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Abstract 

We report the structure of the Fc fragment of rabbit IgG at 1.95 angstrom resolution. Rabbit IgG 
was the molecule for which Porter established the four-chain, Y-shaped structure of the antibody 
molecule, and crystals of the Fc (“Fragment crystallisable”) were first reported almost 50 years ago 
in this journal (Porter R.R., 1959, Biochem. J., 73, 119-126).  This high-resolution analysis, 
apparently of the same crystal form, reveals several features of IgG-Fc structure that have not 
previously been described.  More of the lower hinge region is visible in this structure than in others, 
demonstrating not only the acute bend in the IgG molecule that this region can mediate, as seen in 
receptor complexes, but also that this region has a tendency to adopt a bent structure even in the 
absence of receptor. As observed in other IgG-Fc structures, the Cγ2 domains display greater 
mobility/disorder within the crystals than the Cγ3 domains; unexpectedly the structure reveals 
partial cleavage of both Cγ2 intra-domain disulphide bonds, while an alternative conformation for 
one of the cysteine residues in the intact bridge within the more ordered Cγ3 domains is observed. 
The N-linked oligosaccharide chains at Asn-297 are well-defined and reveal two alternative 
conformations for the galactose units on each of α(1-6) linked branches. The presence of this 
galactose unit is important for stabilising the structure of the entire branched carbohydrate chain, 
and its absence correlates with severity of autoimmune conditions such as rheumatoid arthritis in 
both human clinical studies and in a rabbit model of the disease. Rabbit IgG, through this high-
resolution structure of its Fc region, thus continues to offer new insights into antibody structure. 
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Introduction 

The rabbit (Oryctolagus cuniculus) immunoglobulin gamma (IgG) was one of the first molecules of 
the immune system to be investigated, and the pioneering studies of Porter produced the very first 
information about the structure of the antibody molecule. Proteolytic cleavage of rabbit IgG by 
papain into three fragments, one of which crystallised [1] and was termed Fc (Fragment 
crystallisable), together with two identical fragments, termed Fab (Fragments antigen-binding), led 
to the first proposal of the four-chain, Y-shaped structure for IgG [2]. 

Even before the hetero-tetrameric model of two identical heavy and two identical light chains was 
developed, the first immunoglobulin allotypes were described for the rabbit IGHG gene [3]. This 
observation led Oudin to hypothesize that IgG production was regulated by two independently 
segregating loci (named a and b). Several years later these two loci were identified, respectively, in 
the variable region of the heavy chain and the constant region of the kappa light chain genes, 
confirming the presence of two distinct protein chains in the molecule.  

Moreover, amino acid sequence studies on rabbit γ chains were pivotal in clarifying the nature of 
immunoglobulin domains [4] and the arrangement of disulphide bonds present in the molecule [5]. 
Further enzymatic digestion and functional characterisation studies of rabbit IgG-Fc provided the 
first attempts to map the binding sites for complement and cytophilic activity [6-8]. Later, the same 
molecule was used as a model for the determination of the composition and topology of the 
carbohydrate chains present on the Fc fragment [9,10], which play a role in stabilising the structure 
of the Fc and are required for binding to cell surface receptors.   

Despite the key role played by this molecule in the history of immunology, no crystal structure is 
currently available for the Fc fragment of rabbit IgG. We describe here the 1.95Å resolution 
structure, one of the highest resolution Fc structures yet reported, from a crystal form that appears 
identical to the crystals pictured almost 50 years ago by Porter [1].   

Experimental 

Protein purification 

Purified polyclonal rabbit IgG (Sigma-Aldrich, UK) was digested with papain according to the 
manufacturer’s instructions (ImmunoPure Fab preparation kit, Pierce Corporation, USA). The Fab 
portion was removed from the resulting mixture using a protein A column. Fractions containing the 
Fc fragment and undigested IgG were then loaded onto a Superdex-200 gel filtration column 
(Amersham Pharmacia Biotech, UK) equilibrated with 0.5 M Tris pH 7.2, 0.25 M NaCl and 0.1% 
(w/v) sodium azide. The purity of the eluted sample was assessed by non-reducing SDS-PAGE; a 
single band indicated the presence of intact dimer (data not shown). Fractions containing the 
purified Fc were pooled and concentrated to 2 mg/ml at 4°C by centrifugation (Amicon, MWCO 
10000, Millipore Corporation, USA) and stored at the same temperature until further use. 

