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SYNOPSIS 

The free radical theory of ageing proposes that reactive oxygen species (ROS) are major driving 

forces of ageing, and are also critically involved in cellular senescence. Besides the 

mitochondrial respiratory chain, alternative sources of ROS have been described, which might 

contribute to cellular senescence. NADPH oxidases are well-known sources of superoxide, 

which contribute to the antimicrobial capabilities of macrophages, a process involving the 

prototypical member of the family referred to as Nox2. However, in the recent years non-

phagocytic homologues of Nox2 have been identified, which are involved in processes other than 

the host defence. Superoxide anions produced by these enzymes are believed to play a major role 

in signalling by MAP kinases and stress-activated kinases, but could also contribute to cellular 

senescence, which is known to involve oxygen radicals. In human umbilical vein endothelial 

cells (HUVEC), Nox4 is predominantly expressed, but its role for replicative senescence of 

HUVEC remains to be elucidated. Using shRNA-mediated knockdown of Nox4, implicating 

lentiviral vectors, we addressed the question if lifelong depletion of Nox4 in HUVEC would 

influence the senescent phenotype. We found a significant extension of the replicative lifespan of 

HUVEC upon knockdown of Nox4. Surprisingly, mean telomere length was significantly 

reduced in Nox4-depleted cells. Nox4 depletion had no discernable influence on the activity of 

MAP kinases and stress-activated kinases, but reduced the degree of oxidative DNA damage. 

These data suggest that Nox4 activity increases oxidative damage in HUVEC leading to loss of 

replicative potential which is at least partly independent of telomere attrition. 

Key Words: 

Nox4 / replicative senescence / HUVEC / DNA damage / telomere attrition / oxidative stress 
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INTRODUCTION

The free radical theory of ageing considers molecular damage caused by the presence and action 

of reactive oxygen species (ROS) as a major cause for ageing processes in most if not all species. 

The role of ROS as mediators of senescence and determinants of lifespan has been addressed by 

genetic studies in several model organisms (for review, see ref. [1]). Thus, reducing the level of 

antioxidant enzymes such as superoxide dismutase (SOD), leads to a consistent reduction of the 

lifespan in many species, including the mouse [2]. Accordingly, extending the antioxidative 

capacity, for example by overexpression of SOD/catalase [3] has been shown to extend lifespan 

in an otherwise short-lived strain of the fruitfly D. melanogaster, whereas ectopic overproduction 

of mitochondrial catalase can prolong the lifespan of mice [4]. However, there are also examples 

where overexpression of antioxidant enzymes did not extend the lifespan; thus, a large cohort 

study demonstrated that overexpression of CuZnSOD does not increase lifespan of the mouse 

[5]; similarly, catalase-transgenic mice are not long-lived but rather display enhanced sensitivity 

to oxidative stress [6]. Whereas these data support the concept that ROS-induced damage 

contributes to ageing processes, at least in some specific genetic backgrounds, the role of the 

individual antioxidant enzymes in this process remains to be determined. 

Concerning human ageing, many questions about molecular mechanisms have been addressed 

using in vitro senescence models derived from normal human cells. The proliferative potential of 

human primary cells in culture is limited, and extended passaging of such cells leads to a state of 

terminal growth arrest, referred to as replicative senescence. While the erosion of telomeres, due 

to insufficient telomerase activity (for recent review, see [7]), has been recognized as a primary 

cause of replicative cellular senescence, a variety of other events have been identified that trigger 

premature senescence. Most notably, oxidative stress was found to induce premature senescence 

in human fibroblasts [8, 9], endothelial cells [10, 11], and a variety of other cell types (reviewed 

in ref. [12]). 

The mitochondrial theory of ageing [13] suggests a critical role for mitochondrial dysfunction 

and subsequently increased ROS production as an inducer of ageing and premature senescence. 

Accordingly, replicative senescence of human diploid fibroblasts (HDF) has been associated 

with mitochondrial dysfunction and mitochondrial ROS were identified as important players in 

the senescence response of HDF [14-16]. However, mitochondrial dysfunction does not seem to 

be uniformly responsible for senescence in all cell types. In particular, the role of mitochondrial 

dysfunction in senescence of human umbilical vein endothelial cells (HUVEC) has remained 

controversial. Depending on the particular strain of HUVEC and the techniques applied to assess 

mitochondrial function, one can observe a wide range of effects, ranging from serious 

mitochondrial dysfunction [17] to no effect at all [18], suggesting that other cellular ROS sources 

may contribute to the senescent phenotype. 

NADPH oxidases generate superoxide, which, together with its derivatives, fulfills diverse 

intracellular functions. Notably, superoxide production by phagocytes and macrophages is 

activated in response to bacterial or viral infections. This process, characterized by rapid 

activation of the phagocytic enzyme Nox2, is referred to as oxidative burst [19]. In addition, non-
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phagocytic members of the NADPH oxidase (Nox) gene family have recently been identified. Of 

those, Nox1 plays a role in the host defence (reviewed in ref. [20]), whereas other Nox family 

members are known to play a role in signal transduction [21]. Based on both, overexpression and 

gene-knockdown experiments, it has been shown that Nox1 triggers the activation of JUN kinase 

(JNK) by phosphorylation [22]. For Nox4, it has been shown that knockdown leads to decreased 

