
HAL Id: hal-00479014
https://hal.science/hal-00479014

Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human pancreatic β-cell glucokinase: subcellular
localization and glucose repression signalling function in

the yeast cell
Alberto Riera, Deifilia Ahuatzi, Pilar Herrero, Maria Adelaida

Garcia-Gimeno, Pascual Sanz, Fernando Moreno

To cite this version:
Alberto Riera, Deifilia Ahuatzi, Pilar Herrero, Maria Adelaida Garcia-Gimeno, Pascual Sanz, et al..
Human pancreatic β-cell glucokinase: subcellular localization and glucose repression signalling func-
tion in the yeast cell. Biochemical Journal, 2008, 415 (2), pp.233-239. �10.1042/BJ20080797�. �hal-
00479014�

https://hal.science/hal-00479014
https://hal.archives-ouvertes.fr


 

Human pancreatic �-cell glucokinase: subcellular localization 

and glucose repression signalling function in the yeast cell 
 

 

Alberto RIERA1, Deifilia AHUATZI§, Pilar HERRERO1, Maria Adelaida 

GARCIA-GIMENO 2, 3, Pascual SANZ2, 3 and Fernando MORENO1,* 

 

 
1 Departamento de Bioquímica y Biología Molecular. Universidad de Oviedo, 

33006-Oviedo. Spain. 
2 Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas 

(CSIC), Jaime Roig 11, 46010 Valencia, Spain. 
3 CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. 

 

 

 

Running title: Glucose repression signalling by pancreatic glucokinase  

 

 
§ Present address: Departamento de Ingeniería Bioquímica, Escuela Nacional de 

Ciencias Biológicas, Instituto Politécnico Nacional, 11340-México D.F. México.  

 

* Corresponding author address: Fernando Moreno. Departamento de Bioquímica y 

Biología Molecular. Campus de El Cristo (Edificio Santiago Gascón). 33006-Oviedo. 

Spain 

Phone: 34-985103567. Fax: 34-985103157. e-mail: fmoreno@uniovi.es 

1

Biochemical Journal Immediate Publication. Published on 30 Jun 2008 as manuscript BJ20080797

T
H

IS
 IS

 N
O

T
 T

H
E

 F
IN

A
L 

V
E

R
S

IO
N

 -
 s

ee
 d

oi
:1

0.
10

42
/B

J2
00

80
79

7

St
ag

e 
2(

a)
 P

O
ST

-P
R

IN
T

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2008 The Authors Journal compilation © 2008 Biochemical Society



SUMMARY 

Human pancreatic �-cell glucokinase (GK�) is the main glucose phosphorylating 

enzyme in pancreatic �-cells. It shares several structural, catalytic and regulatory 

properties with hexokinase 2 (Hxk2) from Saccharomyces cerevisiae. In fact, it has 

been previously described that expression of GK� in yeast could replace Hxk2 in the 

glucose signalling pathway of S. cerevisiae. In this study we report that GK� exerts its 

regulatory role by association with the yeast transcriptional repressor Mig1; the 

presence of Mig1 allows GK� to bind to the SUC2 promoter, helping in this way in the 

maintenance of the repression of the SUC2 gene under high-glucose conditions. Since a 

similar mechanism has been described for the yeast Hxk2, our findings suggest that the 

function of the regulatory domain present in these two proteins has been conserved 

throughout evolution. In addition, we report that GK� is enriched in the yeast nucleus of 

high-glucose growing cells, whereas it shows a mitochondrial localization upon removal 

of the sugar. However, GK� does not exit the nucleus in the absence of Mig1, 

suggesting that Mig1 regulates the nuclear exit of GK� under low-glucose conditions. 

We also report that binding of GK� to Mig1 allows the latter protein to be located at the 

mitochondrial network under low-glucose conditions.  

