

Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin

Sabrina Cronier, Nathalie Gros, M. Howard Tattum, Graham S Jackson,

Anthony R. Clarke, John Collinge, Jonathan D.F. Wadsworth

▶ To cite this version:

Sabrina Cronier, Nathalie Gros, M. Howard Tattum, Graham S Jackson, Anthony R. Clarke, et al.. Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochemical Journal, 2008, 416 (2), pp.297-305. 10.1042/BJ20081235 . hal-00479051

HAL Id: hal-00479051 https://hal.science/hal-00479051

Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin

Sabrina Cronier, Nathalie Gros, M. Howard Tattum, Graham S. Jackson, Anthony R. Clarke, John Collinge, Jonathan D. F. Wadsworth¹

MRC Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, U.K.

¹ Corresponding author: Jonathan D. F. Wadsworth

MRC Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, U.K.

Telephone: +44 207 676 2189.

Fax: +44 207 676 2180.

E-mail: j.d.wadsworth@prion.ucl.ac.uk

Short title: Detection of Proteinase K-sensitive disease-related PrP with thermolysin

Key words: prion, prion protein, scrapie, thermolysin, transmissible spongiform encephalopathy, variant Creutzfeldt-Jakob disease.

Abbreviations used: CJD, Creutzfeldt-Jakob disease; PK, proteinase K; PrP, prion protein; PrP^C, cellular PrP isoform; PrP^{Sc}, pathogenic PrP isoforms; vCJD, variant Creutzfeldt-Jakob disease.

SYNOPSIS

Disease-related prion protein, PrP^{Sc} , is classically distinguished from its normal cellular precursor, PrP^{C} , by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease resistant fragments of PrP^{Sc} using proteinase K (PK), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrP^{Sc} in its full-length form. Here we show that thermolysin can degrade PrP^{C} while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In variant Creutzfeldt-Jakob disease (vCJD), the human counterpart of bovine spongiform encephalopathy (BSE), up to 90 % of total PrP present in brain resists degradation with thermolysin whereas only ~15 % of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.

INTRODUCTION

Prion diseases are fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI), kuru and variant CJD (vCJD) in humans [1-3]. Their central feature is the post-translational conversion of host-encoded, cellular prion protein (PrP^{C}), to an abnormal isoform, designated PrP^{Sc} [1,2]. Human prion diseases are biologically unique in that the disease process can be triggered through inherited germline mutations in the human prion protein gene (*PRNP*), infection (by inoculation, or in some cases by dietary exposure) with prion-infected tissue or by rare sporadic events that generate PrP^{Sc} [1-4]. According to the protein-only hypothesis [5], an abnormal PrP isoform is the principal, if not the sole, component of the transmissible prion, with prion propagation occurring through PrP^{Sc} acting to replicate itself with high fidelity by recruiting endogenous PrP^{C} [1,2,6,7]. Within the framework of the protein-only hypothesis of prion propagation, the distinct clinical and neuropathological phenotypes that distinguish prion strains are thought to be determined by the propagation of PrP^{Sc} isoforms with divergent physicochemical properties [1,2,7-12].

 PrP^{Sc} is extracted from affected tissue as highly aggregated, detergent insoluble, material that is not amenable to high-resolution structural techniques. However, Fourier transform infrared spectroscopic methods show that PrP^{Sc} , in distinction to PrP^{C} , has a high β -sheet content [13,14]. Biochemically, PrP^{Sc} can be distinguished from PrP^{C} by its partial resistance to proteolysis and its marked insolubility in detergents (for review see [1,15]). Under conditions in which PrP^{C} exists as a detergent soluble monomer and is completely degraded by the non-specific protease proteinase K (PK), PrP^{Sc} exists in an aggregated form with the C-terminal two thirds of the protein showing marked resistance to proteolytic degradation leading to the generation of amino terminally truncated fragments of di-, mono- and non-glycosylated PrP [1,15].

Although the molecular diagnosis of prion disease has historically relied upon the detection of PrP^{Sc} using PK, it has become apparent that PK-sensitive pathological isoforms of PrP may have a significant role in prion disease pathogenesis [12,16-21]. In particular in inherited prion disease, PrP^{Sc} isoforms may be generated with unique physicochemical properties, reflected by sensitivity to PK digestion and PrP^{Sc}/prion infectivity ratios that can be very different from the PrP^{Sc} types propagated in sporadic and acquired forms of human prion disease (for review see [2,3,22]). Accordingly, the development of new diagnostic tests that do not rely on PK digestion is required, and in this context, a conformation-dependent immunoassay [12] shows high diagnostic sensitivity in human prion disease [18]. More recently, Owen and colleagues reported thermolysin as a complementary tool to PK. Thermolysin destroys PrP^C in ovine or bovine brain while leaving PrP^{Sc} in its full-length form, thereby allowing the amino-terminal domain of PrP^{Sc} to be exploited for improved methods of prion disease diagnosis [23] or prion strain discrimination [24]. In this study, we now extend these findings and show that thermolysin preserves both PK-sensitive and PK-resistant disease-related isoforms of PrP while concomitantly destroying PrP^C in both rodent and human brain. Using mouse RML prions, we were able to investigate prion infectivity associated with PK-sensitive PrP isoforms. It is anticipated that these methods will facilitate detailed biochemical characterization of PK-sensitive isoforms of disease-related PrP associated with multiple prion strain/host combinations.

MATERIALS AND METHODS

Prion infected tissues

Storage and biochemical analysis of human brain samples was performed with consent from relatives and with approval from the Local Research Ethics Committee of the Institute of Neurology/National Hospital for Neurology and Neurosurgery. All procedures were carried out in a microbiological containment level

III facility with strict adherence to safety protocols. Ten percent (w/v) brain homogenates from patients with neuropathologically confirmed variant Creutzfeldt-Jakob disease (vCJD) or from control samples of normal human brain were prepared in Dulbecco's phosphate buffered saline (D-PBS) lacking Ca²⁺ or Mg²⁺ ions by serial passage through needles of decreasing diameter or the use of tissue grinders (Anachem, Luton, UK) [10,25]. Brains from two hundred terminal CD-1 mice infected with the RML prion strain [26] were homogenized in D-PBS lacking Ca²⁺ or Mg²⁺ ions using tissue grinders and pooled to produce 970 ml of 10 % (w/v) RML brain homogenate (designated I6200). Two batches of eighteen brains from uninfected CD-1 mice were homogenized to produce two pools of ~90 ml of 10 % (w/v) normal CD-1 brain homogenate (designated I7219 and I8402). Similar procedures were used to generate 10 % (w/v) brain homogenates from hamsters terminally infected with the Sc237 prion strain or from normal uninfected hamsters. Pooled homogenates were dispensed as aliquots and maintained at -70 °C until use.