MAP kinase activity in various cell types [23, 24] and Nox4-induced activation of p38 was 

shown to drive differentiation of murine cardiomyocytes [25]. Nox4 knockdown in pancreatic 

cancer cells down-regulated the activity of protein kinase B/AKT [26]. Whereas Nox4 was 

shown to stimulate the proliferation of various cell types, it was also shown to promote 

differentiation and restrict cell proliferation ([27-29], for recent review, see ref. [30]). Whereas 

these observations indicate that Nox4 has the potential to modulate the proliferative capacity of 

various cell types in several ways, the role of NADPH oxidases in replicative senescence of 

human cells has not been explored so far. Given the implication of Nox4 in ROS production and 

cellular signalling pathways, we addressed the possibility that Nox 4 may be involved in 

replicative senescence of human endothelial cells. 
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EXPERIMENTAL

Cell Culture 

Endothelial cells of four different donors were isolated from human umbilical veins and 

maintained in Endothelial Cell Medium (Cambrex BioScience), as described [10]. To achieve 

maximal viability, cells were grown on dishes pre-coated with gelatine (0.1% in Endothelial Cell 

Medium; Sigma- Aldrich) [31]. Cells were counted when passaged and population doublings 

(PDL) were estimated using the following equation: n = ( log10F - log10I ) / 0.301 (n represents 

the number of population doublings, F the number of cells at the end of one passage and I the 

number of cells that were seeded at the beginning of one passage). Depending on the donor, cells 

reached senescence after different numbers of population doublings. 

For production of lentiviral particles, HEK-T cells were maintained in DMEM, containing 2 mM 

L-glutamine, 100 U/ml Penicillin, 0.1 mg/ml Streptomycin and 10% fetal bovine serum (heat 

inactivated). 

Lentiviral infection of HUVEC cells 

Production of lentiviral particles was carried out according to the manufacturer’s protocol 

(Addgene Inc.) by usage of the packaging plasmids pMD2.G and psPAX2 (both purchased from 

Addgene Inc.) and the lentiviral vector pLKO.1, containing Nox4-specific shRNA and control 

shRNA, respectively (Open Biosystems). For lentiviral infection, HUVEC cells of early passage 

were cultivated in 6-well plates. Upon reaching ~70% confluence, culture medium, containing 

lentiviral particles to the amount of 2 MOI, was added to the cells in presence of 8 µg/ml 

hexadimethrine bromide (Sigma-Aldrich), which increases the efficiency of viral infection. 24h 

after infection, medium was changed. Puromycin selection was initiated (500 ng/ml) 48h post 

infection.

Staining for senescence- associated ß-galactosidase (SA-ß-gal) 

The senescent status of the cells was monitored by in situ staining for SA-ß-galactosidase, as 

described [10]. 

PCR-based quantification of mRNA levels 

For semiquantitative reverse-transcription-PCR (RT-PCR), total RNAs were isolated from cells 

using the ‘RNeasy Mini’ kit (Qiagen). 1 µg of total RNA was applied to reverse transcription 

using the ‘Transcriptor First Strand cDNA Synthesis Kit’ (Roche Applied Science) and oligo(dT) 

primer. Follow-up PCR amplification of Nox4 mRNA was carried out using suitable primers, 

whereas ß- actin served as loading control.

For quantitative Real-Time PCR (qPCR), primers for the detection of Nox4 mRNA and the 

housekeeper gene porphobilinogen deaminase (PBGD) were designed using Primer3 software, as 

follows:  
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5’-AGTCCTTCCGTTGGTTTG-3’ (fwd)  and 5’-AAAGTTTCCACCGAGGAC-3’ (rev)  for 

Nox4- amplification as well as  5’-CCAGGACATCTTGGATCT-3’ (fwd)  and  

5’-ATGGTAGCCTGCATGGTCTC-3’ (rev) for PBGD amplification.. Total RNA was isolated 

and used for reverse transcription, as previously described [32]. The cDNA equivalent of 5 ng 

RNA was applied to PCR amplification in combination with 15 µl of ‘LightCycler® 480 SYBR 

Green I Master’ (Roche Applied Science), a reaction mixture, including FastStart Taq DNA 

Polymerase and SYBR Green I dye for product detection. cDNA concentrations were normalized 

by the use of the internal standard PBGD. Real-Time PCR was performed in triplicates in the 

LightCycler® 480 Instrument (Roche Applied Science) in a final reaction volume of 50µl per 

tube. Cycling conditions were as follows: 95°C for 8min (initial denaturation step) followed by 

55 cycles of target amplification (95°C for 15sec, 57°C for 8sec, and 72°C for 15sec) and final 

melting (95°C for 1min, 60°C for 30sec, 95°C continuous with 5 acquisitions per °C).. Crossing 

Points (Ct) for Nox4 and PBGD in control cells / shRNA- treated cells were used for calculation 

of Nox4 fold expression changes. 

Absolute quantification of Nox4 expression in different HUVEC isolates was based on a dilution 

range of an external plasmid standard to obtain a standard curve (Ct values of the standard versus 

gene copy numbers). Ct values for Nox4 in HUVEC samples were extrapolated against this plot 

in order to calculate absolute copy numbers of Nox4 mRNA. 

Determination of ROS production by chemiluminescence 

Reactive oxygen species were detected by luminol-enhanced chemiluminescence. The assay was 

performed in 24-well format. Cells were seeded in order to reach 80-90% confluency after 24 h. 

The following day, cells were washed once with HBSS (Sigma-Aldrich). Afterwards, 1.0 ml of 

HBSS (containing 10 µg/ml Luminol and 4U/ml Horseradish Peroxidase, both purchased from 

Sigma-Aldrich) was added to each well. Cells were incubated at 37°C in a multiple plate reader 

(HIDEX CHAMELEON, HVD) and ROS production was monitored over a period of 20 - 25min 

by recording light emission (luminescence). Diphenyliodonium (DPI; 10 µM; Sigma-Aldrich) 

was added towards the end of the measurement to abolish Nox-dependent ROS production. The 

luminescence signal (expressed in relative light units, RLUs) was normalized to cell number. 

