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The final 25 amino acids of the ectodomain of the P2X receptors, immediately prior to the second transmembrane segment (pre-TM2: Arg 304 to Ile 328 in rat P2X 2 ), are highly conserved. Whole-cell patch clamp recordings showed that single cysteine substitutions in the N-terminal half of pre-TM2 (Arg 304 to Ile 314 ) led to loss of function at Arg 304 , Leu 306 , Lys 308 , and Ile 312 . Cysteine substitutions within this region also resulted in a significant reduction in the apparent molecular mass of receptors, due to loss of complex glycosylation at the nearby acceptor site Asn 298 , which was not seen for the C-terminal portion of pre-TM2 (Asp 315 to Ile 328 ). The reduction in complex glycosylation was not due to reduced cell-surface presentation, demonstrating that glycosylation at Asn 298 was acting as a sensor of subtle changes in receptor conformation within the pre-TM2 region. When this N-glycan site was repositioned closer to the plasma membrane by mutagenesis (N298S together with G299N, T300N, T301N or T303N), glycosylation was restored at G299N and T300N, but was impaired for T301N and completely absent for T303N. These results suggest that the region in the vicinity of Asp 315 is at the plasma membrane interface and that the N-terminal portion of pre-TM2 (Arg 304 to Ile 314 ) is important for the correct conformation of the receptor at the extracellular face of the membrane.

INTRODUCTION

P2X receptors are a family of ligand-gated ion channels that play key roles in diverse physiological processes such as nerve transmission, control of smooth muscle tone and the response to inflammation [START_REF] Khakh | P2X receptors as cell-surface ATP sensors in health and disease[END_REF]. Functional P2X receptors are trimers. Each of the three subunits is composed of intracellular N-and C-termini, two transmembrane domains (TMs) and a large ectodomain [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF][START_REF] North | Molecular physiology of P2X receptors[END_REF][START_REF] Torres | Topological analysis of the ATP-gated ionotropic P2X2 receptor subunit[END_REF]. One of the most highly conserved parts of the P2X receptor protein sequence is the final 25 amino acids of the ectodomain which immediately precedes the second TM (pre-TM2; Arg 304 to Ile 328 in the rat P2X 2 receptor sequence). It has been proposed to be a signal transduction module, linking the conformational change associated with ATP binding to the opening of the channel pore [START_REF] Roberts | Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors[END_REF][START_REF] Yan | Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate[END_REF]. Residues within this region, in particular Lys 308 , have been implicated in both ATP binding and channel gating [START_REF] Cao | Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308[END_REF][START_REF] Wilkinson | Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor[END_REF]. Previous studies using cysteine mutants within the pre-TM2 region of human P2X 1 [START_REF] Roberts | Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors[END_REF] and alanine mutants within the pre-TM2 region of rat P2X 4 [START_REF] Yan | Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate[END_REF] have highlighted the importance of Arg 305 , Lys 309 and Phe 311 in P2X 1 (Arg 304 , Lys 308 and Tyr 310 in P2X 2 ) and Tyr 315 , Gly 316 and Arg 318 in P2X 4 (Tyr 310 , Gly 311 and Arg 313 in P2X 2 ) for optimal channel function. It has also been proposed that this region of the receptor might contain a membrane-permeant loop similar to that seen in voltage-gated potassium channels [START_REF] Brake | New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor[END_REF].

N-glycosylation of P2X receptors has been shown significantly to affect both protein folding and function [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF][START_REF] Hu | P2X4 receptor is a glycosylated cardiac receptor mediating a positive inotropic response to ATP[END_REF][START_REF] Jones | Functional regulation of P2X6 receptors by N-linked glycosylation: Biochemical Journal Immediate Publication[END_REF][12][13]. Mature rat P2X 2 receptors are glycosylated at Asn 182 , Asn 239 and Asn 298 ; removal of any single glycan by mutagenesis does not significantly impair receptor function [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF] but removal of two or more glycans leads to incorrect folding and loss of surface presentation of the receptor [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF]13]. In the course of studies on the function of rat P2X 2 receptors with cysteine substitutions in this region, we observed marked differences in the apparent molecular weight of the mutated receptors when expressed in HEK293 cells. In this paper, we show that the reasons for these differences have to do with altered complex glycosylation at Asn 298 , reflecting a subtle change in the conformation of the receptor in the pre-TM2 region.