Titration of RML prions in CD-1 mice

All procedures were carried out in a microbiological containment level III facility with strict adherence to safety protocols. Care of mice was according to institutional guidelines. Ten percent (w/v) RML brain homogenate (I6200) was serially diluted 10^{-1} to 10^{-8} using 1 % (w/v) normal CD-1 brain homogenate as dilutant. Aliquots of each dilution were inoculated either intracerebrally (30 µl) or intraperitoneally (100 µl) into groups of 6 CD-1 mice as described previously [27-29]. Mice were examined daily and were killed if exhibiting signs of distress or once a diagnosis of clinical prion disease was established [30]. Infectious prion titre (LD₅₀) was calculated using the Reed-Müench formula [31].

Enzymatic digestion

Thermolysin (EC 3.4.24.27) from Bacillus thermoproteolyticus rokko was obtained freeze-dried from Sigma-Aldrich, St Louis, MO, USA. The specific enzymatic activity is 50-100 units / mg protein where 1 unit liberates 1 µmol of tyrosine / min at pH 7.5 and 37 °C using casein as substrate. Proteinase K (EC 3.4.21.14) from Tritirachium album limber was obtained freeze-dried from Merck Biosciences, Ltd, Nottingham, UK. The specific enzymatic activity is approximately 30 Anson units / g, where 1 Anson unit is the amount of enzyme that liberates 1 mmol of Folin positive amino acids / min at pH 7.5 and 35 °C using haemoglobin as substrate. Stock solutions of 1 mg/ml thermolysin or PK were prepared in water and aliquots stored frozen at -70 °C. Aliquots of 10 % (w/v) brain homogenates in D-PBS were digested for variable time periods with thermolysin at a final protease concentration of 100 µg/ml at 70 °C or 37 °C or with PK at a final concentration of 50 µg/ml (mouse brain) or 100 µg/ml (human brain) at 37 °C. Aliquots of the digests were snap frozen for infectivity studies, or processed immediately for analysis by either immunoblotting or ELISA. Enzymatic deglycosylation of PrP prior to immunoblotting was accomplished by incubating 20-ul alignots of SDS and heat denatured brain homogenate with 1000 units of recombinant PNGase F (New England Biolabs Ltd, Hitchin, UK) in buffer containing 1 % Nonidet P-40 for 2 h at 37 °C according to the manufacturers instructions. Samples were precipitated with 100 % acetone for 1 h at -20 °C and centrifuged at 13 200 r.p.m. (16 100 g) for 30 min in a microfuge. Pellets were re-suspended in 1 x SDS sample buffer and analyzed by immunoblotting.

PrP immunoblotting

Aliquots of brain homogenate were mixed with an equal volume of 2 x SDS sample buffer (125 mM Tris/HCl, pH 6.8, 20 % (v/v) glycerol, 4 % (w/v) SDS, 4 % (v/v) 2-mercaptoethanol, 0.02 % (w/v)

bromophenol blue containing 8 mM 4-(2-aminoethyl)benzenesulphonyl fluoride) and immediately transfered to a 100 °C heating block for 10 min. Samples were analyzed by electrophoresis and immunoblotting as described previously [22,25]. Blots were blocked in PBS containing 0.05 % (v/v) Tween-20 (PBST) and 5 % non-fat milk powder and probed with anti-PrP monoclonal antibodies ICSM 35 (D-Gen Ltd, London, UK), 3F4 (Signet Laboratories Inc, Dedham, MA, USA) or SAF32 (Spibio, Montigny le Bretonneux, France) at 0.2 μ g/ml final antibody concentration in PBST. Blots were developed using anti-mouse IgG-alkaline phosphatase conjugated secondary antibody and chemiluminescent substrate CDP-Star (Tropix Inc, Bedford, MA, USA), and visualized on Biomax MR film (Kodak; Anachem Ltd, Luton, UK) as described [25]. Densitometric analysis of PrP was performed by using SCION IMAGE analysis software.

Detergent solubility studies

Twenty microlitre aliquots of 10 % (w/v) brain homogenate were treated with 0.5 μ l benzonase (Benzon nuclease, purity 1; Merck KGaA, Darmstadt, Germany). Samples were subsequently adjusted with 80 μ l PBS and 100 μ l PBS containing 4 % (w/v) sodium lauroylsarcosine (Calbiochem; Merck Biosciences Ltd, Nottingham, UK) and incubated for 30 min at 37 °C with constant agitation. Samples were then centrifuged at 13 200 r.p.m. (16 100 g) for 30 min in a microfuge to generate soluble (supernatant) or insoluble (pellet) fractions. Soluble protein in the supernatant was precipitated with 1 ml cold methanol (-20 °C) and recovered by centrifugation at 13 200 r.p.m. (16 100 g) for 30 min in a microfuge. The original detergent-insoluble pellets and methanol precipitated supernatant protein pellets were resuspended to 40 μ l with PBS containing 0.1 % (w/v) sodium lauroylsarcosine and 10 μ l aliquots were either left untreated or digested with thermolysin (100 μ g/ml final protease concentration, 30 min, 70 °C) or proteinase K (50 μ g/ml final protease concentration, 1 h, 37 °C). Samples were analyzed by electrophoresis and immunoblotting as described above.