BrdU staining for quantification of cell proliferation 

DNA synthesis was assessed using the ‘5-Bromo-2'-deoxy-uridine Labeling and Detection Kit I’ 

(Roche Applied Science) according to the manufacturer’s recommendations for adherent cells. 

After the staining procedure, the coverslips were analyzed by fluorescence microscopy. Cells of 

3 visual fields were counted and the number of BrdU-positive cells was expressed as percent of 

the total cell number. 

Standard immunoblotting analysis 

Cellular protein lysates were prepared on ice in RIPA buffer containing protease- and 

phosphatase- inhibitors. Lysates were centrifuged and protein concentration in the resulting 

supernatants was determined, using the ‘Detergent Compatible Assay’ (DC Protein Assay; 
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BioRad). Appropriate amounts of protein were subjected to SDS gel electrophoresis (10% 

SDS/polyacrylamid gels) and transferred to PVDF membranes. Membranes were blocked with 

5% BSA in TBS / 0.1% Tween20 and incubated with primary antibodies overnight. Proteins of 

interest were detected after incubation with horseradish peroxidase-conjugated secondary 

antibodies (Dako Cytomation) and visualized with enhanced chemoluminiscence reagent ECL 

(Amersham). Used antibodies were as follows: anti-Phospho ERK1,2 (New England Biolabs), 

anti-Phospho JNK (New England Biolabs), anti-Phospho p38 (Cell Signalling), anti-ERK1,2 

(Santa Cruz), anti-JNK1 (Santa Cruz), anti-p38 (Cell Signalling), and anti-alpha Tubulin (Sigma-

Aldrich). Results (signal intensities) from three independent experiments were subjected to 

densitometric analysis using AlphaEaseFC software..  

Preparation and fractionation of cell lysates for Nox immunoblotting 

Transfected U-2OS cells were scraped off 10 cm Petri- dishes and afterwards recollected in 900 

µl PBS containing protease inhibitors (Roche, Complete, EDTA-free) kept on ice. Cell lysis was 

achieved by freeze-thaw cycles and sonication. After centrifugation, the supernatant containing 

soluble proteins was mixed with standard SDS-PAGE sample buffer and boiled for 5 min. The 

insoluble pellet was resuspended in membrane protein extraction buffer (20 mM MOPS pH 7.2, 

2% Triton X-100, 0.5 M NaCl, 0.25 M sucrose), sonicated, and centrifuged. The supernatant was 

mixed with an equal volume of membrane protein sample buffer (10% SDS, 3% ß-

mercaptoethanol, 15% glycerol, 0.025% bromphenol blue, 75 mM Tris-HCl pH 7.0) and 

incubated at 40°C for 30 min. Soluble and membrane protein fractions were then analyzed by 

SDS-PAGE and subsequent Western blotting. For detection of Nox4, the antibodies anti-Nox4 

sc30141 (Santa Cruz Biotechnology) and anti-Nox4 NB110-58849SS (Novus Biologicals) were 

used. We further applied an affinity-purified goat antiserum obtained against the C-terminal part 

of Nox4, which was expressed in E.coli and purified to homogeneity (H. Pircher, unpublished). 

Analysis of oxidative damage to DNA 

Flow-cytometric detection of 8-oxodeoxyguanosine was performed according to ref. [33]. 

Briefly, the cells grown on ~90% confluent 10 cm Petri-dishes were collected and resuspended in 

PBS. For fixation, formaldehyde was added to the final concentration of 2.5% and the cells were 

incubated for 10 min at 37°C. Cells were chilled on ice for 1 min, rinsed by centrifugation and 

permeabilized by addition of 90% ice-cold methanol. After 30 minutes incubation on ice, 0.5 – 1 

×106 cells were aliquoted into each assay tube and washed twice with PBS. After centrifugation 

(800 × g, 5 min), cell pellets were blocked for 10 minutes at room temperature in 300 µl PBS 

containing 10 % (w/v) normal goat serum (NGS). After two washing steps with PBS containing 

0.2 % (w/v) NGS, the cells were stained in 200 µl avidin-conjugated FITC solution (Sigma, 

A2050), resuspended 1:200 in PBS and incubated for 1h at room temperature. After two 

washings with PBS, cells were resuspended in 400 µl PBS and analyzed by flow cytometry. As a 

negative control, cells incubated in the absence of avidin-conjugated FITC were used. 

Biochemical Journal Immediate Publication. Published on 14 Aug 2009 as manuscript BJ20090666
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

00
90

66
6

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2009 The Authors Journal compilation © 2009 Portland Press Limited



8

Detection of DNA double-strand breaks by gamma-H2AX staining 

To detect phosphorylation of the histone H2A variant, H2AX, at Serine 139, which generates -

H2AX, a well-established marker of DNA double-strand breaks [34], flow cytometry as well as 

immunofluorescence procedures were carried out, using anti- -H2AX antibody (Cell Signaling, 

#2577), according to the protocols provided by the manufacturer. In both cases, anti- -H2AX

antibody, diluted 1:50, and a FITC-conjugated swine anti-Rabbit Ig secondary antibody (Dako, 

#F0205), diluted 1:20, were used. As positive control, cells incubated for 1h at room temperature 

with 100 µM H2O2 in HBSS were used. As negative control, cells incubated in the absence of 

primary antibody were used. Staining of the cells was analyzed by confocal microscopy using a 

microlens-enhanced Nipkow disk-based confocal system UltraVIEW RS (Perkin Elmer, 

Wellesley MA, USA) mounted on an Olympus IX-70 inverse microscope (Olympus, Nagano, 

Japan). Images were acquired using a 100 x oil immersion objective (Olympus, PlanApo, NA 

1,4).