Crystallisation of the Fc fragment 

Crystallisation conditions for the IgG-Fc fragment have previously been reported [8,9], but initial 
crystallisation trials using these conditions were unsuccessful. However, crystals were obtained in 
several conditions from a commercial sparse matrix screen (Crystal Screen I, Hampton Research, 
USA) and promising hits were further optimized using the hanging drop vapour diffusion method. 
Conditions that yielded crystals suitable for data collection were as follows: 1 ml of 0.1 M sodium 
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acetate at pH 4.7 and 2 M sodium formate (reservoir) and 1 µl protein solution with an equal 
volume of reservoir (drop). The drops were stored at 18°C and plate-like crystals measuring 
approximately 0.1 mm by 0.1 mm typically appeared after two days. Their morphology was 
identical to those pictured [1,6] and characterised [11,12] earlier. 

Data collection and processing 

Crystals were fished using nylon loops, soaked in a cryoprotectant solution (0.1 M sodium acetate, 
pH 4.7, 2 M sodium formate and 30% glycerol) and flash-cooled in liquid nitrogen. Data were 
collected at beamline ID29 at the European Synchrotron Radiation Facility (ESRF, Grenoble, 
France). The data were processed with MOSFLM [13], SCALA [14] and the CCP4 program suite 
[15]. The space group and cell parameters were found to be very similar to those observed 
previously [12]. Calculation of the Matthews coefficient (2.53; 51.1% solvent) indicated the 
presence of one Fc molecule per asymmetric unit. Data collection and statistics are presented in 
Table 1. The structure was solved by molecular replacement with MOLREP [15,16] using protein 
atoms from the human IgG-Fc structure as a search model (PDB code 1H3T [17]). Refinement was 
performed initially with REFMAC [18] and later with PHENIX [19]. TLS refinement was 
implemented using 10 TLS groups per chain, as suggested by the TLSMD server [20]. Cycles of 
refinement were alternated with rounds of manual model building with COOT [21]. Protein atoms 
were modelled first, followed by carbohydrate, ligands and water molecules. The refined structure 
was analysed with COOT, PROCHECK [22] and MolProbity [23]. Secondary structure was 
assigned with the KSDSSP algorithm implemented in Chimera [24]. Omit maps were prepared in 
CNS [25]. Figures were prepared with PyMOL (www.pymol.sourceforge.net). Refinement statistics 
are presented in Table 2. 

Atomic coordinates and structure factors have been deposited in the PDB database with the 
accession code 2VUO. 

Results and discussion 

Overall structure 

The 1.95Å resolution structure of rabbit IgG-Fc displays the typical horseshoe-like arrangement of 
the Cγ2 and Cγ3 domains in the two polypeptide chains (Figure 1). Superimposition with the 
highest resolution human IgG-Fc structure (PDB code 1L6X; 73% sequence identity with rabbit 
IgG-Fc), revealed RMSD values of 0.81 and 0.76 Å for the two chains (performed with LSQMAN 
software [26]).  Superimpositions of the individual domains (RMSD 0.37 and 0.47 Å for Cγ3; 0.80 
and 0.85 Å for Cγ2) indicated that most of the differences between the rabbit and human structure 
occur in the Cγ2 domains. 

In the rabbit IgG-Fc structure, interpretable density was present for residues Pro-230 to Ser-444 in 
chain A, and residues Pro-231 to Ser-444 in chain B; the three C-terminal residues were disordered. 
At the N-termini, although no density was observed in either chain for Cys-229, the residue 
involved in the inter-chain disulphide bond, much more of the “lower hinge” region is visible here 
than in other Fc structures (usually defined from Pro-238), except those complexed with receptors 
(FcγR) that bind to this part of the Fc molecule. However, Pro-230 and Pro-231 (in chains A and B 
respectively) are only 7.8Å apart (distance between closest atoms), consistent with an intact inter-
chain disulphide bridge between residues Cys-229. In Figure 1, this lower hinge region of the 
polypeptide chain points towards the viewer, and demonstrates the flexibility and acute bend in the 
IgG molecule that it can mediate. It is striking that the conformation of this region in rabbit Fc is 
very similar to that observed in Fc-receptor complexes (PDB codes 1E4K, 1T89, 1T83) [27,28] and 
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in intact immunoglobulins (1HZH, 1IGT) [29, 30]. In the receptor complexes, a bend in this lower 
hinge region is demanded by the presence of the receptor. In the rabbit Fc structure, a single 
hydrogen bond between Glu-233 (chain B) and Arg-443 in the Cγ3 domain of a symmetry-related 
molecule may assist in stabilising this part of the structure, but the only other crystal packing 
contacts with any lower hinge region residues on either chain are a total of five van der Waals 
interactions (Glu-233 on both chains and Leu-235 on chain A; cut-off < 3.5Å). Thus although the 
presence of a symmetry-related molecule in this crystal form may restrict the conformational 
freedom of the lower hinge compared with other Fc crystal structures, it appears that this part of the 
hinge has a natural tendency to adopt this “bent” conformation even in the absence of bound 
receptor.  