 

Keywords: Pancreatic �-cell glucokinase; Hxk2; Saccharomyces cerevisiae; glucose 

repression; Mig1 

 

Abbreviations: ChIP, chromatin immunoprecipitation; GAD, Gal4 activating domain; 

GBD, Gal4 DNA binding domain; GFP, green fluorescent protein; RFP, red fluorescent 

protein; GK�, �-cell glucokinase; GKL, liver glucokinase; GKRP, glucokinase 

regulatory protein; SD, synthetic complete medium containing glucose as carbon 

source;  
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INTRODUCTION 

Glucokinase (GK), a member of the hexokinase family (hexokinase IV) [1], plays 

an essential role in glucose phosphorylation in the liver and endocrine �-cells of the 

pancreas [2]. GK also acts as a glucose sensor, integrating blood glucose levels and 

insulin release in pancreatic �-cells [3] and regulating glucose metabolism in the liver 

[2]. Hepatic GK shows dynamic nuclear-cytoplasm localization depending on the 

amount of glucose in blood. The nuclear localization of hepatic GK is regulated by its 

binding to a glucokinase regulatory protein (GKRP) under low-glucose conditions [4, 

5]. In addition, it has been recently described that hepatic GK could also be associated 

with liver mitochondria [6, 7]. The GK subcellular distribution in the pancreatic �-cell 

is also regulated by glucose: low levels of glucose causes an association of GK with 

mitochondria [8], whereas high glucose levels prevents GK translocation to this 

organelle [8]. In �-cells, GK has also been localized on the secretory granules and, 

although it has been suggested that glucose causes dissociation of glucokinase from this 

location [9], later studies suggest that glucokinase is an integral component of the 

granule and does not translocate during glucose stimulation [10]. 

Pancreatic GK� and the yeast hexokinase 2 (Hxk2) proteins have several structural 

and functional similarities. For example, (i) pancreatic GK� is a monomer without 

allosteric regulation by glucose-6-P; (ii) yeast Hxk2, like pancreatic GK�, has a glucose-

regulated subcellular distribution [11, 12], in higher glucose conditions Hxk2 shows a 

nuclear enrichment that is absent under low-glucose conditions; (iii) both Hxk2 and 

GK� proteins play a vital role in glucose signalling in the yeast and the pancreatic �-cell 

respectively. Current evidence suggests that the main role of S. cerevisiae Hxk2 in the 

glucose signalling pathway is achieved by its interacting with both Mig1 and Snf1. It 

has been proposed that Hxk2 inhibits the phosphorylation of the Mig1 repressor, when 

the cells are growing in high glucose conditions, maintaining in this way the 

transcriptional repression of target genes [13, 14]. Since GK� plays a prominent role in 

pancreatic �-cell signalling, (inactivation of one glucokinase allele leads to maturity-

onset diabetes of the young 2, whereas loss of both alleles is associated with permanent 

neonatal diabetes [15, 16]), GK� is considered as a promising drug target for diabetes 

therapy. Thus, the study of the regulatory properties of GK� is an important matter to be 

examined.  
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In this work, we took advantage of the facility to manipulate the S. cerevisiae 

genetic system and the similarity between the yeast Hxk2 and pancreatic GK� to study 

the role of GK� in the yeast glucose signalling pathway and also to study the regulation 

of the different subcellular localization that this enzyme presents in yeast cells. 

 

MATERIALS AND METHODS 

Strains and growth media 

GFP and RFP-fluorescence experiments utilized yeast strain H250 (MAT� SUC2 

ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 mig1-�2::LEU2) [17], W303-1A 

(MATa ura3-52 trp1-289 leu2-3,112 his3-�1 ade2-1 can1-100) [18], DBY1315 (MAT� 

ura3-52 leu2-3,2-112 lys2-801 gal2) [19], DBY2052 (MAT� hxk1::LEU2 hxk2-202 

ura3-52 leu2-3,2-112 lys2-801 gal2) [19], �snf1 [20], �snf1 �hxk1 �hxk2 [20], Y03694 

(Mat� his3�1 leu2�0 met15�0 ura3�0 msn5::kanMX4) (euroscarf) and FMY388 

(MAT� his3�1 ura3�0 leu2�0 met15�0 MIG1::gfp), the later containing a gfp tagged 

MIG1 ORF at its chromosomal location. Yeast two-hybrid experiments employed strain 

Y187 (MAT� ura3-52 his3-200 ade2-101 trp1-901 leu2-3,112 gal4� gal80� 

URA3::GAL1UAS-GAL1TATA-lacZ) [21]. 

Escherichia coli DH5� (F Ø80dlacZ �M15 recA1 endA1 gyrA96 thi-1 hsdR17(rk-

rk-) supE44 relA1 deoR� (lacZ YA-argF)U169) was the host bacterial strain for the 

recombinant plasmid constructions.  