Determination of mean telomere length 

For flow cytometric analysis of the mean telomere length, a modified protocol based on ref. [35] 

was used. Briefly, 1 × 106 cells grown on 10 cm Petri-dishes (~90% confluent) were transferred 

into FACS tubes and washed once with PBS. After centrifugation (400 × g, 10 min), cells were 

resuspended in 1 ml hybridization buffer (49% formamide, 1% BSA, 20 mM Tris-HCl, pH 7.2) 

and rinsed by centrifugation (1000 × g, 10 min). The cells were then resuspended in 96.25 µl 

hybridization buffer and PNA probe (PNA probe TelC-FITC, Panagene #080506PL-14) was 

added to the final concentration of 375 nM. After the incubation step (12 min at 85°C), the tubes 

were chilled on ice for 2 min and incubated for 90 min at room temperature in the dark. The cells 

were washed twice with 2 ml post-hybridization buffer (49% formamide, 0.1% BSA, 0.1% 

Tween-20, 10 mM Tris-HCl, pH 7.2) and rinsed by centrifugation (1000 × g, 10 min). The cells 

were then washed twice with PBS (1000 × g, 10 min) and resuspended in 300 µl PBS. Cell 

suspensions were subjected to flow cytometry using a FACSCantoTM II (BD Biosciences). The 

mean fluorescence intensity (detector FL1) was used to estimate relative telomere length. Human 

TCL 1301 cells, displaying a relatively constant mean telomere length of roughly 25 kb [35], 

served as a reference. As a negative control, sample without PNA probe was used. 
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RESULTS

Expression and activity of NADPH oxidases in young and senescent HUVEC 

To determine mRNA levels of NADPH oxidases in young and senescent HUVEC, RNA was 

prepared from 4 different HUVEC isolates, which were either harvested at early passage 

(passage 3) or harvested after extended passaging when cells reached senescence (around 

passage 25). As described before [32], there is a certain variation in the phenotype between 

HUVEC strains isolated from different donors. This is also reflected by the fact, that the 

proliferative capacity of the 4 different isolates examined, varied between 45 (e.g. HUVEC strain 

#1) and 55 (e.g. HUVEC strain #3) population doublings (PDL) before the cultures reached 

senescence. Data obtained by RNA profiling using AffymetrixTM microarrays indicated that, 

despite the phenotypical variation noted above, a conserved pattern of gene expression can be 

observed upon senescence in various HUVEC strains (unpublished results). Expression levels of 

Nox1, 2, 3 and 5 were rather low in young HUVEC, and no significant senescence-associated

changes in the expression of these genes were observed. However, in all strains a signal for Nox4 

was readily detectable by both methods, RT-PCR and quantitative Real Time-PCR (qPCR). For 

all HUVEC strains analyzed, the level of Nox4 mRNA was virtually unaltered when young and 

senescent cultures of HUVEC were compared (Fig. 1A, and data not shown). Using RT-PCR, we 

also detected expression of p22phox, the only known additional subunit required for Nox4 activity 

(reviewed in ref. [36]), in all HUVEC strains (data not shown). 

To assess the rate of Nox-derived ROS production, luminol-enhanced chemiluminescence was 

applied, which is a convenient and sensitive assay to determine cell-associated NADPH oxidase 

activity [37]. Using human osteosarcoma cells (U-2OS) stably transfected with expression 

vectors for both, Nox4 and p22phox, we confirmed luminol-enhanced chemiluminescence to be a 

valid method for measuring Nox4-derived ROS, since double-transfected U-2OS cells yielded a 

robust signal, whereas untransfected U-2OS cells, which lack both enzymatic compounds, 

yielded no signal in this assay (data not shown). Chemiluminescence signals were quenched  

more than 90% upon addition of DPI, further supporting our consideration of  the assay being 

specific for detection of NADPH oxidase activity . Similar results were obtained upon incubation 

of Nox4-expressing U-2OS cells with the redox-sensitive probe Amplex Red (data not shown), 

which represents another assay frequently used to detect Nox activity, preferably by measuring 

extracellular hydrogen peroxide [38]. 

Significant chemiluminescence signals were detectable in case of all HUVEC strains at early 

passage. Signals were efficiently quenched upon the addition of the NADPH oxidase inhibitor 

diphenyliodonium (DPI) (Fig. 1B), indicating a significant contribution of NADPH oxidase 

activity to overall ROS production in HUVEC. Nox activity was also detectable in cells of 

senescent cultures, although the activity per cell was somewhat lower in senescent cells of all 

strains (Fig. 1B, and data not shown).

Inactivation of Nox4 enhances cell proliferation in HUVEC.
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To address the growth-modulating potential of Nox4 in HUVEC, we applied lentiviral vectors 

for delivery of Nox4-specific shRNA. Lentiviral particles are known to efficiently infect 

HUVEC [32]. Infections were performed in cells of HUVEC strains #1 and #3 at early passage 

(p5), and cells were grown under puromycin selection to ensure efficient knockdown in all cells. 

42 days after infection, RNA was harvested and analyzed by qPCR. This experiment revealed a 

significant (7-12 fold) downregulation of Nox4 mRNA in the case of Nox4-specific shRNA, 

whereas control shRNA showed no effect (Fig. 2A). 