MATERIALS AND METHODS

Molecular and cell biology

The wild-type rat P2X 2 cDNA used in this study has been described previously [14]; it contains a C-terminal EYMPME epitope. Single point mutations were introduced into wildtype or mutant cDNAs using the Quikchange site-directed mutagenesis protocol (Stratagene, La Jolla, CA) and the coding regions of each mutant were fully sequenced. cDNAs corresponding to wild-type or mutant receptors were transiently transfected into 35 mm dishes of near-confluent HEK293 cells using Lipofectamine 2000 (Invitrogen, Paisley, UK) according to the manufacturer's instructions. Transfected cells were incubated for 48 h (0.1 µg cDNA/dish) or 24 h (1 µg cDNA/dish) to allow protein expression.

Electrophysiology

Whole-cell patch clamp experiments were performed as described previously [START_REF] Cao | Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308[END_REF]. Cells were held at -60 mV, and agonists were applied for 2 s duration. EC50 values for agonists were determined by least squares curve fitting to the Hill equation: I/I max = 1/[1+ (EC 50 /A) n ], where I is the current as a fraction of the maximum (Imax) and [A] is the agonist concentration, and n is the Hill coefficient. 

Solubilization of HEK cell protein and Western blotting

Transfected cells were washed twice in PBS pH 7.4. Following pelleting, cells were solubilized in 50 µl RIPA buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM MgCl 2 , 1 mM CaCl 2 , protease inhibitors (Complete-EDTA, Roche, Burgess Hill, UK)) containing 2% Triton X-100 (w/v) for 1 h at 4°C. Insoluble material was pelleted by centrifugation at 16000 x g for 2 min, protein content in the supernatant was assayed using the Bio-Rad protein assay kit (Bio-Rad, Hemel Hempstead, UK), and 10-or 1 µg total protein samples were taken. Samples were boiled for 2 min at 100°C in SDS-PAGE sample buffer (4% SDS, 10% (v/v) βmercaptoethanol) and loaded on to 4-12% Nu-PAGE gels (Invitrogen) according to the manufacturer's instructions. After running, protein was transferred on to PVDF membranes and Western blotting was performed according to standard protocols. Both the primary antibody against the EE-tag (rabbit anti-Glu-Glu; Universal Biologicals, Cambridge, UK) and the secondary antibody (HRP-conjugated goat anti-rabbit; DAKOCytomation, Cambridge, UK) were used at a dilution of 1:5000. Bands were visualised using the ECL plus kit (Amersham, Little Chalfont, UK) and Kodak Biomax MS film (Sigma, Poole, UK).

Cell-surface biotinylation

Biotinylation was performed at 0°C to prevent internalisation of label. Transfected cells were washed twice in PBS pH 7.4, and once in PBS pH 8.0. Cells were incubated in 1 mg/ml Sulfo-NHS-biotin (Pierce) in PBS pH 8.0 for 30 min. Unreacted biotin was quenched with 2 washes of PBS containing 192 mM glycine and protein was solubilised and assayed as above. 10 µg total protein samples were taken, and 300 µg protein was incubated with streptavidin beads (Pierce) overnight at 4°C to bind cell-surface protein. Beads were washed three times and samples were boiled for 5 min at 100°C in SDS-PAGE sample buffer to liberate cellsurface protein. Samples of both total and cell-surface protein were analysed by Western blotting as above.

Endoglycosidase H treatment

Total protein samples were prepared as above, and 100 µg samples were incubated with endoglycosidase H (Roche; 2 units) for 1 h at 37°C. Following this treatment, 20 µg equivalent protein was loaded on to SDS-PAGE gels for Western blotting.

Data analysis

All the data, where appropriate, are presented as mean ± sem. Statistical analyses were performed using two-way ANOVA (post-hoc Tukey's HSD).

RESULTS

Cysteine mutants in the pre-TM2 region display reduced molecular mass.