ELISA detection of PrP

Methods were adapted from previously published procedures [32]. Brain homogenates were treated with thermolysin (100 µg/ml final protease concentration, 70 °C or 37 °C) or proteinase K (50 or 100 µg/ml final protease concentration, 37 °C) for a range of incubation times. Subsequently 10 µl aliquots of these samples, or untreated brain homogenate and temperature controls, were adjusted with 10 µl 4 % (w/v) sodium dodecyl sulphate (SDS) and heated at 100 °C for 10 min. Samples were centrifuged at 800 r.p.m. (100 g) for 30 s before adjustment with 600 µl 50 mM Tris pH 8.4 containing 2 % (v/v) Triton X-100, 2 % (w/v) sodium laurov sarcosine (Calbiochem; Merck Biosciences Ltd, Nottingham, UK) and 2 % (w/v) bovine serum albumin (Fraction V, protease free) (Sigma-Aldrich, St Louis, MO, USA). Fifty microlitre aliquots were transferred into the wells of microtiter plates (Greiner, microlon 96W, Greiner Bio-One Ltd, Stonehouse, UK) containing 250 ng per well immobilized anti-PrP monoclonal antibody ICSM18 (D-Gen Ltd, London, UK). After incubation with constant agitation for 1 h at 37 °C, wells were washed with 3 × 300 µl PBST using an automated microplate washer followed by the addition of 100 µl PBS containing 1 % (v/v) Tween-20 and 1 µg/ml biotinylated anti-PrP monoclonal antibody ICSM35 (D-Gen Ltd, London, UK). Following incubation with constant agitation for 1 h at 37 °C, wells were washed (as above) followed by the addition of 100 μ l PBS containing 1 % (v/v) Tween-20 and a 1 : 10 000 fold dilution of streptavidin-horseradish peroxidase conjugate (Dako UK Ltd, Ely, UK). After incubation with constant agitation for 30 min at 37 °C, wells were washed with 4×300 µl PBST. Wells were developed with 100 µl QuantaBlu working solution (Pierce, Rockford, IL, USA) and the reactions stopped by addition of 100

µl QuantaBlu stop solution (Pierce, Rockford, IL, USA). Fluorescence (excitation 325 nm; emission 425 nm) was measured on a Tecan spectra image microplate reader.

Sodium phosphotungstic acid precipitation

Methods for the use of sodium phosphotungstic acid were adapted from Safar and colleagues [12] essentially as described previously [25]. Briefly, 100 μ l aliquots of 10 % (w/v) brain homogenate were treated with 1 μ l benzonase and were subsequently either digested with thermolysin (100 μ g/ml final protease concentration) for 90 min at 37 °C or left untreated. Thermolysin digestion was stopped by addition of EDTA (10 mM final concentration). Samples were subsequently adjusted with 100 μ l PBS containing 4 % (w/v) sodium lauroylsarcosine, incubated for 30 min at 37 °C with constant agitation then further adjusted with 16.3 μ l of a stock solution containing 4 % (w/v) sodium phosphotungstic acid (NaPTA) (lacking magnesium chloride) prepared in water pH 7.4 to give a final concentration in the sample of 0.3 % (w/v). Samples were incubated at 37 °C for 30 min with constant agitation before centrifugation at 13 200 r.p.m. (16 100 g) for 30 min in a microfuge. After careful isolation of the supernatant, pellets were resuspended to their original volume with PBS. Aliquots were processed immediately for analysis by ELISA.

Scrapie cell assay

High-sensitivity cell culture assays for RML prion infectivity were performed as described by Klohn *et al* [33]. Briefly, PK1 cells, a highly scrapie-susceptible N2a subclone, were exposed for 3 days in 96-well plates to serial dilutions $(10^{-3}, 10^{-4})$ of 10 % (w/v) RML brain homogenate either untreated or following digestion with thermolysin (100 µg/ml final protease concentration at 37 °C or 70 °C) or proteinase K (50 µg/ml final protease concentration at 37 °C) for a range of incubation times. A serial dilution of untreated 10 % (w/v) RML brain homogenate (3.10⁻⁵ to 10⁻⁷) of known infectivity titre was performed in parallel. Subsequently cells were split and passaged appropriately for the Scrapie Cell Assay [33] and the infectivity titre of each sample was deduced from the reference preparation.

Statistical Analysis

All experiments were conducted at least three times. Figures show representative data and report the mean \pm standard error of the mean (SEM) or standard deviation (SD).

RESULTS

Characterization of RML prion-infected brain homogenate

In order to standardize a large series of experiments we generated a 970 ml stock of 10 % (w/v) RML prion-infected brain homogenate from terminally affected CD-1 mice and titrated this by intracerebral or intraperitoneal inoculation in CD-1 mice (Table 1). Using the Reed-Müench formula, 10 % (w/v) RML brain homogenate (I6200) has an infectious prion titre of $10^{8.3}$ intracerebral LD₅₀ / ml and $10^{6.6}$ intraperitoneal LD₅₀ / ml. Examination of 10 % (w/v) RML brain homogenate by immunoblotting before or after standard PK digestion (50 µg/ml PK for 1 h at 37 °C) showed the expected pattern of PrP bands

(Figure 1a). In the absence of protease digestion a mixture of full-length and truncated PrP species is observed. After PK digestion the characteristic pattern of amino-terminally truncated fragments of di-, mono- and non-glycosylated PrP is observed with a predominance of mono-glycosylated PrP (Figure 1a).

Thermolysin degrades mouse PrP^C while preserving full-length PrP^{Sc}

In initial experiments we adapted the methods of Owen and colleagues [23] to determine conditions in which thermolysin could efficiently degrade mouse PrP^{C} . We found that digestion of 10 % (w/v) normal CD-1 brain homogenate with 100 µg/ml thermolysin for 30 min at 70 °C efficiently degraded PrP^C (Figure 1b). In agreement with Owen et al [23], silver stain analysis of thermolysin digested samples revealed that the majority of proteins in brain homogenate were destroyed by this treatment (data not shown). In sharp contrast, application of the same thermolysin digestion conditions to 10 % (w/v) RML prion-infected brain homogenate produced no apparent change in the PrP fragment pattern and only a modest reduction in overall signal intensity (Figure 1b). These data (which accord with the findings of Owen et al using ovine or bovine brain homogenates [23]) indicate that thermolysin can efficiently degrade mouse PrP^C while leaving PrP^{Sc} intact. The presence of full-length PrP in thermolysin digested RML brain homogenate was confirmed through the use of an N-terminal specific anti-PrP monoclonal antibody and by deglycosylation. The SAF32 monoclonal anti-PrP antibody, with an epitope spanning residues 79-92 of hamster PrP [34], detected all three full-length PrP glycoforms in thermolysin digested samples (Figure 1d). After deglycosylation, thermolysin-resistant PrP migrated as two bands (Figure 1b) with apparent molecular weights corresponding to either full-length PrP or an endogenously truncated C2 fragment that has been characterized previously [24,35,36]. Densitometry showed that ~25 % of total PrP remaining after 30 min digestion with thermolysin is in full-length form. Importantly, short time periods of digestion with 100 µg/ml thermolysin at 70 °C appear to be required for isolating full-length PrP^{Sc} from RML brain homogenate. Prolonged digestion (90 min) with thermolysin at 70 °C leads to the generation of truncated PrP with a migration pattern equivalent to that observed after digestion with PK (Figure 1c). As thermolysin has no preferred cleavage sites in the amino-terminal region of PrP [23] the generation of truncated PrP may be attributable to thermolysin acting at a non-preferred scissile bond or to the activity of a minor contaminating protease. Truncation of disease-related PrP by this activity appears to be prion strain specific [24] and these data indicate that conditions for digestion with thermolysin should be optimized empirically for different prion strain/host combinations.