We also attempted to analyze Nox4- knockdown at the protein level by Western blot analysis, 

which, due to the limited availability of immunological reagents, has been notoriously difficult 

(reviewed in ref. [39]). To assess the quality of the immunological reagents available to us, U-

2OS osteosarcoma cells were transfected with Nox4 expression vectors. Since NADPH oxidases 

are membrane-bound enzymes, we applied a specific protocol for cell lysis which ensures 

efficient solubility of membrane proteins which under normal lysis conditions would remain 

undetectable [40]. As control for the lysis procedure, the related protein Nox5 was used, against  

which high quality antibodies (a gift from Karl-Heinz Krause) have been created . Nox5 was 

easily detectable in these experiments (Fig. S1), thereby validating our experimental protocol for 

the detection of Nox enzymes by Western blot analysis. Whereas a commercially available 

antibody to Nox4 as well as an affinity-purified goat antiserum, directed against the C-terminal 

part of Nox4 (H. Pircher, unpublished), detected weak but significant signals in the membrane 

fraction of Nox4- transfected cells (Fig. S1), the sensitivity of both antibodies was not sufficient 

to detect endogenous Nox4 in untransfected HUVEC (data not shown), which precluded the 

analysis of Nox4-knockdown in HUVEC by Western blot. However, expression of Nox4-

specific shRNA led to an almost complete suppression of NADPH oxidase activity, assessed by 

luminol-enhanced chemiluminescence (Fig. 2B). Chemiluminescence signals were quenched 

more than 90%  upon addition of DPI (data not shown). Together, these data strongly suggest  

Nox4 being the functionally relevant Nox isoform in HUVEC. 

To determine whether Nox4 depletion affects the rate of cell proliferation, bromodeoxyuridine 

(BrdU) incorporation studies were performed. As for the parental HUVEC strains, cells derived 

from strain #3 through infection with control shRNA showed a slightly higher rate of BrdU 

incorporation (19+/- 3%; Fig. 3A), compared to strain #1 (14 +/- 1.5%; Fig. 3A), reflecting the 

higher proliferative activity of HUVEC strain #3 (data not shown). In both HUVEC strains, 

expression of Nox4-specific shRNA led to a significant increase in the rate of cell proliferation,

as shown by BrdU incorporation (Fig. 3A). It is known that Nox4 activity plays an important role 

in specific signal transduction processes which can modulate cell proliferation, such as signalling 

through ERK1/2 [24] and stress-activated kinase p38 [25], whereas Nox1 is known to mediate 

activation of JUN kinase (JNK) in vascular smooth muscle cells [22]. To investigate whether 

signalling through these pathways is affected by Nox4 gene knockdown in HUVEC, the 

expression and activation state of these kinases was determined. Extracts were prepared from 

HUVEC that had been either infected with control shRNA or Nox4-specific shRNA, and probed 

with antibodies to ERK1/2, JNK and p38. To assess the activation status of the respective 

kinases, we used phosphorylation-specific antibodies directed against phospho-ERK, phospho-

JNK and phospho-p38, respectively. Whereas in control experiments, using human diploid 
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fibroblasts that were either growth arrested by serum starvation for 72 hours, or stimulated with 

10% FCS, a clear-cut activation of both ERK and p38 was visible, no significant changes in 

these signalling pathways could be observed in HUVEC transduced with Nox4-specific shRNA. 

Similarly, control experiments with anisomycin-treated human fibroblasts revealed a clear 

increase in the levels of phosphorylated JNK, whereas the levels of both, JNK and phospho-JNK, 

were not significantly affected by Nox4 shRNA (Fig. 3B). Together, these data suggest that 

downregulation of Nox4 in two independent HUVEC isolates did not significantly affect the 

activity of the three protein kinases studied (Fig. 3C). 

Inactivation of Nox4 delays HUVEC replicative senescence. 

To study the role of Nox4 in replicative senescence of HUVEC, early-passage cells of both 

strains, #1 and #3 were subjected to lentiviral infection, with particles harbouring control shRNA 

or Nox4-specific shRNA, and grown into senescence. Efficient and persistent knockdown of 

Nox4 was confirmed by qPCR (Fig. 4A) and luminol-enhanced chemiluminescence (data not 

shown). Cell proliferation was assessed by cell counting at every passage, thereby cumulated 

population doublings (cPDL) were calculated. We found that shRNA-mediated knockdown of 

Nox4 led to a significant extension of the population doubling capacity in both HUVEC strains 

#1 (Fig. 4B) and #3 (Fig. 4C). Accordingly, the relative proportion of cells, that stained positive 

for SA-ß-gal activity was significantly reduced upon transfection with Nox4-specific shRNA 

(Fig. 4D). 

Replicative senescence is known to be triggered primarily by telomere shortening (for recent 

review, see [7]), although it is known that other processes, such as oxidative stress, can shorten 

the cellular lifespan as well [10, 11, 41]. To elucidate the role of telomere shortening in context 

with the observed lifespan extension in response to Nox4 depletion, telomere length was 

determined in Nox4-depleted cells as well as in control cells. Telomere length was estimated by 

Flow FISH [42], using telomeres of a stable T cell line as size marker [35]. The mean telomere 

length of HUVEC was gradually reduced through extended passaging to a minimal length of 

roughly 20 kb, when cells reached senescence (data not shown; see also ref. [43]). This finding is 

in agreement with the observations of others who reported telomere shortening to be a key 

mechanism of cellular senescence in HUVEC [11]. When the influence of Nox4 knockdown on 

mean telomere length was analyzed, we found that the mean telomere length of 22 kb in control 

cells of strain #3 at passage 15 was reduced to 13 kb in case of Nox4-depleted cells of the same 

strain. Similarly, telomere length of 28 kb in control cells of strain #1 at passage 17 was reduced 

to 18 kb in Nox4-depleted cells of the same strain (Fig. 5). These findings suggest that depletion 

of Nox4 extends the proliferative capacity of HUVEC, resulting in a decreased mean telomere 

length in Nox4-depleted cells. 