The effects of cysteine substitution in the pre-TM2 domain on functional receptor expression were characterized using whole-cell patch clamp recording. Figure 1A shows the EC 50 values calculated from ATP concentration-current response curves. Either no currents were observed or the currents were too small to determine the EC 50 values at the mutants R304C, L306C, K308C and I312C (indicated with #). ATP potency was significantly reduced for the cysteine mutant at Arg 313 (p<0.01 compared to wild-type); no significant differences from wild-type were observed in any other mutants. Therefore, most disruption to channel function was observed for mutants between positions Arg 304 and Ile 314 (black bars), whereas mutations in the region Asp 315 to Ile 328 had little effect on functional receptor (grey bars). Three mutants (V318C, H319C and G320C) appeared to display increased ATP sensitivity; however these values were not significantly different from wild-type (p>0.05).

Western blotting with an antibody directed against the C-terminal EYMPME epitope tag was used to assess the total protein expression of each cysteine mutant. Several mutants displayed a reduced apparent molecular mass compared to wild-type, indicated by a reduction in or loss of the upper band representing protein of higher molecular weight (Figure 1B; broken lines); for example, the upper band was almost completely absent in the mutants R304C, L306C, Y310C, I312C and R313C. Scanning densitometry was used to calculate the percentage of upper band density relative to total band density (Figure 1C). The percentage of upper band observed for wild-type P2X 2 was 46 ± 1% (n=36). Cysteine substitutions in the region Arg 304 to Ile 314 almost all showed a reduced amount of upper band (black bars), whereas those in the region Asp 315 -Ile 328 did not (grey bars), with the exceptions of K324C and F325C.

We tested the effects of amino acid substitutions other than cysteine on the amount of form of higher molecular weight observed in Western blots. P2X 2 receptors with K308A, K308C or K308R have been shown to be significantly impaired in terms of ion channel function [START_REF] Cao | Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308[END_REF]. However, the proportion of P2X 2 receptor protein running at the higher molecular weight was quite different for each of these mutants (Figure 2A,B). For K308A the upper band was virtually absent (3 ± 1 %, n = 9; p<0.01 compared to wild-type), for K308C the amount of upper band was also markedly reduced, (11 ± 6 %, n = 4; p<0.01), but for K308R it was not different from wild type protein (45 ± 1 %, n = 4; p>0.05). To ensure that the observed differences in the amount of upper band were not due to altered cell-surface expression, we performed cell-surface biotinylation assays to determine the proportion of mutant receptor expressed at the cell surface (Fig. 2C). At the cell surface, the band profile of wild-type P2X 2 was somewhat altered; it appeared that a greater proportion of uppermost band was present in this sample. The mutant K308A was efficiently expressed at the cell surface, but displayed a complete absence of upper band, demonstrating that the presence of the upper band was not a requirement for cell-surface expression. Interestingly, the proportion of upper band present in the mutant K308C was much greater at the cell surface than in the total protein sample, suggesting that the high molecular mass form of this mutant was more efficiently expressed at the cell surface than the lower molecular mass forms. The cell-surface expression of K308R was identical to wild-type (not shown). We quantified these data over several experiments using scanning densitometry (Fig. 2D). For each mutant, the proportion of receptor at the cell surface was not significantly different from wild-type, even though the upper band was partially or fully absent. This data demonstrated that the reduction in the amount of higher molecular weight protein was not due to reduced cellsurface presentation, but that it reflected a disruption in protein conformation, the severity of which was dependent on the identity of the amino acid substituted.

Loss of complex glycosylation at Asn 298 underlies the altered molecular mass.

We hypothesized that the loss of the highest molecular weight of the P2X 2 mutants was likely to be due to a reduction in N-linked glycosylation as a result of altered protein conformation. To test this, we compared the expression of K308A, the N-glycan mutant N298S, and the double mutant N298S/K308A (Figure 3A). We observed a significant but differential loss of mass in both K308A and N298S; the mutant N298S induced a greater loss of mass than 3A; lane 2 compared to lane 3). Interestingly, the reduction in mass observed in the double mutant N298S/K308A was the same as that of N298S (Figure 3A; lane 4 compared to lane 2). This result demonstrated that the mutation of Lys 308 in the mutant N298S induced no further loss of mass, implying that the loss of mass seen in the mutant K308A was most probably due to an alteration in N-glycosylation at Asn 298 , leading to a reduction in the mass of the glycan chain.