The Cγ2 domains are more mobile (or disordered) than the Cγ3 dimer, as reflected by their higher 
overall B factors (average values 27.8 and 21.2 Å2 respectively, Table 2).  This feature has been 
seen in almost all other Fc structures, from the first reported human IgG-Fc [31] to the recent high-
resolution structure 1L6X (average values 23.8 and 18.7 Å2 respectively).  No significant difference 
in the B values was observed between the two chains of rabbit IgG-Fc however, implying that the 
values for Cγ2 and Cγ3 reflect an intrinsic difference between the two domains, and are not the 
result of different crystal packing environments. 

The conformation of the main chain for residues 283-296, adjacent to residue Asn-297 to which 
carbohydrate is covalently attached, has been found to adopt one of two different conformations in 
other IgG-Fc structures; these have been termed the ‘classical’ and the ‘complex’ conformation 
[32]. In rabbit IgG-Fc, the structure conforms to the ‘complex’ conformation observed in the 
recently published high-resolution human IgG-Fc structures [17,32]. 

Intra-domain disulphide bonds 

Each domain contains a conserved intra-chain disulphide bond, bridging the two β-sheets of the 
immunoglobulin fold. In both Cγ2 domains, the electron density indicates the presence of both an 
intact covalent bond and a broken state for the Cys-261 to Cys-321 bridge (Figure 2A). The 
differences in conformation between the two cysteinyl residues derives principally from a rotation 
around the χ1 (N-Cα-Cβ-Cγ) torsion angle, and are almost certainly the result of radiation damage 
during data collection. In the Cγ3 domains there is no evidence of intra-domain disulphide bond 
cleavage, but Cys-425 in chain A (Figure 2B) displays two alternative conformations, indicating 
that some degree of flexibility is present even in the core of this immunoglobulin domain. The 
partial cleavage of both bonds within the Cγ2 domains is clearly consistent with the higher B values 
observed for this domain, as discussed above. 

Allelic variation 

Allotypes of the IGHG gene, which codes for the only IgG heavy chain subclass in the rabbit, have 
been described in the constant region of the γ heavy chain. They correlate with single amino-acid 
substitutions at positions 228 and 309 in the hinge and Cγ2 domain respectively [33]. Each locus 
presents two serologically defined alleles: d11 and d12 at position 228 and e14 and e15 at position 
309. The two allelic variants at position 309, which is defined in the crystal structure, correspond to 
an Ala/Thr substitution. Given the nature of the rabbit IgG sample, no information was available 
regarding the sequence or the allelic proportions present in the crystallised protein. As the allelic 
variant with alanine is the more widespread [34], this residue (corresponding to the e15 allotype) 
was refined at position 309. No positive density in the Fo-Fc map (even at a contour level of ~2.0σ) 
was observed, suggesting that the allele with Ala was the one exclusively present in the crystal. The 
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presence of an Ala residue at position 309 was later confirmed by mass spectrometry analysis (data 
not shown). An allotypic variant (nG4m; Leu/Val) is also found at position 309 in human IgG4 
[35]. This amino acid is located at the Cγ2/Cγ3 interface, in the binding site for the neonatal Fc 
receptor [36]. While the two variants characterised in human Fc both code for hydrophobic 
residues, the e14 allotype in rabbit Fc codes for a polar residue, which may affect the binding of the 
neonatal receptor, although there are no reported functional studies that test this hypothesis. 
Incidentally, we observed positive density on both chains at Ala-396 indicative of a threonine or 
valine residue, although no variability has been noted previously at this position. 