Inactivation of Nox4 delays the accumulation of oxidative damage 

The data obtained so far suggest that Nox4 contributes to replicative senescence of HUVEC. 

ROS-induced damage to nucleic acids (reviewed in ref. [16]) and proteins [44] is believed to 

contribute to cellular senescence, and our data raise the possibility that in HUVEC, ROS 
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produced by Nox4 may be involved in this process. Accordingly, the observed delay of 

senescence in Nox4-deficient HUVEC may be due to reduced oxidative damage, otherwise 

affecting cellular constituents, such as DNA and proteins. To test this hypothesis, the degree of 

DNA damage was determined by quantification of 8-oxodeoxyguanosine (8 oxo-dG), an 

established marker of oxidative DNA damage [33]. To this end, HUVEC strains #1 and #3, 

infected with either control shRNA or Nox4-specific shRNA, were stained with avidin-FITC, a 

well-established and specific ligand for 8 oxo-dG [33]. Fluorescence intensities were analyzed 

by flow cytometry. This experiment revealed a significant reduction of 8 oxo-dG content in 

Nox4- knockdown cells (Fig. 6A). 

To further characterize Nox4-derived DNA damage, cells were stained with antibodies to -

H2AX and analyzed by indirect immunofluorescence. Histone variant H2AX is phosphorylated 

in response to DNA double-strand breaks to yield -H2AX, which is recruited to sites of DNA 

damage [34]. We detected specific nuclear -H2AX staining in control cells (transfected with 

control shRNA), which was markedly reduced in Nox4-depleted cells (Fig. 6B). In both cell 

types, -H2AX staining was enhanced upon treatment with H2O2, providing a control for the 

staining assay. -H2AX staining intensity was quantified using flow cytometry (Fig. 6C), which 

confirmed significantly reduced fluorescence in case of Nox4-depleted cells. DNA damage is 

known to initiate antiproliferative signals and contribute to senescence in several models of 

senescence in vitro (reviewed in ref. [45]) and probably also in vivo (reviewed in ref. [46]). 

Together, these data suggest that Nox4-derived ROS induce DNA damage in HUVEC, thereby 

leading to the establishment of cellular senescence. 
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DISCUSSION 

The occurence of reactive oxygen species (ROS), originating from the mitochondrial electron 

transport chain, is upregulated with age in many species including humans, and solid evidence 

suggests that mitochondria-derived ROS mechanistically contribute to ageing in a variety of 

experimental model systems. Concerning the in vitro senescence of human diploid fibroblasts, it 

has been demonstrated that mitochondrial dysfunction and increased ROS production are tightly 

linked in senescent cells, and it is now widely accepted that dysfunctional mitochondria play a 

key role in fibroblast senescence. Concerning human endothelial cells, the link between 

senescence and mitochondrial dysfunction is less clear, raising the possibility that other ROS 

sources could contribute to senescence of human endothelial cells. To address the question if 

NADPH oxidases play a role in the senescence response of human umbilical vein endothelial 

cells (HUVEC), we have analyzed the expression pattern of Nox genes in HUVEC, isolated from 

four different donors. PCR analysis revealed consistent expression of Nox4 in all four isolates, 

whereas the expression level of other Nox family members was rather low. To assess the 

influence of Nox4 on the replicative potential of these cells, shRNA-encoding vectors were used 

for sustained depletion of Nox4 in HUVEC. Nox4 knockdown enhanced the rate of cell 

proliferation and resulted in a significant extension of cellular lifespan, consistent with the model 

that Nox4-derived ROS contribute to the onset of replicative senescence in human endothelial 

cells.

Role of Nox enzymes in signal transduction and cell proliferation in HUVEC. 

RT-PCR analysis revealed Nox4 to be the major NADPH oxidase isoform in four different 

HUVEC isolates. In contrast to findings reported by others [47], Nox2 was not detectable at 

both, mRNA as well as protein level in the HUVEC strains implicated in this study. Similarly, 

mRNA levels for Nox1, Nox3, and Nox5 were rather low in all four HUVEC isolates (B. Lener, 

unpublished). Limitations concerning the sensitivity of available antibodies restricts reliable 

detection of Nox4 protein to cells with high expression levels (Fig. S1). None of the available 

antibodies was able to detect endogenous Nox4 protein in HUVEC (data not shown). In light of 

this fact, we chose to assess cellular ROS production to determine the efficiency of shRNA-

mediated Nox4 depletion. Using U-2OS cells stably transfected with both, Nox4 and p22phox

expression vectors, luminol-enhanced chemiluminescence was established as a convenient 

method to assess Nox4 activity in cells. Using this assay, we found the presence of Nox4 mRNA 

being closely connected to the presence of elevated ROS production, which could be 

successfully inhibited by the NADPH oxidase inhibitor DPI. DPI-sensitive ROS production was 

lost upon shRNA-mediated knockdown of Nox4, supporting our conclusion that the majority of 

NADPH oxidase activity in HUVEC is due to Nox4. 