We reasoned that this might result from loss of complex N-glycosylation from Asn 298 , and therefore tested the sensitivity of wild type P2X 2 , K308A and N298S to endoglycosidase H (endoH; Figure 3B). EndoH only cleaves core, high mannose N-glycan chains; complex glycosylation acquired in the Golgi body is resistant to cleavage. Wild-type P2X 2 displayed partial resistance to endoH treatment (Figure 3B, lane 2 compared to lane 1). In this blot the protein loading is lower than that in Figure 3A, and it can be observed that wild-type P2X 2 expressed in HEK cells presents as 3 bands, reflecting different glycosylation states. Upon EndoH treatment, the upper band was lost, and a lower band at approximately 53kDa (representing fully deglycosylated P2X 2 ) appeared. Additionally, a band of mass approximately 5 kDa lower than the uppermost band in the wild-type lane was present, representing EndoH-resistant protein. This result demonstrates that a proportion of rat P2X 2 expressed in HEK cells acquires complex glycosylation. In contrast, the mutant N298S was fully cleaved by EndoH (lanes 5 and 6), demonstrating that, in this mutant, no complex glycosylation is present, and implying that Asn 298 is likely the only site of complex glycosylation in the rat P2X 2 receptor. The loss of mass induced by EndoH treatment of wildtype P2X 2 was slightly less than would be expected for the full cleavage of two core Nglycans (6 kDa). This might reflect anomalous running of this particular glycoform of P2X 2 ; it might be possible that full EndoH cleavage was not achieved in this sample, or alternatively, complex glycosylation might be added to Asn 182 or Asn 239 but only when Asn 298 contains complex glycosylation. However, the important finding of this experiment was that K308A was fully cleaved by endoH treatment, demonstrating a loss of complex glycosylation in this mutant, and implying that the loss of the upper band in this mutation was due to loss of complex glycosylation at Asn 298 . Rat P2X 2 contains three N-glycan acceptor sequences, which may or may not be fully used when the protein is expressed in HEK cells, and characterising the glycosylation sites might help us to understand the Western blot profile. We expressed serine mutants at each site (N182S, N239S and N298S) with or without the K308A mutation to determine how each site was utilised (Figure 3C). We purposefully loaded low amounts of protein (1µg per lane) to enable visualisation of each glycoform. Mutants N182S (lane 3), N239S (lane 5) and N298S (lane 7) each displayed a reduction in overall mass. A faint upper band was also lost from both N182S and N239S when the mutation K308A was introduced (lanes 4 and 6), whereas N298S and N298S/K308A were unchanged (lanes 7 and 8). We argue that this faint upper band represents complex glycosylation at Asn 298 which is lost in the mutant K308A. It was interesting to note that N182S presented as one major band with a faint upper band, N239S presented as two major bands with a faint upper band, and N298S presented as two major bands only. This result tells us that the N-glycan site at Asn 182 is only used in a proportion of P2X 2 receptors expressed in HEK cells, whereas Asn 239 and Asn 298 are always glycosylated (since mutation of Asn 182 leads to a reduction in the number of bands observed, what has been lost is a site that is only used in a proportion of receptors). Our EndoH data (Figure 3B) showed that the complex glycosylation at Asn 298 is only present in a proportion of receptors, and therefore we can assign each of the three bands observed for wild-type rat P2X 2 (Figure 3C, lane 1). Band at Asn 239 and Asn 298 but which lacks both glycosylation at Asn 182 and complex glycosylation at Asn 298 .

The distance of glycoslyation site Asn 298 from the plasma membrane.

