light stress [34]. Expression profiling of a 24 h time course experiment of abscisic acid treated A. thaliana seedlings revealed a coordinated upregulation of expression of several tocopherol synthesis genes, i.e. HPPD, VTE2, VTE1 and VTE4 [58]. Taken together, these data suggest that the increase of tocopherol synthesis during abiotic stress is mediated via the induction of several genes, possibly with different stress-dependent induction kinetics.

Overexpressing VTE4 in VTE1 expressing plants

In A. thaliana leaves, -tocopherol carrying three methyl groups is the predominant form of tocopherols, indicating that the largest portion of -tocopherol is methylated by VTE4.

-Tocopherol and PC-8 both contain two methyl groups in their head group. VTE1 was previously suggested to localize to the plastoglobules of chloroplasts [START_REF] Ytterberg | Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes[END_REF][START_REF] Vidi | Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[END_REF], while the other enzymes of tocopherol synthesis including VTE4 are mostly associated with the envelope membranes [START_REF] Soll | Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts[END_REF]. Transient expression of VTE4-GFP under control of the 35S promoter resulted in the accumulation of fluorescence in a ring at the boundary of the chloroplasts indicative for envelope localization (Fig. 6). It is possible that the distribution of tocopherols between plastoglobules, thylakoids and envelopes is in a diffusion-dependent equilibrium. Furthermore, it is possible that the enzymes (VTE1, VTE4) involved in the final biosynthetic steps are distributed between the different compartments, i.e. plastoglobules, stroma and envelopes of chloroplasts. Thus, a small amount of VTE4 might localize to plastoglobules or might be mobile, thereby having direct access to -tocopherol for methylation. After strong overexpression of VTE4, a fraction of PC-8 was converted to a compound tentatively identified as MPC-8. This suggests that PC-8 can be used by VTE4 as a substrate, but with lower activity. Furthermore, these data are in agreement with the fact that VTE4 from tocopherol-containing plants prefers -tocopherol, while VTE4 from tocotrienol-containing species uses -tocotrienol as preferred substrate. [START_REF] Van Eenennaam | Methyltransferase genes and uses thereof[END_REF]. As PC-8 contains an unsaturated side chain similar to -tocotrienol, it is possible that the A. thaliana enzyme is more active with -tocopherol than with PC-8. This scenario implies that the rate of conversion of PC-8 to MPC-8 is low because PC-8 is not a good substrate for VTE4.

Prenyl quinol lipids in the vte1 and vte2 mutants

Results presented here clearly show that the vte1 mutant which lacks tocopherol cyclase is not only devoid of tocopherol, as described previously [START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF][START_REF] Sattler | Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function[END_REF], but also lacks PC-8, another tocochromanol form. PC-8 was described to harbor antioxidant activity, comparable to that of tocopherols [START_REF] Olejnik | Isolation and some properties of plastochromanol-8[END_REF]. Therefore, the additional loss of PC-8 in the vte1 mutant should be taken into consideration in physiological studies employing this mutant, e.g. [START_REF] Porfirova | Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis[END_REF][START_REF] Havaux | Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[END_REF]34,[START_REF] Sattler | Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination[END_REF][START_REF] Maeda | Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis[END_REF][START_REF] Collin | Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress[END_REF][START_REF] Sattler | Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants[END_REF][START_REF] Maeda | Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation[END_REF]. Given the fact that PC-8 amounts to only 5 -10 mol% of total tocochromanols in WT leaves, it is likely that most of the effects observed in vte1 mutant plants are indeed caused by the deficiency in tocopherol synthesis per se, rather than by the additional lack of PC-8.

Similarly to vte1, the vte2 mutant is totally deficient in tocopherol. Table 1 shows that vte2 contains an amount of PC-8 very similar to that of WT leaves, i.e. 5 -10 mol% of tocochromanol in WT. The presence of a residual amount of PC-8 in vte2 suggests that this compound might exert some antioxidant functions. Given the fact that the amount of PC-8 is rather low, it is likely that the physiological effects observed in vte2 mutant plants predominantly originate from tocopherol deficiency [START_REF] Havaux | Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[END_REF][START_REF] Sattler | Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination[END_REF][START_REF] Maeda | Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis[END_REF][START_REF] Sattler | Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants[END_REF]. However, it should be considered that vte2 plants do contain PC-8, and this might partially suppress some physiological effects of tocopherol deficiency (e.g. [START_REF] Havaux | Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana[END_REF]). Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. 
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Figure 1 8