Yeast cells were grown in the following media: YEPD, high-glucose (2% glucose, 

2% peptone, and 1% yeast extract), YEPE, low-glucose (0.05% glucose, 3% ethanol, 

2% peptone, and 1% yeast extract) and synthetic media containing the appropriate 

carbon source and lacking appropriate supplements to maintain selection for plasmids 

(2% glucose (SD); or 3% ethanol and 0.05% glucose; and 0.67% yeast nitrogen base 

without amino acids). Amino acids and other growth requirements were added at a final 

concentration of 20-150 �g/ml. The solid media contained 2% agar in addition to the 

components described above.  

 

Plasmids 

 The yeast expression plasmids YEp352-HXK2, YEp352-HXK2/gfp and pWS-

GST/GK� were constructed as indicated previously [13, 22].  
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Plasmids YEp352-GK� and pWS93-GK� carried a 1398-bp DNA fragment with 

the complete coding region of human pancreatic glucokinase gene (GK�). Plasmid 

YEp352-GK��was generated by cloning 1398 bp DNA fragment, synthesized by PCR 

using plasmid pWS-GST/GK� [22] as the template and the primer pair OL1 (sense: 

CAGATAGGATCCATGCTGGACGACAGAGCCAGG) and OL2 (antisense:

CTTCAGAATTCCTATCACTGGCCCAGCATACAGGC) into the BamHI-EcoRI site 

of YEp352-HXK2. The YEp352- GK�� plasmid expresses the complete coding region of 

GK���gene from the HXK2 promoter. To make plasmid pWS93-GK�, an EcoRI-SalI 

fragment obtained from pWS-GST/GK��was subcloned into the EcoRI-SalI site of 

pWS93 vector.  

Plasmid YEp352-GK�/gfp and YEp352-GKL/gfp were constructed as follows: a 

969-bp BamHI-BglII fragment containing the gfp gene was subcloned into YEp352-

HXK2 plasmid first cleaved with BamHI. Then, a 1398-bp BamHI PCR fragment (OL3:

CGTAGGATCCATGGCTATGGATACTACAAG and OL4: GCTAGGATCCCGCCT 

GGGCCAGCATGCAAGCC) containing the complete coding region of GK���gene or a 

1398-bp BamHI PCR fragment (OL5: CGTAGGATCCATGGCTATGGA 

TACTACAAG and OL6: GCTAGGATCCCGCCT GGGCCAGCATGCAAGCC) 

containing the complete coding region of GKL��gene were subcloned into a previously 

BamHI digested YEp352-HXK2/gfp plasmid. The resulting plasmids express GK���or 

GKL �from the HXK2 promoter as fusion proteins with GFP. 

For two-hybrid analysis, plasmids pGBKT7-MIG1, pGBKT7-MIG1S311A and 

pGBKT7-HXK2 were constructed as indicated previously [13, 14, 23]. Plasmids 

pGBKT7-GK� and pGADT7-GK� carried a 1398-bp DNA fragment with the complete 

coding region of GK� gene. To make plasmid pGBKT7-GK� a EcoRI-SalI fragment 

obtained from pWS93-GK� carrying the complete GK� gene was subcloned into the 

EcoRI-SalI sites of pGBKT7. To make plasmid pGADT7-GK�, an EcoRI-SalI fragment 

containing the complete coding region of GK� gene obtained from pWS93-GK��plasmid 

was subcloned into an EcoRI-XhoI previously cleaved pGADT7 vector. The DNA 

sequence of all PCR-generated constructs was verified by sequencing and all the clones 

used were verified by sequencing analysis of fusion points.

 

Fluorescence microscopy 

Yeast strains expressing the GK�-GFP, GKL-GFP, Hxk2-GFP, Mig1-GFP or  
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Su9-RFP fusion proteins were grown to early-log phase (OD600 of less than 0.8) in 

synthetic high-glucose medium (SD-ura). Half of the culture was shifted to synthetic 

low-glucose medium (SE-ura) for 1 h. The media contained the appropriate carbon 

source and lacked the appropriate supplements to maintain selection of plasmids. Cells 

(25�l) were loaded onto poly L-lysine-coated slides, and the remaining suspension was 

immediately withdrawn by aspiration. One microlitre of DAPI (2.5 �g/ml in 80% 

glycerol) was added, and a covert slide was placed over the microscope slide. GFP, RFP 

and DAPI localization in live cultures was monitored by direct fluorescence using a 

Leica DM5000B microscope. To avoid the non-linear range of fluorescent signals, cells 

highly overexpressing GFP-tagged fusion protein were excluded from further analyses. 