We next examined the effect of moving the glycosylation acceptor sequence at Asn 298 nearer to the plasma membrane. Second mutations in N298S were made so as to re-introduce the Nglycan acceptor sequence at positions 299, 300, 301 and 303 (Figure 4A). All sites were indicated to be good candidates for glycosylation using NetNGlyc (Expasy), and all constructs displayed channel function similar to wild-type P2X 2 receptors (not shown). Analysis of total protein expression by Western blot (Figure 4B; summary histogram in Fig. 4C) showed that moving the position of the N-glycan acceptor site to 299 or 300 had no effect on full glycosylation. In contrast, moving the site to position 301 led to a reduction in full glycosylation of approximately 60%; this could either represent loss of complex glycosylation at position 301, or a reduction in the efficiency of core glycosylation at this residue. Moving the site to position 303 (N298S/T303N) gave rise to a band profile similar to that of the point mutant N298S (lane 6 compared to lane 2), implying that there was a complete absence of glycosylation at this residue. Previous work has demonstrated that the N-glycosylation acceptor sequence must be a minimum of 12-14 residues (or 30Å) away from the membrane to be efficiently core glycosylated [15]. Because core glycosylation was effectively abolished at position 303, we interpret that this position is 12-14 residues from the membrane, placing the region around Asp 315 at the membrane interface.

DISCUSSION

We have studied the effects of introducing cysteine residues into the pre-TM2 region (Arg 304 to Ile 328 ) of the rat P2X 2 receptor. This region is highly conserved in all mammalian P2X receptors [START_REF] North | Molecular physiology of P2X receptors[END_REF], and we found that several residues were critical for efficient receptor function. In particular, cysteine substitution at Arg 304 , Leu 306 , Lys 308 and Ile 312 gave rise to nonfunctional channels, and substitution at Arg 313 led to a significant reduction in ATP potency. Our data correlate partially with those of Roberts and Evans [START_REF] Roberts | Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors[END_REF], who showed that cysteine substitutions at Arg 305 , Lys 309 and Phe 311 in the human P2X 1 receptor (corresponding to Arg 304 , Lys 308 and Tyr 310 in the rat P2X 2 sequence) significantly impaired receptor function.

A study of the pre-TM2 region of rat P2X 4 [START_REF] Yan | Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate[END_REF] also showed that alanine substitutions at Tyr 315 , Gly 316 and Arg 318 (Tyr 310 , Gly 311 and Arg 313 in the rat P2X 2 receptor) also inhibited receptor function. Taken together this work highlights the importance of the conserved pre-TM2 region centred on Arg 304 to Ile 314 for correct P2X receptor function.

A striking finding of our study was that all but one (A309C) of the cysteine substitutions made in the region Arg 304 to Ile 314 led to substantial loss of complex glycosylation from Asn 298 . Asn 298 itself is not required for either channel function or cell-surface presentation of the rat P2X 2 receptor [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF], and we have demonstrated that the K308A mutation (which gives rise to loss of complex glycosylation from Asn 298 ) is expressed at the cell surface in amounts similar to wild-type P2X 2 receptor; this implies that the loss of complex glycosylation does not indicate loss of cell-surface expression. The present study therefore suggests that complex glycosylation at Asn 298 is acting as a reporter of a subtle change in the conformation of the receptor, and does not necessarily correlate with loss of ion channel function (EC 50 values of the mutants T305C, I307C, Y310C, G311C and I314C were not significantly different to wild-type, whereas each mutant construct displayed significant reductions in levels of complex glycosylation). 