Glycosylation 

Rabbit IgG-Fc possesses a conserved glycosylation site at Asn-297 in each Cγ2 domain, at which a 
complex biantennary type oligosaccharide is covalently attached. The carbohydrate covers a 
hydrophobic patch on the Cγ2 domain surface and extends into the cavity between the two Cγ2 
domains (Figure 3). Its presence stabilises and maintains the structure of the protein, as proposed 
initially from studies of the human IgG-Fc fragment [31] and later confirmed by microcalorimetry 
experiments [37,38] and structural studies of sequentially deglycosylated  Fc glycoforms [17]. 
Moreover, the conserved oligosaccharide plays a crucial role in IgG effector functions: it is required 
for optimal Fcγ receptor binding, and mediates interactions with serum lectins such as mannose 
binding protein (MBP) that leads to complement activation [39,40]. 

While the core of the oligosaccharide is conserved, heterogeneity is observed in the fucosylation 
(found in ~30-40% of rabbit IgG-Fc molecules), galactosylation (~50-60%) and sialylation of the 
chain (~25%); an additional bisecting N-acetylglucosamine may also be present (~25-30% of rabbit 
IgG-Fc molecules) [41,42]. On both chains, carbohydrate units up to and including the galactose at 
the end of each of the α(1-6) branches (Gal-6) were built into good electron density (Figure 3), 
whereas on the α(1-3) branches, only Man-7 and GlcNAc-8 (the latter only on chain C, Figure 3) 
were built. The lack of interpretable electron density for fucose, terminal sialic acid or a bisecting 
N-acetylglucosamine is consistent with the low fractional compositions reported. The α(1-3) 
branches extend into the area between the two Cγ2 domains and lie close to each other, but none of 
the contacts between the two chains described previously in the much lower resolution analysis [9] 
were seen. While some unliganded human Fc structures show inter-chain carbohydrate contacts, 
others do not [43]; whether or not such contacts occur appears to depend upon domain quaternary 
structure, which in turn may be determined by crystal packing contacts. The α(1-6) branches lie 
close to the first two strands (A and B) of the Cγ2 domain, their core regions interacting with 
residues Phe-241, Phe-243 and Glu-265. 

The extent of galactosylation in IgG molecules is highly variable, with a reported 40-50% of the 
molecules entirely lacking galactose in healthy rabbits [41,42]. We observed density at the end of 
each α(1-6) branch, clearly indicating the presence of a galactose residue (Gal-6). When refined 
with an occupancy of 100% (as for all the other carbohydrate units), higher B factors and some 
negative difference electron density indicated a slightly lower occupancy and/or the presence of 
alternative conformations. (Refinement with occupancy values set between 40 and 60% revealed 
positive difference electron density).  It was clear however, that the principal conformation adopted 
by Gal-6 is different in the two chains (Figures 1 and 3). In chain A, the O6 atom of Gal-6 points 
away from the Cγ2 domain, while in chain B, the O6 atom points towards the Cγ2 surface. These 
two conformations are related by an approximately 180° rotation of the plane of the hexose ring, but 
in both, Gal-6 lies in the same cavity, forming (different) hydrogen bonds to the same residues Pro-
244, Lys-246 (although density for CE and CZ of Lys-246 on chain A is ill-defined), Glu-258 and 
Thr-260. The galactose conformation in chain A is identical to that seen in the 1.65Å human IgG-Fc 
(PDB code 1L6X), but no asymmetry was observed in that structure as the two chains are related by 
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a crystallographic dyad.  There is thus some variability in the nature of the interaction between this 
carbohydrate unit and the protein surface. 