Thermolysin-resistant PrP is mainly insoluble and comprises both PK-sensitive and PK-resistant PrP

In addition to protease resistance, disease-related isoforms of PrP are defined by their aggregation state and insolubility in non-denaturing detergents. Therefore, we examined the detergent solubility of thermolysin-resistant PrP. Aliquots of brain homogenate were incubated with 2 % (w/v) sodium lauroylsarcosine and then centrifuged to generate detergent-soluble supernatants and detergent-insoluble pellets. Aliquots of these fractions were subsequently digested with thermolysin or PK or left untreated. Immunoblot analysis of PrP present in the supernatant and pellet fractions showed that the majority of thermolysin-resistant PrP from RML brain is insoluble (Figure 2a). In distinction, under the same conditions, PrP^C from normal CD-1 brain was entirely soluble and was recovered only in the supernatant fraction (Figure 2b). These findings show that thermolysin-resistant PrP in RML brain homogenate has the properties of disease-related PrP.

Notably, in the foregoing experiments, we often observed an apparent increase in PrP signal strength on immunoblots after digestion with PK (see for example, Figure 1a). Therefore to reliably

assess the proportions of total PrP in RML brain homogenate that are resistant to digestion with either thermolysin or PK we used an ELISA protocol that provides a sensitive means for immunodetection of denatured PrP regardless of whether this is derived from PrP^C or PrP^{Sc} [32] (and our unpublished data). After 30 min of digestion of RML brain homogenate with 100 µg/ml thermolysin at 70 °C (conditions that leave PrP^{Sc} intact and efficiently degrade PrP^C) ~55 % of total PrP was preserved (Figure 3). In contrast, after 30 min digestion with 50 µg/ml PK at 37 °C only ~20 % of total PrP remained (Figure 3). After 5 min digestion with these protease concentrations at these temperatures, PrP^C was completely degraded in normal CD-1 brain homogenate (Figure 3). At this time point, in RML brain, there was an even higher differential between PrP remaining after thermolysin (~85 %) or PK (~20 %) digestions. To investigate the reproducibility of this finding, instead of using pooled RML brain homogenate we examined 10 % (w/v) brain homogenates prepared from four individual terminal RML infected CD-1 mice. After 5 min digestion, the mean percentages of thermolysin-resistant PrP and PK-resistant PrP (± SD) were highly reproducible, giving respective values of 91 ± 6 % and 23 ± 3 %. Notably, prolonged digestion (90 min) with thermolysin leads to further degradation of disease-related PrP reaching levels comparable to those seen after digestion with PK (Figure 3). These data can be correlated with immunoblot analysis of thermolysin digests which show a change from a mixture of full-length and truncated PrP species at 30 min to only truncated PrP after 90 min (compare Figure 1 panels b and c). Thus the conditions defined here show that for this prion strain/host combination, disease-related PrP in RML brain homogenate is degraded at different rates by thermolysin or PK, with the majority of diseaserelated thermolysin-resistant PrP being rapidly degraded by PK under standard digestion conditions.

The majority of PK-sensitive disease-related isoforms of PrP do not contribute to RML prion infectivity

Our data show that digestion of 10 % (w/v) RML-infected brain homogenate with 100 µg/ml thermolysin for 30 min at 70 °C leads to efficient degradation of PrP^C while preserving both PK-resistant and PKsensitive disease-related isoforms of PrP. To determine whether the PK-sensitive PrP species contribute to RML prion infectivity, we measured prion infectivity in PK and thermolysin digested brain homogenate using the scrapic cell assay [33], and compared this with PrP content determined in parallel by ELISA and immunoblotting. As control experiments, we first investigated the effects of temperature alone on prion infectivity in non-digested RML brain homogenate. However, we found that incubation of brain homogenate at 70 °C rapidly destroyed up to ~90 % of RML prion infectivity (Figure 4a). Clearly exposure to 70 °C is incompatible with conducting meaningful RML prion infectivity studies and this finding is in close agreement with the temperatures shown to produce substantial inactivation of other rodent-adapted prion strains [37]. Accordingly, we investigated the effect of incubating RML brain homogenate at 37 °C. At this temperature reproducible fluctuation in prion infectivity was observed over a 90 min time course (Figure 4b). Overall however, the loss of infectivity at 37 °C was more modest and acceptable than seen at 70 °C, with ~65 % of starting infectivity remaining after 90 min incubation (Figure 4b). Importantly, as shown in figure 5, the majority of PrP^C from normal CD-1 brain was destroyed after 5 min incubation with 100 µg/ml thermolysin at 37 °C with ~10 % PrP remaining after digestion for 90 min (see also Figure 6). In normal CD-1 brain homogenate, PrP^C level is around ~20 % of total PrP present in untreated RML brain homogenate (Figure 3, compare PrP content at t = 0). Therefore, assuming PrP^C expression level is similar in uninfected and RML-infected CD-1 brains, PrP^C would correspond to only ~ 2 % of total PrP in RML brain homogenate after digestion with thermolysin for 90 min at 37 °C.