S t a g e 2 ( a ) P O S T -P R I N T

It is clear from our results that most of the mutations within the pre-TM2 region which affected channel function and/or complex glycosylation were N-terminal to Asp 315 ; mutations within the C-terminal half of pre-TM2 had a much lesser effect. This suggests that the Nterminal half of pre-TM2 may be in an environment where tight structural contacts are more important for correct protein conformation, distinct from the environment occupied by the Cterminal half. We probed the environment of the pre-TM2 region by moving the position of the N-glycosylation acceptor sequence at Asn 298 closer to the membrane. Our finding that Asn 298 is approximately 15-17 residues distant from the membrane would indicate that the region encompassing Asp 315 is at the membrane interface. We do not believe that this region marks the start of TM2 in the P2X 2 receptor, as previous work demonstrates that the mutant V48C is able to form an intermolecular disulfide bond with the mutant I328C [17]. Val 48 is most probably positioned near the C-terminal end of TM1, and this would therefore position the N-terminal end of TM2 at or around Ile 328 . An intermolecular disulfide bond has also been demonstrated between the P2X 1 mutants K68C and F291C [18]; these residues correspond to Lys 69 and Arg 291 in the rat P2X 2 receptor. Val 48 and Lys 69 are 21 residues apart whereas Arg 291 and Ile 328 are 37 residues apart; in crude linear terms an additional 16 residues must be fitted in between Arg 291 and Ile 328 , and this is consistent with our observation that Asn 298 is 15-17 residues from the membrane, with about 30 residues between Asn 298 and Ile 328 . It is important to note that Newbolt et al demonstrated an increase in N-glycosylation in the mutation K324N, using this result as evidence that Lys 324 was on the cytoplasmic side of the membrane [START_REF] Newbolt | Membrane topology of an ATP-gated ion channel (P2X receptor)[END_REF]. However, in our studies the double mutant N298S/K324N appeared similar to N298S alone (not shown), implying that glycosylation is not added to the asparagine at position 324 in this mutant.

Such a "pairing-off" of the lengths of the polypeptide chain external to TM1 and external to TM2 would require about 14 "additional" amino acids between Asn 298 and Ile 328 . For example, the region between Asp 315 and Ile 328 may form a membrane-parallel structure (for example, an α-helix) which leads into TM2, thus holding the region Arg 304 to Ile 314 near the membrane. In a homology model of a fragment of the P2X 4 ecto-domain based upon class II aminoacyl-tRNA synthetases, this portion of pre-TM2 is modelled as a helix extending from TM2 [START_REF] Yan | Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate[END_REF]. The residue Arg 318 (corresponding to Arg 313 in rat P2X 2 ) is placed toward the top of this helix, which is inconsistent with our observation that Arg 313 is very close to the membrane interface. One possible explanation, assuming that the model is reasonably accurate, is that, as this model did not include the TM2 region of P2X 4 , there might be a bend between the helix and TM2, allowing placement of this helix parallel to the membrane. However, our finding that cysteine substitutions within the region between Asp 315 and Ile 328 were well tolerated, both in terms of channel function and protein conformation as measured by the degree of complex N-glycosylation, suggests that this region of the molecule may not play a significant role in maintaining channel integrity, and is therefore unlikely to be in such a rigid conformation.

An intriguing possibility is that the region Asp 315 -Ile 328 forms a membrane-permeant loop, proposed by Brake et al when describing the cloning of rat P2X 2 [START_REF] Brake | New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor[END_REF]. This arrangement might explain why the mutants K324C and F325C displayed impaired complex glycosylation, because these residues would be placed at the membrane interface in a similar environment to the Arg 304 to Ile 314 region, which we have demonstrated to be important for correct protein conformation and function. To test this hypothesis, we aimed to probe the environment of the individual cysteine mutants in pre-TM2 using biotin-maleimide labelling. Unfortunately, and in contrast to P2X 1 [START_REF] Roberts | Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors[END_REF], wild-type P2X 2 was efficiently labelled by maleimide (data not shown), meaning that there was no suitable negative control for this experiment. Roberts and Evans [START_REF] Roberts | Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors[END_REF] demonstrated that ATP-induced currents in the human P2X 1 receptor mutant G321C (corresponding to Gly 320 in rat P2X 2 ) were markedly impaired upon labelling with thiol-reactive agents, and suggested that this residue might be involved in ion permeation. In agreement with this result, we also saw a similar effect for rat P2X 2 G320C labelled with methyl methanethiosulfonate (data not shown). Furthermore, Cao et al have recently shown that Lys 308 has a critical role in channel gating: this might be more readily interpreted if the first half of the pre-TM2 region was very near to the membrane, enabling it to have a direct influence on the permeation pathway [START_REF] Cao | Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308[END_REF]. Whether or not this 'loop region' is truly membrane-permeant might be tested by looking for intramolecular disulfide bond formation in double cysteine mutants around Gly 320 and residues in TM1 or TM2.