 18 Figure 1 Biosynthetic pathways for tocopherols, tocotrienols, plastoquinol-9 and plastochromanol-8Homogentisate serves as precursor for the synthesis of tocopherols, tocotrienols and plastoquinol-9 in chloroplasts of plants. In A. thaliana, -tocopherol and -tocopherol are the predominant forms of tocopherol, while -tocopherol and -tocopherol represent minor forms (not shown). Tocotrienols (e.g., -tocotrienol, "plastochromanol-3") accumulate predominantly in monocotyledonous species (dashed arrows). Plastoquinol-9 is derived from homogentisate by transfer of a solanesyl group and methylation. Formation of a second ring by VTE1 results in plastochromanol-8 (PC-8). In transgenic A. thaliana lines overexpressing VTE1 and VTE4, a novel compound accumulates (5-methyl-plastochromanol-8, MPC-8; dashed arrow). The reactions representing the major pathways in A. thaliana are shaded in grey. DMPBQ, 2,3dimethyl-5-phytyl-1,4-benzoquinol; HPPD, p-hydroxyphenylpyruvate dioxygenase; MPBQ, 2methyl-6-phytyl-1,4-benzoquinol; MGGBQ, 2-methyl-6-geranylgeranyl-1,4-benzoquinol; DMGGBQ, 2,3-dimethyl-5-geranylgeranyl-1,4-benzoquinol; MSBQ, 2-methyl-6-solanesyl-1,4-benzoquinol.

Figure 2

 2 Figure 2 Tocochromanol composition in leaves of A. thaliana plants altered in VTE1 or VTE4 expressionTocochromanols were separated by (A) HPLC on a diol column according to[START_REF] Balz | Trennung von Tocopherolen und Tocotrienolen duch die HPLC[END_REF] [START_REF] Balz | Trennung von Tocopherolen und Tocotrienolen duch die HPLC[END_REF], or (B) by reverse phase HPLC (only the part of the reverse phase chromatogram is shown that contains PC-8 and MPC-8). WT, A. thaliana wild type; WT-VTE1#40, plants overexpressing VTE1 [34] VTE1-VTE4, plants overexpressing VTE1 and VTE4. Individual peaks were identified using standards for -, -, -and -tocopherol. PC-8 was identified by co-elution with PC-8 from a linseed oil standard (not shown). A second chromatography of the peak collected at 23 min in the diol HPLC chromatogram of WT-VTE1#40 resulted in a peak with a retention time of 33 min in reverse phase HPLC indicating that it is PC-8. The peak collected at 8 min from the diol chromatogram of VTE1-VTE4 gave rise to a peak at 32 min in reverse phase conditions indicating that it was MPC-8.

Figure 3

 3 Figure 3 Identification of PC-8 by quadrupole-time of flight mass spectrometry (A), Mass spectrum of PC-8 from linseed oil; (B) PC-8 purified from line WT-VTE1#40; (C) -tocopherol purified from A. thaliana WT leaves. Lipids were extracted and purified by diol column HPLC prior to analysis by Q-TOF mass spectrometry via direct infusion. The spectra were obtained by collision-induced dissociation after selecting the molecular ion peak in the quadrupole (M+ = 750.63 and 416.36 for PC-8 and -tocopherol, respectively). The fragmentation patterns for PC-8 and -tocopherol are also shown. Note that PC-8 andtocopherol were ionized as cation radicals [M •+ ].

Figure 4

 4 Figure 4 Plastoquinol-9 and plastochromanol-8 content in chloroplast fractions from A. thaliana leavesChloroplasts were isolated from leaves of 8 week old plants and after ruptured for subsequent isolation of different subplastidial fractions. (A) Immunoblot analysis of chloroplast membrane fractions using antibodies to marker proteins. Chloroplast membranes were separated by ultracentrifugation and 29 fractions of 1 ml collected. Proteins contained in 400 µl of fractions 1-17, 200 µl of fractions 19-23, 100 µl of fraction 25 and 50 µl of fractions 27-29 were precipitated, separated by SDS-PAGE and transferred to nitrocellulose membranes. The membranes were sequentially probed with antisera raised against plastoglobulin AtPGL35 (plastoglobules), VTE1 (plastoglobules), outer envelope membrane protein AtTOC75, inner envelope membrane protein AtTIC110, and chlorophyll A binding protein (thylakoids) and

Figure 5

 5 Figure 5 Increase in plastoglobule number in VTE1 overexpressing plants (A) Electron-microscopic analysis of chloroplasts from A. thaliana WT, vte1 mutant and the overexpressing line WT-VTE1#40. In WT-VTE1#40, a large number of plastoglobules exists in clusters of two, three or more plastoglobules, oftentimes in grape-like structures. Bars = 1 µm. (B) Number of plastoglobules (in % of total) occurring in clusters. In WT and vte1, no clusters with more than three plastoglobules were observed. In WT-VTE1#40, only 37 % of plastoglobules occur in an isolated form. Clusters of 4 or more plastoglobules are frequent in WT-VTE1#40. A total of 20 chloroplasts from three different plants were analyzed for each line. Similar results were obtained with line vte1-VTE1#1.