Based upon the foregoing data we performed comparative experiments on RML brain homogenate with thermolysin and PK at 37 °C. After digestion with thermolysin for 90 min, ~85 % of total PrP was preserved (Figure 4c and 6). In sharp contrast only ~20 % of total PrP was preserved in RML brain homogenate after equivalent digestion with PK at 37 °C (Figure 4c). All thermolysin-resistant PrP in

RML brain homogenate (comprising both the full-length and truncated PrP isoforms) was precipitated by sodium phosphotungstic acid whereas no PrP^C from thermolysin-digested normal CD-1 brain was recovered by this treatment (Figure 6). These data show that disease-related PrP comprises up to ~85 % of total PrP present in RML mouse brain homogenate, however the majority (~75 %) of these disease-related PrP isoforms are readily sensitive to rapid digestion by PK. This finding agrees well with previous studies of RML-infected mouse brain which also showed that only a minority of total disease-related PrP is PKresistant [38,39]. Strikingly, contrary to the marked disparity in PrP content, infectivity titres in both PK and thermolysin treated samples remained closely similar throughout the time course of digestion (Figure 4c). After 90 min digestion ~ 20 % of starting infectivity was present in both samples. These data indicate that the majority of PK-sensitive thermolysin-resistant disease-related PrP isoforms do not contribute significantly to RML prion infectivity in cell culture. Immunoblot analysis (Figure 5) showed that while thermolysin produced no apparent change in the PrP fragment pattern over the digestion time course, PK rapidly produced the characteristic pattern of amino-terminally truncated PrP fragments. The close similarity of prion infectivity seen in both thermolysin digested and PK-digested samples, suggests that removal of the N-terminus of PrP with PK does not adversely affect RML prion infectivity, at least as determined by scrapie cell assay.

Thermolysin digestion of PrP associated with human and hamster prion strains

In a further series of experiments we investigated the ability of thermolysin to degrade PrP^{C} while preserving disease-related isoforms of PrP associated with other prion strains. Under conditions that efficiently degrade hamster and human PrP^{C} (Figure 7a,b), preservation of intact PrP^{Sc} was observed in brain homogenate from patients with vCJD or terminally clinically-affected hamsters propagating the Sc237 prion strain (Figure 7a,b). The presence of full-length PrP^{Sc} in these samples was confirmed by immunoblotting with monoclonal antibody SAF32 (Figure 7c) or deglycosylation with PNGase F (data not shown). These findings, combined with the data of Owen and colleagues [23], establish that thermolysin can be used to isolate full-length PrP^{Sc} from multiple prion strain/host combinations.

While the presence of PK-sensitive disease-related PrP has been previously documented in many prion strain/host combinations, including prion-infected hamster brain [12,16,20], prion-infected mouse brain [38,39], scrapie infected sheep brain [21] and patients with sporadic CJD [18], this has not been reported in vCJD brain. Accordingly, using ELISA, we quantified disease-related PrP in 10 % (w/v) brain homogenates from four patients with vCJD (Figure 8). Remarkably, up to ~90 % of total PrP was resistant to digestion with thermolysin under conditions that efficiently degrade PrP^{C} in normal human brain (Figure 8). In contrast, only ~10-20 % of total PrP in vCJD brain resisted digestion with PK. This ratio was highly reproducible in all four patients with mean percentages of thermolysin-resistant PrP and PK-resistant PrP (\pm SD) of 83 \pm 13 % and 19 \pm 6 %, respectively.

DISCUSSION

It is becoming increasingly clear that the pathogenesis of both human and animal prion diseases involves the propagation of protease-sensitive disease-related isoforms of PrP [12,16-21]. Indeed, in multiple prion strain/host combinations it now appears that the majority of disease-related PrP may be destroyed by PK under conditions that are typically employed to detect prototypical PrP^{Sc} [18,21]. PK-sensitive disease-related forms of PrP have been demonstrated by conformation dependent immunoassay [12,18,21,38,39] and by immunoblotting following biochemical purification [16,20], cold PK digestion [17] or immunological capture [19].

To date little is known about the physicochemical properties of PK-sensitive disease-related PrP and it remains unclear whether PK-sensitive and PK-resistant disease-related PrP species are

conformationally distinct or simply comprise different sized aggregates of essentially the same PrP conformers [16,20].

In the present study we now report a simple method for detecting PK-sensitive disease-related PrP by showing that limited digestion with thermolysin not only preserves disease-related PrP in full-length form [23] but also preserves a disease-related PrP fraction that is readily degraded by PK. In RML brain homogenate, under optimized conditions of proteolysis which destroy PrP^{C} , ~85 % of total PrP resists degradation with thermolysin and is precipitated by NaPTA, whereas only ~20 % of total PrP resists degradation with PK. Using the scrapie cell assay, that quantifies RML prion infectivity with a greater accuracy than conventional mouse bioassay [33], we were able to quantify prion infectivity in these protease digested samples. We found that the thermolysin-resistant PrP fraction, that preserves the majority of PK-sensitive disease-related PrP isoforms, contained the same level of infectivity as the PK-resistant PrP fraction equivalent to ~20 % of starting prion infectivity. Thus while the remaining RML prion infectivity appears roughly proportional to the concentration of PK-resistant PrP, there is clear uncoupling of disease-related PrP concentration and prion infectivity in thermolysin digested samples. We conclude from these data that the majority of PK-sensitive disease-related PrP isoforms are noninfectious, at least when measured by scrapie cell assay.

The finding that both PK and thermolysin digested brain homogenates contain only ~ 20 % of starting prion infectivity despite thermolysin digested samples containing ~85 % of total homogenate PrP can be interpreted in several ways. Because direct inactivation of thermolysin-resistant PrP by the protease seems unlikely given the stability of observed PrP fragment size, two other possibilities seem more plausible, (i) that ~80 % of RML infectivity is associated with a minor population of PrP conformers that are equally sensitive to degradation by PK and thermolysin, or, (ii) that a non-PrP component of infectious prions that modifies specific prior infectivity is more efficiently degraded by thermolysin than PK. Of these two possibilities the former is more strongly supported by the findings of other researchers. Caughey and colleagues have demonstrated that hamster 263K prions have different sized PrP aggregates possessing markedly different specific prion infectivities [40]. Small PrP aggregates comprising 14-28 PrP molecules which represent only a minor proportion of total hamster PrP have specific infectivities ~70 fold higher than large PrP aggregates [40]. A similar physical distribution of infectious PrP aggregates associated with the RML prion strain would provide a reasonable physical basis for our findings. Given that small PrP aggregates appear to be more readily accessible to proteolytic degradation [16,20], both thermolysin and PK may equivalently destroy a subset of PrP species corresponding to the most infectious priors that account for up to 80 % of total infectivity.