In summary, we have exploited alterations in complex glycosylation at Asn 298 , induced by subtle changes in receptor conformation, to demonstrate that the region encompassing Arg 304 to Ile 314 in the rat P2X 2 receptor is important both for maintenance of correct receptor conformation and ion channel function, and that it is likely positioned near to the plasma membrane. This finding should contribute to the evolving understanding of the structurefunction relationship of the P2X receptors. (A) Summary of ATP pEC 50 values. * indicates p < 0.01 compared to wild-type for R313C; all other mutants were not significantly different from wild-type (p>0.05). n = 3-5 for all mutants. #; either no currents were observed or the currents were too small to allow determination of EC 50 values. Dotted lines represent standard deviations above and below the wild-type mean. (B) Sample Western blots of total protein from HEK293 cells expressing wild type or mutant rat P2X 2 . Significant reductions in the amounts of upper band may be observed in several mutants. (C) Summary of scanning densitometry data (n = 3-36 for each mutant). Each value is expressed as a percentage of the upper band compared to the total band density. * indicates p < 0.01 compared to wild-type. Wildtype P2X 2 was included in every blot to control for variations between experiments and data was recorded only where the band densities were within the linear range of the sensitivity of the film. compared to total protein in K308C. (D) Summary of the cell-surface biotinylation data from 3-14 independent experiments. Data is presented as a ratio of cell-surface protein to total protein, normalised to wild-type. No significant differences in cell-surface expression were observed for any of the mutants studied. Western blots of total protein from HEK293 cells expressing wild-type or mutant rat P2X 2 receptor. (A) Removal of the N-glycan chain in the mutant N298S (lane 2) induced a reduction in molecular mass compared to wild-type (lane 1). Mutation of Lys 308 to Ala (K308A; lane 3) also induced a reduction in mass; however, this was less than that induced by the mutant N298S. The double mutation N298S/K308A (lane 4) led to the same reduction in molecular mass as N298S, demonstrating that glycosylation at Asn298 was altered, but not completely abolished, in the single point mutant K308A. (B) K308A mutation results in loss of complex glycosylation from Asn 298 . Following EndoH treatment, partial cleavage of N-glycans was observed for wild-type P2X 2 (lane 2 compared to lane 1), indicating the presence of complex N-linked glycosylation. However, both point mutants N298S (lane 6 compared to lane 5) and K308A (lane 4 compared to lane 3) were fully cleaved, indicating that both mutants had lost complex glycosylation. Similar results were observed in 3 independent experiments. (C) C. Western blot of total protein from HEK cells transiently transfected with 1µg cDNA corresponding to wild-type or mutant P2X 2 . Protein loading was purposefully low so as to enable visualisation of each glycoform of P2X 2 . Each of the three N-glycan acceptor sequences in rat P2X 2 (Asn 182 , Asn 239 and Asn 298 ) were mutated with or without K308A and the changes in molecular mass were analyzed. The nature of the three distinct wildtype P2X 2 glycoforms (bands a, b and c) was deduced from the numbers of bands present in lanes corresponding to N182S (lane 3), N239S (lane 5) and N298S (lane 7) and the K308A double mutants (lanes 4, 6 and 8 respectively) (see text). Markers in kDa. Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.
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Figure 1

 1 FIGURE LEGENDSFigure 1 Effect of cysteine substitutions in the pre-TM2 region (Arg 304 to Ile 328 ) on receptor function and glycosylation.

Figure 2

 2 Figure 2 Effect of different substitutions at Lys 308 on receptor glycosylation. (A) Western blot of total protein from HEK293 cells expressing wild-type, K308A, K308C or K308R mutant P2X 2 receptor. The upper band is absent in K308A, markedly reduced in K308C, but not different wild-type for K308R. (B) Summary of the data from 3 independent experiments. * indicates p < 0.01 compared to wild-type. (C) Western blot of biotinylated cell-surface protein from HEK293 cells expressing wild-type, K308A or K308C mutant P2X 2 receptor. The upper band is absent in K308A, but enriched

Figure 3

 3 Figure 3 Difference in molecular mass is due to loss of complex glycosylation at Asn 298 .

Figure 4 N

 4 Figure 4 N-glycosylation is reduced by decreasing the number of residues between the glycosylation site (Asn 298 or equivalent) and the membrane.
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