Figure 6

 6 Figure 6 Subcellular localization of -tocopherol methyltransferase (VTE4)(A) A. thaliana leaf epidermal cells expressing fusion proteins with the green fluorescent protein after biolistic transformation: VTE4-GFP ( -tocopherol methyltransferase), PGL35-GFP (plastoglobules), AtTIC110-GFP (inner envelopes), pSSU-GFP (precursor for the RUBISCO small subunit, stroma). (B) Transient expression of VTE4-GFP in A. thaliana protoplasts. Bars = 5 µm. Fluorescence was observed by confocal microscopy. Chlorophyll, autofluorescence after excitation at 568 nm; GFP, excitation at 488 nm; merge, overlap of chlorophyll and GFP and fluorescence; in B, the bright field picture of the protoplast is also shown. (C) Western blot of protoplasts expressing VTE4-GFP. Proteins on the membrane were visualized with amidoblack (lane 1) or with anti-GFP antibodies (lane 2).

  

  

Table 1 Tocochromanol content in A. thaliana tocopherol mutants and overexpressing lines

 1 Tocochromanol compositions of leaves and seeds of A. thaliana WT, tocopherol mutants (vte1, vte2-1, vte2-3) and plants overexpressing VTE1 (WT-VTE1#40, vte1-VTE1#1) were determined by diol column HPLC. Data represent mean ± SD of three measurements each. n.d., not detectable.

	Leaves	-Tocopherol -Tocopherol -Tocopherol -Tocopherol	PC-8
			nmol g -1 Fresh Weight		
	WT	25.2 ± 4.5	0.5 ± 0.1	3.0 ± 0.7	0.7 ± 0.1	1.2 ± 0.2
	vte1	n.d.	n.d.	n.d.	n.d.	n.d.
	vte2-1	0.4 ± 0.1	n.d.	n.d.	n.d.	2.2 ± 0.3
	vte2-3	n.d.	n.d.	n.d.	n.d.	2.1 ± 0.4
	WT-VTE1#40	30.7 ± 4.3	6.1 ± 2.6	4.1 ± 0.6	5.7 ± 0.6	67.9 ± 13.5
	vte1-VTE1#1	37.8 ± 5.2	1.0 ± 0.5	7.2 ± 2.4	1.9 ± 0.6	77.2 ± 10.4
	Seeds	-Tocopherol -Tocopherol -Tocopherol -Tocopherol	PC-8
			nmol g -1 Fresh Weight		
	WT	30.9 ± 1.9	n.d.	1309.2 ± 23.1 44.9 ± 3.3	13.5 ± 1.1
	vte1	n.d.	n.d.	n.d.	n.d.	n.d.
	vte2-1	n.d.	n.d.	22.2 ± 0.7	1.5 ± 0.1	7.2 ± 0.2
	vte2-3	n.d.	n.d.	0.0	0.9 ± 0.1	19.0 ± 1.0
	WT-VTE1#40	21.4 ± 2.1	n.d.	1143.5 ± 93.0 198.7 ± 14.6	93.9 ± 7.4
	vte1-VTE1#1	0.8 ± 0.2	n.d.	961.1 ± 62.0 19.0 ± 1.5	162.0 ± 6.0

Table 2 Plastochromanol-8 and plastoquinol-9 contents of A. thaliana leaves of tocopherol mutants and overexpressing plants

 2 PC-8 and PQ-9 contents were determined by diol column HPLC. Data represent mean ± SD of three measurements each. Low (standard) light, plants raised at 120 µmol s -1 m -2 ; high light, plants exposed to 600 µmol s -1 m -2 for four days; n.d., not detectable. Biochemical Journal Immediate Publication. Published on 20 Oct 2009 as manuscript BJ20090704 THIS IS NOT THE VERSION OF RECORD -see doi:10.1042/BJ20090704

	Leaves	PC-8	PQ-9	MPC-8
		nmol g -1 Fresh Weight
	WT	1.2 ± 0.2 23.8 ± 3.1	n.d.
	vte1	n.d.	22.8 ± 1.5	n.d.
	vte1-1	2.2 ± 0.3 23.8 ± 2.0	n.d.
	vte1-3	0.2 ± 0.0 26.2 ± 3.0	n.d.
	WT-VTE1#40 67.9 ± 13.5 19.8 ± 1.2	n.d.
	vte1-VTE1#1 77.2 ± 13.4 17.6 ± 1.0	n.d.
	WT-VTE1-			
	VTE4	29.2 ± 7.2 11.9 ± 2.1 33.5 ± 5.7
	Low Light	1.2 ± 0.2 21.6 ± 1.9	n.d.
	High Light	4.0 ± 0.6 36.9 ± 2.0	n.d.
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