We found that shRNA-mediated abrogation of Nox4 activity results in increased cellular 

proliferation. Nox4 is required for proliferation of various cell types [27-29]; on the other hand, 

Nox4 can also promote differentiation and restrict cell proliferation (reviewed in ref. [30]). These 

observations indicate that the influence of Nox4 on cell proliferation capacity is cell type- 

specific and may be further influenced by cell culture conditions. Based on the literature [48, 49], 
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one would expect that inactivation of Nox4 reduces signalling through ERK1/2 and/or stress-

activated kinase pathways. However, we failed to detect any significant decrease in ERK 

phosphorylation, JNK phosphorylation and p38 kinase phosphorylation, suggesting that the 

maintenance of those pathways may require relatively low levels of Nox4 activity in HUVEC. 

Oxidative stress and cellular senescence: the role of mitochondria and alternative ROS sources. 

Employing high-resolution respirometry, we have previously shown that mitochondria are 

partially uncoupled in senescent human dermal fibroblasts [14], and that experimental 

uncoupling of mitochondria in young fibroblasts induces premature senescence [15]. In a similar 

study, mitochondrial dysfunction was observed in senescent human lung fibroblasts and 

mitochondrial ROS production was identified as one of the causes of replicative senescence in 

human fibroblasts [16]. A significant increase in oxidative stress was also observed in senescent 

human endothelial cells [10, 11]; however, the sources for increased ROS production have 

remained elusive. Depending on the particular strain of HUVEC and the techniques used to 

assess mitochondrial function, one can observe a wide range of effects, ranging from serious 

mitochondrial dysfunction [17] to no effect at all [18]. Whereas more work will be required to 

establish the role of mitochondrial dysfunction in HUVEC senescence, the data presented in this 

communication indicate that ROS derived from Nox4 play an important role in HUVEC 

replicative senescence. Lifespan extension linked to  Nox4 knockdown could not been observed 

upon the application of protocols implicating short-term knockdown, via transient transfection 

with Dharmacon oligonucleotides (H. Pircher, unpublished results). The occurence of the effects 

described requires lifelong depletion  of Nox4, which can only be obtained using lentiviral 

vectors. We think that the influence of Nox4 activity on lifespan is based on a continuous 

accumulation of reactive oxygen species and oxidative damage, starting already at  early 

passage. In this respect, it is conceivable that Nox4-derived ROS, in addition to their role as 

signalling molecules, induce damage to cellular constituents, such as DNA and proteins. This 

idea is supported by our finding that knockdown of Nox4 resulted in a drastic reduction of DNA 

damage (Fig. 6), which was accompanied by reduced levels of protein damage, determined as 

protein carbonyls (data not shown). This finding suggests that reactive oxygen species produced 

by Nox4 may contribute to lifespan restriction caused by accumulation of damaged DNA (and 

proteins).

Surprisingly, HUVEC infected with control shRNA underwent senescence-associated growth 

arrest with relatively high mean telomere length (roughly 20 kb; unpublished), whereas Nox4-

depleted HUVEC were still proliferating with significantly shorter telomeres (e.g. 13 kb in 

HUVEC strain #3, see Fig. 5), suggesting that growth arrest in normal HUVEC may be at least in 

part telomere-independent. Others have shown that overexpression of Nox4 results in the 

induction of a senescence-like growth arrest in immortalized murine fibroblasts [50], and that 

angiotensin II accelerates the onset of senescence in endothelial progenitor cells [51], probably 

by stimulating Nox2 activity [52]. Whereas overexpression of a foreign gene in an immortalized 

cell line does not necessarily reveal the physiological role of the gene in question, the approach 

chosen by us, namely to deplete cells of endogenous Nox4, seems more suitable to reveal its 

physiological function.  When this work was nearly finished, Schilder et al. reported that chronic 
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incubation of HUVEC with the plant-derived polyphenol resveratrol induces a senescence-like 

phenotype [53]. They further showed, that inhibition of cell cycle progression in resveratrol-

treated cells could be alleviated by knocking down Nox1 in short term transient transfections 

with shRNA; a similar albeit weaker effect was also observed upon shRNA-mediated 

knockdown of Nox4. In this study, depletion of either Nox4 or Nox1 had no effects on the 

phenotype of wild-type HUVEC in the absence of resveratrol [53]. It is conceivable that this 

observation, which contrasts with our current finding that Nox4 knockdown significantly extends 

HUVEC lifespan, reflects inefficient knockdown of Nox4 achievable by transient transfection. 

Therefore the current study, applying lifelong Nox4 depletion in HUVEC in the absence of any 

pharmacological treatment, demonstrates for the first time that replicative senescence of human 

endothelial cells can be delayed by reducing endogenous Nox4 activity. Preliminary data from 

our laboratory suggest that Nox4 knockdown also leads to a moderate lifespan extension in 

human fibroblasts (R. Greussing et al., unpublished), suggesting a more general role of Nox4 in 

cellular senescence; however, more work will be required to clarify this point.
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FIGURE LEGENDS 

Fig.1. Nox4 expression and activity in young and senescent HUVEC 

A. HUVEC from four different donors were grown into senescence. RNA was prepared at early 

(y) and late (sen) passages and analyzed for expression of Nox4 by RT-PCR (upper panel) and 

qPCR (lower panel). Bar graphs represent mean values ± SD of three independent experiments. 

B. Cells of HUVEC strain #1 were analyzed for ROS production by measurement of luminol- 

enhanced chemiluminescence at early passage (passage 7) and at senescence (passage 25), as 

indicated. 20 minutes after onset of the experiment, DPI (10 µM) was added to specifically 

inhibit NADPH oxidase activity. Bar graphs represent mean values ± SD of three independent 

experiments.  