Fc galactosylation and functional implications 

The galactose content of human IgG-Fc has been shown to correlate inversely with disease 
progression in rheumatoid arthritis (RA) [44,45] and other auto-immune diseases [46]. Various 
mechanisms have been proposed: the absence of galactose may expose hydrophobic surfaces that 
promote Fc-mediated IgG aggregation, or generate new Fc epitopes that are recognised by 
rheumatoid factor (RF) autoantibodies [47]. The galactose unit is also known to be a key 
determinant for stabilising the carbohydrate chain’s interaction with the protein domain. Its absence 
leads to greater mobility of the chains as shown by NMR [48] and crystallographic [49] studies, and 
this enhanced accessibility permits interaction with lectins such as MBP, leading to complement 
activation [40]. Similar changes in the galactose content of rabbit IgG have been reported after 
hyperimmunisation, and enhanced avidity of rabbit IgG RF autoantibodies for IgG-Fc was shown to 
be due to decreased galactose content [50].  In a rabbit model of RA, a long-term immunisation 
study that followed RF titre, avidity and IgG-Fc galactose content during disease progression 
showed the same inverse correlation between RF avidity for IgG-Fc and galactose content [51]. The 
crystal structure of rabbit IgG-Fc has revealed a conformational variability in the mode of 
interaction of this key carbohydrate residue and the Cγ2 domain, underlining the tenuous nature of 
this contact and its role in tipping the balance between a mobile carbohydrate chain and an ordered 
structure in contact with the Cγ2 domain surface.  

Rabbit IgG provided the very first insights into antibody structure, and through the high-resolution 
crystal structure of its Fc region reported here, it continues to reveal new structural details and 
enhance our understanding of the antibody molecule.  
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Tables 

Table 1: Data collection and processing statistics 
  

Beamline ID29  
Detector ADSC Q315r 
Detector distance (mm) 230 
λ (Å) 0.976 
Resolution limit (Å) 1.95 
Space group P21 (4) 
Cell dimensions  (Å, °) a=58.66, b=71.21, c=69.03   

α=γ=90.00,  β=104.78   
Unique reflections 40194
Outer shell (Å) 2.00-1.95 
Completeness (%): overall (outer shell) 99.9 (99.9) 
Multiplicity: overall (outer shell) 7.3 (7.2) 
I/σ(I): overall (outer shell)  17.2 (3.6) 
Rmerge: overall (outer shell) 0.107 (0.449) 

Table 2: Refinement statistics 

Resolution range (Å) 56.7-1.95 
No. of: protein atoms 3479 
            carbohydrate atoms 186 
            water molecules 398 
            formate ions 6 
            azide ions 2 
            glycerol molecules 4 
Average B factors (Å2)  
           protein 24.6 
           carbohydrate 42.5 
           water molecules 35.1 
           formate ions 39.9 
           azide ions 38.3 
           glycerol molecules 48.5 
           protein Cγ2 (chain A) 28.5  
           protein Cγ2 (chain B) 27.0  
           protein Cγ3 (chain A) 21.8  
           protein Cγ3 (chain B) 20.5  
Rcryst  (%) 16.9 
Rfree (%) (5% of reflections) 20.4 
rmsd bond lengths (Å) 0.004 
rmsd bond angles (°) 0.928 
Ramachandran plot (% of total 
residues) 

favoured: 99.5, allowed: 0.5, 
disallowed: 0 
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Figure legends 

Figure 1  Overall structure of rabbit IgG-Fc 
In this stereo representation of the structure, the two polypeptide chains are shown in green and 
blue, with their oligosaccharide chains (indicated as C and D) in yellow. The position of the N-
termini on both chains is indicated by the letter N. The N-terminal, lower hinge region in each chain 
points directly towards the reader.  

Figure 2   Conformations of the intra-domain disulphide bridges 
Stereo images of the region surrounding the intra-chain disulphide bridges in Cγ2 (Figure 2A) and 
Cγ3 (Figure 2B) of chain A. The electron density is calculated from a composite simulated 
annealing omit map, contoured at 1σ, generated omitting 4% of the structure per cycle. Carbon 
atoms are represented in green, oxygen in red, nitrogen in blue and sulphur atoms in orange. The 
highly conserved tryptophan residues (277 and 381) adjacent to the disulphide bonds can be seen 
towards the back of the image. In Cγ2 (Figure 2A) the disulphide bond is partially broken, while in 
Cγ3 (Figure 2B), alternative conformations for the intact bridge are observed.

Figure 3   The carbohydrate structure of rabbit IgG-Fc 
A) Electron density for the N-linked oligosaccharides at Asn-297 in each polypeptide chain, 
calculated from a composite simulated annealing omit map (contour level: 1σ), is shown together 
with a representation of the two Cγ2 domains.  B) Schematic representation of the complex 
biantennary oligosaccharide chain present in rabbit IgG-Fc. The residues modelled in the electron 
density are highlighted in light grey (GlcNAc-8 is only modelled on chain C). 
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