The recent data of Soto and colleagues have established that PK-sensitive disease-related hamster PrP isolated from the upper fractions of sucrose density gradients has the ability to convert PrP^C into protease resistant PrP using the PMCA assay [20]. Importantly, because PK-sensitive disease-related hamster PrP was isolated on the basis of density [20] these preparations are unlikely to contain the full ensemble of PK-sensitive PrP species. While there are of course caveats when comparing different prion strains and different methods, our data suggest that PK-sensitive PrP species are heterogeneous and that the majority may be non-infectious.

There is increasing evidence that an abnormal PrP species, distinct from PrP^{Sc}, may be responsible for neurotoxicity in prion disease [7]. Clearly, purification of thermolysin-resistant PK-sensitive disease-related PrP is now required for detailed evaluation of its specific infectivity in mouse bioassay and possible contributions to neurotoxicity or other roles in prion disease pathogenesis.

Recently, Safar and colleagues reported that 80-90 % of disease-related PrP in sporadic CJD brain is destroyed by PK and that detection of this fraction by conformation dependent immunoassay enhances diagnostic sensitivity [18]. Our finding that up to 90 % of total PrP in vCJD brain homogenate resists digestion with thermolysin under conditions that destroy human PrP^C verifies the proposal [23] that thermolysin may be useful in the development of high sensitivity diagnostic tests. Thermolysin may also be useful in identifying unusual pathogenic PrP isoforms in isolates where undetectable or barely detectable levels of PK-resistant PrP are observed, for example in certain inherited prion diseases [2,41,42] and in atypical prion disease of ruminants [43,44]. More recently, Owen *et al* have reported the potential value of thermolysin for prion strain discrimination based upon variable generation of truncated PrP fragments [24]. Our data obtained with two distinct prion strains (mouse RML and human vCJD prions) suggest that measuring the ratio of PK-resistant disease-related PrP to thermolysin-resistant disease-related PrP may also be informative in this regard.

ACKNOWLEDGMENTS

We thank all patients and their families for generously consenting to use of human tissues in this research, and the neuropathologists who have kindly helped in providing these tissues. We thank Ray Young for preparation of the figures. This work was funded by the UK Medical Research Council.

DECLARATION OF INTEREST

J.C. is a Director and J.C., G.S.J., A.R.C. and J.D.F.W. are shareholders and consultants of D-Gen Limited, an academic spin-out company working in the field of prion disease diagnosis, decontamination, and therapeutics. D-Gen markets the ICSM35 and ICSM18 antibodies used in this study.

REFERENCES

- 1 Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. U.S.A. 95, 13363-13383
- Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519-550
- 3 Wadsworth, J. and Collinge, J. (2007) Update on human prion disease. Biochim. Biophys. Acta 1772, 598-609
- 4 Collinge, J. (2005) Molecular neurology of prion disease. J. Neurol. Neurosurg. Psychiatry **76**, 906-919
- 5 Griffith, J. S. (1967) Self Replication and Scrapie. Nature 215, 1043-1044
- 6 Weissmann, C. (2004) The state of the prion. Nat. Rev. Microbiol. 2, 861-871
- 7 Collinge, J. and Clarke, A. (2007) A general model of prion strains and their pathogenicity. Science **318**, 930-936
- 8 Bessen, R. A. and Marsh, R. F. (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. **68**, 7859-7868
- 9 Telling, G. C., Parchi, P., DeArmond, S. J., Cortelli, P., Montagna, P., Gabizon, R., Mastrianni, J., Lugaresi, E., Gambetti, P., and Prusiner, S. B. (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079-2082
- 10 Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J., and Hill, A. F. (1996) Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature **383**, 685-690
- 11 Parchi, P., Castellani, R., Capellari, S., Ghetti, B., Young, K., Chen, S. G., Farlow, M., Dickson, D. W., Sims, A. A. F., Trojanowski, J. Q., Petersen, R. B., and Gambetti, P. (1996) Molecular Basis of Phenotypic Variability in Sporadic Creutzfeldt-Jakob Disease. Ann. Neurol. 39, 669-680
- 12 Safar, J., Wille, H., Itri, V., Groth, D., Serban, H., Torchia, M., Cohen, F. E., and Prusiner, S. B. (1998) Eight prion strains PrP^{Sc} molecules with different conformations. Nat. Med. 4, 1157-1165
- 13 Pan, K.-M., Baldwin, M. A., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R. J., Cohen, F. E., and Prusiner, S. B. (1993) Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 10962-10966
- 14 Caughey, B., Raymond, G. J., and Bessen, R. A. (1998) Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem. **273**, 32230-32235
- 15 Riesner, D. (2003) Biochemistry and structure of PrP(C) and PrP(Sc). Br. Med. Bull. 66, 21-33
- 16 Tzaban, S., Friedlander, G., Schonberger, O., Horonchik, L., Yedidia, Y., Shaked, G., Gabizon, R., and Taraboulos, A. (2002) Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41, 12868-12875
- 17 Tremblay, P., Ball, H. L., Kaneko, K., Groth, D., Hegde, R. S., Cohen, F. E., DeArmond, S. J., Prusiner, S. B., and Safar, J. G. (2004) Mutant PrP(Sc) Conformers Induced by a Synthetic Peptide and Several Prion Strains. J. Virol. **78**, 2088-2099
- 18 Safar, J. G., Geschwind, M. D., Deering, C., Didorenko, S., Sattavat, M., Sanchez, H., Serban, A., Vey, M., Baron, H., Giles, K., Miller, B. L., DeArmond, S. J., and Prusiner, S. B. (2005) Diagnosis of human prion disease. Proc. Natl. Acad. Sci. U S A 102, 3501-3506