The localization of proteins was monitored by visual inspection of the images. At least 

100 cells were scored in each of at least three independent experiments. The distribution 

of fluorescence was scored in the following way: N, denotes a nuclear fluorescence 

signal; C, cytoplasmic fluorescence signal without nuclear or mitochondrial 

fluorescence signals; M, mitochondrial fluorescence signal. 

To stain cells with Mitotracker® Red 580, yeasts were immobilized on poly L-

lysine-coated slides. Then, they were incubated with 0.5 µM MitoTracker® diluted in 

DMSO and glycerol 80% (v/v) for 20 min at room temperature. Finally, MitroTracker® 

solution was aspired and a glass cover slide was immediately placed over the 

microscope slide. Images were processed in Adobe Photoshop CS. 

 

Yeast two-hybrid analysis 

The yeast two-hybrid analysis [24] employed yeast vectors pGADT7 and 

pGBDKT7 and host strain Y187 (described above), in accordance with the Matchmaker 

two-hybrid system 3 from Clontech. Transformed yeasts were grown in high-glucose 

(SD/-Leu,Trp) medium. Assays for �-galactosidase activity followed protocols 

described elsewhere [25]. Expression levels of the GAD and GBD fusion proteins were 

controlled by Western blot analysis. Experiments were performed a minimum of three 

times. 

 

Chromatin immunoprecipitation assay 

Chromatin immunoprecipitation (ChIP) assays were performed essentially as 

described previously [26]. Cells were harvested and disrupted by vortexing in the 

presence of glass beads, and the lysate was sonicated to generate DNA fragments that 
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ranged in size from 200 to 400 bp. To immunoprecipitate HA-tagged proteins, we 

incubated the extract overnight at 4ºC with anti-HA antibodies (Santa Cruz 

Biotechnology, Santa Cruz, CA). To immunoprecipitate Hxk2 protein, we incubated the 

extract overnight at 4ºC with anti-Hxk2 antibodies [11]. The sequence primers for PCR 

to amplify the SUC2 promoter region containing the MIG1 element were, 5’-

TTATTACTCTGAACAGGA-3’ (sense) and 5’-AAGTCGTCAAATCTTTCT-3’ 

(antisense).  

 

RESULTS 

Subcellular localization of human pancreatic GK� in yeast cells 

It has been previously described that human pancreatic glucokinase (GK�) 

complements the glucose signalling defect of S. cerevisiae �hxk2 mutants, indicating 

that GK� may substitute Hxk2 in its role of regulating glucose signalling in yeast [22]. 

To gain insight into the molecular mechanism by which GK� regulates this process in 

yeast, the glucose-dependent subcellular location of GK� was determined in S. 

cerevisiae cells.  

To detect GK��� in live yeast cells, a GK�-GFP protein fusion was expressed under 

the control of the HXK2 gene promoter, and its subcellular location was determined by 

fluorescent microscopy. The GK�-GFP fusion protein maintains repression functions in 

the glucose signalling pathway (data not shown). In cells grown overnight in high-

glucose, a fraction of GK�-GFP was enriched in the nucleus (Fig. 1A and C). Similar 

results were obtained with an Hxk2-GFP protein fusion, as previously described [13]. 

However, in cells grown overnight on low-glucose medium, GK�-GFP was found 

mainly associated to multiple organelles distributed through the cytoplasm, reminiscent 

of a typical mitochondrial network. In contrast, the Hxk2-GFP protein presented an 

even distribution between the nucleus and the cytoplasm, as previously described [13] 

(Fig. 1A). In order to determine whether the GK�-GFP protein presented a 

mitochondrial localization under low-glucose conditions, we labelled the mitochondrial 

network with a mitotracker probe and observed a similar pattern of subcellular 

distribution of GK�-GFP and the mitotracker (Fig. 1B), suggesting a mitochondrial 

distribution of GK�-GFP under these conditions. To confirm the mitochondrial 

localization of GK�-GFP protein under low-glucose conditions, a red fluorescent protein 

(RFP) fused with the mitochondrial targeting signal of Neurospora F0F1 ATPase subunit 
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9 (Su9) [27] was co-expressed with the GK�-GFP fusion protein in wild-type S. 

cerevisiae cells. As can be seen in Fig. 1B, the expressed proteins were associated with 

the mitochondria and the fluorescence signals completely overlapped.  