Fig. 2. Depletion of Nox4 abrogates ROS production in HUVEC 

A. Young HUVEC of strains #1 and #3 were infected with lentiviral particles harbouring control 

shRNA or Nox4-specific shRNA, as indicated. 42 days after infection, RNA was prepared and 

Nox4 expression was analyzed by qPCR, using PBGD as normalization control. Fold change of 

Nox4 mRNA level is indicated, shown are the results of three independent experiments. 

B. Validation of Nox4 knockdown by luminol-enhanced chemiluminescence. Cells were grown 

as described for panel A and ROS production was determined by applying luminol-enhanced 

chemiluminescence. The relative rate of ROS production is shown, comparing Nox4- 

knockdown cells and cells expressing control shRNA. Bar graphs represent mean values ± SD of 

three independent experiments.  

Fig. 3. Depletion of Nox4 enhances cell proliferation 

A. Young HUVEC of strain #1 and #3 were infected with lentiviral particles harbouring control 

shRNA or Nox4-specific shRNA. 42 days after infection, the proliferation rate was determined 

by BrdU incorporation experiments. The number of BrdU-positive cells was assessed as 

described in Experimental. The results are separately depicted for HUVEC strains #1 and #3, 

each case implicating three independent experiments. 

B. Cells of HUVEC strains #1 and #3 were treated as described for panel A. 42 days after 

infection, cells were harvested. Cellular extracts were subjected to SDS-page and analyzed by 

Western blot analysis using antibodies to ERK, phospho-ERK, JNK, phoshpo-JNK, p38 and 

phospho-p38, as indicated. The quality of phospho-antibodies was evaluated using extracts of 

human fibroblasts that were either serum-starved for 72h, stimulated with 10% FCS (10 min), or 

treated with anisomycin (100nM,  20 min), respectively. Expression levels and phosphorylation 

status of ERK, JNK, and p38 was analyzed in three independent experiments; shown here are  

results of one representative experiment. 

C. Results from three independent experiments, as described in panel B, were evaluated by 

densitometric  and statistical analysis. Thereby the signal for phosphorylated protein was 

normalized to the signal intensity of the corresponding unphosphorylated form . Shown here are  

mean values (+/- SE) for HUVEC strains #1 and #3, as indicated. N.S.: non significant. 
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Fig. 4. Depletion of Nox4 delays the onset of replicative senescence 

A. Cells of HUVEC strains #1 and #3 were infected with lentiviral particles, harbouring either 

control shRNA or Nox4-specific shRNA. RNA was prepared 110 days after infection (for strain 

#3) and 30 days after infection (for strain #1), respectively. The expression level of Nox4 was 

determined by qPCR. The fold regulation of Nox4 is shown in either case, bar graphs represent 

mean values ± SD of three independent experiments. 

B. Cells of HUVEC strain #1 were treated as described for panel A and grown for 100 days after 

infection. Cells were passaged at regular intervals and thereby counted. Cell numbers were used 

to establish a growth curve, displaying cumulated population doublings. Cells were counted in 

three independent parallels. Standard deviations are indicated by error bars. 

C. Cells of HUVEC strain #3 were treated as described for panel A and grown for 110 days after 

infection. Cells were passaged at regular intervals and thereby counted. Cell numbers were used 

to establish a growth curve, displaying cumulative population doublings. Cells were counted in 

three independent parallels. Standard deviations are indicated by error bars. 

D. At 110 days post-infection, cells of HUVEC strain #3 (treated as described for panel A) were 

stained for presence of SA-ß-gal activity. Bars indicate the relative percentage of ß-gal-positive 

cells (± SD), results were derived from three independent experiments.  

Fig. 5. Depletion of Nox4 enhances telomere shortening 

Cells of HUVEC strains #1 and #3 infected with lentiviral particles, harbouring either control 

shRNA or Nox4-specific shRNA, were analyzed at passage 17 (HUVEC strain #1) or at passage 

15 (HUVEC strain #3), as indicated. Telomere length was determined by Flow FISH technique 

as described in Experimental, using telomeres of TCL 1301 cells as a size marker. In each case, 

the calculated mean telomere length is indicated. 

Fig. 6. Depletion of Nox4 prevents DNA damage 

The degree of DNA damage was determined by quantification of 8-oxodeoxyguanosine (8 oxo-

dG; panel A) and histone variant H2AX (panels B, C). 

A. Cells of HUVEC strains #1 and #3 (p5) were infected with lentiviral particles harbouring 

control shRNA and Nox4-specific shRNA, respectively. At passage 23 (strain #1) and passage 

22 (strain #3), respectively, cells were stained with avidin-FITC. Fluorescence intensity was 

analyzed by flow cytometry. As a negative control, cells incubated in the absence of avidin-

conjugated FITC were used. Shown here is the histogram of one representative experiment (n = 

3).

B. HUVEC strain #3 was infected with control shRNA or Nox4-specific shRNA at passage 5. At 

passage 26, cells were stained using indirect immunofluorescence and anti- -H2AX primary 

antibody. Cells incubated for 1h at room temperature with 100 µM H2O2 in HBSS were used as  

positive control. As negative control, primary antibody was omitted. Samples were analyzed 

using confocal microscopy. 

C. HUVEC strains #1 and #3 (p5) were infected with either control shRNA or Nox4-specific 

shRNA, and stained as described for panel B. Staining was performed at passage 23 (strain #1) 

and passage 22 (strain #3), respectively. Shown here is the histogram of one representative 

experiment (n = 3).
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