- 19 Nazor, K. E., Kuhn, F., Seward, T., Green, M., Zwald, D., Purro, M., Schmid, J., Biffiger, K., Power, A. M., Oesch, B., Raeber, A. J., and Telling, G. C. (2005) Immunodetection of diseaseassociated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J. 24, 2472-2480
- 20 Pastrana, M. A., Sajnani, G., Onisko, B., Castilla, J., Morales, R., Soto, C., and Requena, J. R. (2006) Isolation and Characterization of a Proteinase K-Sensitive PrP(Sc) Fraction. Biochemistry 45, 15710-15717
- 21 Thackray, A. M., Hopkins, L., and Bujdoso, R. (2006) Proteinase K-sensitive disease-associated ovine prion protein revealed by conformation-dependent immunoassay. Biochem. J. **401**, 475-483
- 22 Hill, A. F., Joiner, S., Beck, J., Campbell, T. A., Dickinson, A., Poulter, M., Wadsworth, J., and Collinge, J. (2006) Distinct glycoform ratios of protease resistant prion protein associated with *PRNP* point mutations. Brain **129**, 676-685
- 23 Owen, J. P., Maddison, B. C., Whitelam, G. C., and Gough, K. C. (2007) Use of thermolysin in the diagnosis of prion diseases. Mol. Biotechnol. **35**, 161-170
- 24 Owen, J. P., Rees, H. C., Maddison, B. C., Terry, L. A., Thorne, L., Jackman, R., Whitelam, G. C., and Gough, K. C. (2007) Molecular profiling of ovine prion diseases using thermolysin-resistant PrPSc and endogenous C2 PrP fragments. J. Virol. 81, 10532-10539
- 25 Wadsworth, J., Joiner, S., Hill, A. F., Campbell, T. A., Desbruslais, M., Luthert, P. J., and Collinge, J. (2001) Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet **358**, 171-180
- 26 Chandler, R. L. (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1378-1379
- 27 Asante, E., Linehan, J., Desbruslais, M., Joiner, S., Gowland, I., Wood, A., Welch, J., Hill, A. F., Lloyd, S., Wadsworth, J., and Collinge, J. (2002) BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 21, 6358-6366
- 28 Wadsworth, J., Asante, E., Desbruslais, M., Linehan, J., Joiner, S., Gowland, I., Welch, J., Stone, L., Lloyd, S., Hill, A. F., Brandner, S., and Collinge, J. (2004) Human Prion Protein with Valine 129 Prevents Expression of Variant CJD Phenotype. Science 306, 1793-1796
- 29 Asante, E., Linehan, J., Gowland, L., Joiner, S., Fox, K., Cooper, S., Osiguwa, O., Gorry, M., Welch, J., Houghton, R., Desbruslais, M., Brandner, S., Wadsworth, J., and Collinge, J. (2006) Dissociation of pathological and molecular phenotype of variant Creutzfeldt-Jakob disease in transgenic human prion protein 129 heterozygous mice. Proc. Natl. Acad. Sci. U S A. 103, 10759-10764
- 30 Carlson, G. A., Kingsbury, D. T., Goodman, P. A., Coleman, S., Marshall, S. T., DeArmond, S. J., Westaway, D., and Prusiner, S. B. (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46, 503-511
- 31 Reed, L. J. and Muench, H. (1938) A simple method of estimating fifty per cent endpoints. J. of Americal Hygiene **27**, 493-497
- 32 Wadsworth, J., Joiner, S., Linehan, J., Cooper, S., Powell, C., Mallinson, G., Buckell, J., Gowland, I., Asante, E., Budka, H., Brandner, S., and Collinge, J. (2006) Phenotypic heterogeneity in inherited prion disease (P102L) is associated with differential propagation of protease-resistant wild-type and mutant prion protein. Brain 129, 1557-1569

- 33 Klohn, P., Stoltze, L., Flechsig, E., Enari, M., and Weissmann, C. (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl. Acad. Sci. U.S.A. 100, 11666-11671
- 34 Vincent, B., Paitel, E., Frobert, Y., Lehmann, S., Grassi, J., and Checler, F. (2000) Phorbol esterregulated cleavage of normal prion protein in HEK293 human cells and murine neurons. J. Biol. Chem. 275, 35612-35616
- 35 Chen, S. G., Teplow, D. B., Parchi, P., Teller, J. K., Gambetti, P., and Autilio-Gambetti, L. (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem. 270, 19173-19180
- 36 Jiménez-Huete, A., Lievens, P. M. J., Vidal, R., Piccardo, P., Ghetti, B., Tagliavini, F., Frangione, B., and Prelli, F. (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am. J. Pathol. 153, 1561-1572
- 37 Somerville, R. A., Oberthur, R. C., Havekost, U., MacDonald, F., Taylor, D. M., and Dickinson, A. G. (2002) Characterization of thermodynamic diversity between transmissible spongiform encephalopathy agent strains and its theoretical implications. J. Biol. Chem. 277, 11084-11089
- 38 Safar, J. G., DeArmond, S. J., Kociuba, K., Deering, C., Didorenko, S., Bouzamondo-Bernstein, E., Prusiner, S. B., and Tremblay, P. (2005) Prion clearance in bigenic mice. J. Gen. Virol. 86, 2913-2923
- 39 Thackray, A. M., Hopkins, L., klein, M. A. and Bujduso, R. (2007) Mouse-adapted ovine scrapie strains are characterized by different conformers of PrP^{Sc}. J. Virol. **81**, 12119-12127.
- 40 Silveira, J. R., Raymond, G. J., Hughson, A. G., Race, R. E., Sim, V. L., Hayes, S. F., and Caughey, B. (2005) The most infectious prion protein particles. Nature **437**, 257-261
- 41 Kovacs, G. G., Trabattoni, G., Hainfellner, J. A., Ironside, J. W., Knight, R. S., and Budka, H. (2002) Mutations of the prion protein gene phenotypic spectrum. J. Neurol. **249**, 1567-1582
- 42 Mead, S. (2006) Prion disease genetics. Eur. J. Hum. Genet. 14, 273-281
- 43 Le Dur, A., Beringue, V., Andreoletti, O., Reine, F., Lai, T. L., Baron, T., Bratberg, B., Vilotte, J. L., Sarradin, P., Benestad, S. L., and Laude, H. (2005) A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc. Natl. Acad. Sci. U.S.A. 102, 16031-16036
- 44 Baron, T., Biacabe, A. G., Arsac, J. N., Benestad, S., and Groschup, M. H. (2006) Atypical transmissible spongiform encephalopathies (TSEs) in ruminants. Vaccine **25**, 5625-5630

Dilution [*]	i.c inoculation ⁺		i.p inoculation ⁴		
	$n/n_0^{\$}$	Mean survival time ± SD (days) [∥]	$n/n_0^{\$}$	Mean survival time \pm SD (days) \parallel	X
10-1	6/6	134 ± 2	6/6	182 ± 12	
10 ⁻²	5/5	152 ± 7	6/6	184 ± 13	
10 ⁻³	6/6	154 ± 3	6/6	200 ± 5	
10 ⁻⁴	6/6	162 ± 12	6/6	203 ± 8	
10 ⁻⁵	6/6	167 ± 4	6/6	209 ± 7	
10 ⁻⁶	4/4	211 ± 17	1/4	208	
10 ⁻⁷	2/6	208, 222	0/6	- 6	
10-8	1/6	287	0/6	-	

Table 1. Titration of RML prions in CD-1 mice.