Since liver and �-cell glucokinase isoforms differ only in the first 15 N-terminal 

residues, it was important to determine if the observed location of GK���was also shared 

by the liver isoform. As it can be seen in Fig. 1A and C, in cells grown overnight in 

high-glucose, a fraction of GKL-GFP was enriched in the nucleus and in cells grown 

overnight on low-glucose medium, GKL-GFP was found mainly associated to 

mitochondria (Fig. 1A-C). Therefore, our results suggest that in yeast, the subcellular 

localization of �-cell and liver glucokinase isoforms was similar and did not depend on 

their N-terminus.  

 

The nuclear export of human pancreatic GK��in the yeast cell is Mig1-dependent 

We have recently described that, under low-glucose conditions, Hxk2 exits the 

nucleus using a pathway in which Mig1 is involved [13, 14]. In order to determine 

whether Mig1 is also affecting the exit from the nucleus of GK�-GFP under the same 

conditions, we determined the subcellular distribution of GK�-GFP in �mig1 mutant 

cells (Fig. 2A). The results indicated that GK�-GFP fusion protein was enriched in the 

nucleus both in high and low-glucose-grown cells, suggesting that in the absence of 

Mig1, GK�-GFP was not able to exit the nucleus and reach the mitochondria. The 

introduction in these cells of a plasmid expressing MIG1 under its own promoter 

(YEp351-MIG1), allowed GK�-GFP to exit the nucleus under low-glucose conditions 

(Fig. 2A), as in wild type cells (Fig. 1A), suggesting that in low-glucose conditions, 

Mig1 is necessary to export the GK�-GFP fusion from the nucleus to the mitochondria. 

We also studied the subcellular distribution of GK�-GFP in a �hxk1 �hxk2 double 

mutant strain (Fig. 2B). The results demonstrated that in the absence of Hxk1 and Hxk2, 

GK�-GFP was targeted to the mitochondria both at high and low-glucose 

concentrations. Since, in the absence of Hxk1 and Hxk2, the protein kinase Snf1 is 

constitutively activated, we repeated the experiment in a triple �hxk1 �hxk2 �snf1 

mutant (Fig. 2C). In this case, no mitochondrial distribution of GK�-GFP was observed 

in any growth conditions (similar results were obtained with a single �snf1 mutant, Fig. 

2C). These results suggested that Snf1 played a major role in regulating the exit of GK�-

GFP from the nucleus. When Snf1 was activated, either by growing the cells under low-
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glucose conditions or by deleting negative regulators such as Hxk1 and Hxk2, GK�-

GFP exited the nucleus and presented a mitochondrial distribution. 

It is known that Snf1 is involved in the phosphorylation of Mig1 under low-glucose 

conditions, leading to its exit from the nucleus to the cytoplasm [28]. Since GK�-GFP 

followed the same pattern of distribution as Mig1 and, as we have described above, 

GK�-GFP did not exit the nucleus in the absence of Mig1, even under conditions where 

Snf1 is activated (low-glucose), we suggest that Mig1 could be involved in the exit of 

GK�-GFP from the nucleus under low-glucose conditions. In agreement with this 

suggestion, we observed that GK�-GFP fusion protein was enriched in the nucleus, in 

both high and low-glucose-grown cells, in the absence of Msn5 (Fig. 3A), a member of 

the importin family of nuclear transport proteins which is required to export Mig1 from 

the nucleus in low glucose conditions [29]. This result suggests that in the absence of 

Msn5, GK�-GFP was not able to exit the nucleus and reach the mitochondria. Thus, 

taken together, these data demonstrated that Mig1 and GK�-GFP could form part of a 

nuclear complex whose export to the cytoplasm was dependent on both, the 

phosphorylation of Mig1 by Snf1 and the exportin Msn5. The close relationship 

between Mig1 and GK�-GFP was confirmed when we observed that a Mig1-GFP 

protein fusion was dragged to the mitochondrial network, under low-glucose conditions, 

only if GK� was expressed in the same cells (Fig. 3B). These results suggested that 

Mig1 and GK� may form a complex in which Mig1 confers the determinants for nuclear 

export and GK� confers the determinants for mitochondrial localization under low-

glucose conditions. 