* Dilution of 10 % RML brain homogenate I6200 in 1 % normal CD-1 brain homogenate.

⁺ Mice were inoculated intracerebrally (i.c) with 30 μ l of each dilution.

[‡] Mice were inoculated intraperitoneally (i.p) with 100 μ l of each dilution.

 ${}^{\$}_{n}$ n₀, number of inoculated mice; n, number of affected mice.

Incubation periods are reported for clinically affected animals in days; where $n \ge 3$ the mean \pm SD is reported.

FIGURE LEGENDS

Figure 1 Proteinase K and thermolysin digestion of mouse PrP

10 % brain homogenate from uninfected CD-1 mice (CD-1) and RML prion-infected CD-1 mice (RML) were analyzed by immunoblotting in the absence of protease digestion (-) or after digestion (+) with proteinase K (PK) (50 μ g/ml, 37 °C, 1 h) (a) or thermolysin (TL) (100 μ g/ml, 70 °C) for 30 min (b,d) or 90 min (c). Non-glycosylated full-length and endogenously truncated PrP species were detected after deglycosylation with N-glycosidase F (+PNGase). Immunoblots were probed with anti-PrP monoclonal antibodies ICSM35 (a-c) or SAF32 (d).

Figure 2 Thermolysin-resistant PrP from RML brain is mainly insoluble

Aliquots of 10 % RML brain homogenate (a) or untreated 10 % normal CD-1 brain homogenate (b) were diluted 10-fold in the presence of 2 % (w/v) sodium lauroylsarcosine and incubated for 30 min prior to centrifugation at 16 100 x g for 30 min. PrP recovered in detergent-insoluble pellets (P) or detergent-soluble supernatants (SN) was analyzed before (-) or after digestion with thermolysin (TL) (100 μ g/ml, 70 °C, 30 min) or proteinase K (PK) (50 μ g/ml, 37 °C, 1 h) by immunoblotting with anti-PrP monoclonal antibody ICSM35.

Figure 3 Measurement of PK-sensitive PrP in RML brain by ELISA

10 % normal CD-1 (circle) and RML (triangle) brain homogenates were digested with thermolysin (100 μ g/ml at 70 °C, solid symbols, dashed line) or with proteinase K (50 μ g/ml at 37 °C, open symbols, solid line) for a range of incubation times. PrP concentration was measured by ELISA in untreated normal CD-1 and RML brain homogenates and following protease digestion. PrP concentration is expressed as a percentage of total PrP present in untreated RML brain homogenate. Data are the mean of 3 independent experiments ± SEM.

Figure 4 RML prion infectivity and PrP content following digestion with thermolysin or PK

For each sample, PrP (triangle) was quantified by ELISA and expressed as a percentage of total PrP present in untreated sample. RML prion infectivity (square) was measured by the Scrapie Cell Assay and expressed as a percentage of total infectivity present in untreated sample. Data are the mean of 3 independent experiments \pm SEM. (a,b) 10 % RML brain homogenate incubated without protease at either 70 °C (a) or 37 °C (b). (c) 10 % RML brain homogenate incubated at 37 °C with either proteinase K (50 µg/ml, open symbols, solid line) or thermolysin (100 µg/ml, solid symbols, dashed line).

Figure 5 Immunoblot analysis of mouse PrP following digestion with thermolysin or PK at 37 °C

10 % w/v normal CD-1 (CD-1) or RML (RML) brain homogenates were digested at 37 °C with thermolysin (TL 37 °C) (100 µg/ml) or proteinase K (PK 37 °C) (50 µg/ml) for a range of

incubation times. Equivalent aliquots were analyzed by immunoblotting with anti-PrP monoclonal antibody ICSM35.

Figure 6 Thermolysin-resistant PrP from RML brain is precipitated by sodium phosphotungstic acid

10 % w/v homogenates from normal CD-1 brain (CD-1, white bars) or RML brain (RML, black bars) were either untreated, digested with thermolysin (TL) (100 μ g/ml, 37 °C, 90 min), precipitated by sodium phosphotungstic acid (NaPTA) or sequentially digested with thermolysin (100 μ g/ml, 37 °C, 90 min) followed by NaPTA precipitation. NaPTA pellets were resuspended to their original starting volume in PBS. PrP concentration in all samples was measured by ELISA and is expressed as a percentage of total PrP present in the respective untreated samples. Data show the mean of 3 independent experiments ± SEM.

Figure 7 Thermolysin digestion of human and hamster brain homogenate

10 % homogenates from normal Syrian hamster brain (SHa), Sc237-infected Syrian hamster brain (Sc237), normal human brain (NB) or vCJD brain (vCJD) were analyzed by immunoblotting before (-) or after (+) digestion with thermolysin (TL) (100 μ g/ml, 70 °C, 1 h). Immunoblots were probed with anti-PrP monoclonal antibodies 3F4 (a,b) or SAF32 (c) and were developed to show equivalent levels of PrP immunoreactivity in the TL- lanes.

Figure 8 Predominance of thermolysin-resistant PrP in vCJD brain

PrP in 10 % brain homogenate from four patients with vCJD was measured by ELISA in the absence of protease digestion (70 °C, 1 h temperature control) (Total, white bars) or after digestion with thermolysin (100 μ g/ml, 1 h at 70 °C) (TL-res, black bars) or proteinase K (100 μ g/ml, 1 h at 37 °C) (PK-res, grey bars). PrP concentration is expressed as a percentage of total PrP and data show the mean of four replicates of each sample. The SD was in all cases less than 10 %. The proportion of PK-sensitive PrP species present after thermolysin digestion was estimated by the ratio (TL-res – PK-res)/ TL-res and was ~80 % in samples from all four vCJD patients.

THIS IS NOT THE VERSION OF RECORD - see doi:10.1042/BJ20081235

THIS IS NOT THE VERSION OF RECORD - see doi:10.1042/BJ20081235

Figure 3

THIS IS NOT THE VERSION OF RECORD - see doi:10.1042/BJ20081235

Figure 4

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. © 2008 The Authors Journal compilation © 2008 Biochemical Society

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. © 2008 The Authors Journal compilation © 2008 Biochemical Society