 

Human pancreatic GK� interacts with the yeast Mig1 transcriptional repressor 

The experiments described above strongly suggest that Mig1 and GK� may form 

part of an in vivo complex. To confirm the possible physical interaction between Mig1 

and GK�, we have used a yeast two-hybrid assay. Plasmid pGADT7-GK� (expressing a 

fusion of the Gal4 activating domain, GAD, to GK�) was co-transformed with a plasmid 

expressing a fusion of the Gal4 binding domain (GBD) with either Hxk2, Mig1, 

Mig1S311A or GK���into an appropriate reporter strain. The interaction between the 

selected proteins was monitored by measurement of the �-galactosidase activity. As 

shown in Fig. 4, the GAD-GK� fusion�protein produced a strong interaction with GBD-
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Mig1. However, this interaction was absent in a GBD-Mig1S311A mutant, indicating 

that the Ser311 residue of Mig1, previously identified as essential for Hxk2 interaction 

[30], was also required for interaction with GK�. No interaction was observed between 

GAD-GK� and GBD-Hxk2 or GBD-GK�, indicating that these proteins did not form 

dimers. Similar levels of all protein fusions were detected in all the cases (not shown). 

To confirm the interaction we performed co-immunoprecipitation and GST pull-down 

assays but we were not able to observe any interaction between GK��and Mig1, 

probably because it was too weak or transient to be detected by these methods.  

 

Human pancreatic GK��binds in vivo to the SUC2-Mig1 repressor complex 

Previous reports have demonstrated that Hxk2 participates in the SUC2-Mig1 

repressor complex by interaction with Mig1 protein and not by direct binding to DNA 

[14, 31, 32]. As GK� and Mig1 may form an in vivo complex (see above), we 

investigated the biological significance of this interaction by determining whether GK�� 

localized in the SUC2-Mig1 repressor complex in a glucose dependent manner. To test 

this hypothesis, we used ChIP assays. Our results show that in cells grown in high 

glucose medium, both HA-GK�� and Hxk2 proteins were recruited to a DNA fragment 

of the SUC2 promoter containing the Mig1 binding site (Fig. 5A, lanes 1 and 3). 

Conversely, in low glucose medium, HA-GK�� and Hxk2 binding to the SUC2-Mig1 

complex was abolished (Fig. 5B, lanes 2 and 4). Binding of HA-GK�� to the Mig1 site 

of the SUC2 promoter was dependent on the presence of Mig1, since in �mig1 cells, no 

binding of HA-GK� to the SUC2 promoter was observed under any growth condition 

(Fig. 5B). No DNA amplification was observed when we used cells with untagged GK� 

or cells with HA-tagged Rgt1 protein (data not shown).  

Taking all these results together we suggest that GK� forms a similar complex with 

Mig1 as Hxk2 does, and that this complex is involved in the glucose regulated 

expression of the SUC2 gene. This complex exits the nucleus under conditions of Snf1 

activation, being the presence of Mig1 and Msn5 necessary for the nuclear exit.  

 

DISCUSSION 

In this study, we have taken advantage of the facility to manipulate the S. 

cerevisiae genetic system to determine the mechanisms by which GK� regulates glucose 
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signalling in yeast cells and to examine the glucose-dependent localization of the GK� 

�in yeasts. 

Reports suggest that Hxk2, the yeast orthologue of GK�, has a dual function in 

yeast cells, first initiating the intracellular metabolism of glucose by its enzymatic 

activity and secondly, signalling glucose repression by its interaction with nuclear Mig1 

repressor, regulating its phosphorylation status [14]. Since Hxk2 protein mutations 

without phosphorylating activity but retaining activity in glucose repression signalling 

have not been achieved [33, 34], the idea that the sugar kinase activity and the sugar 

signalling properties are mediated through separate domains of Hxk2 is still 

controversial. In this study, we demonstrate that recombinant human pancreatic GK� is 

able to signal glucose repression in S. cerevisiae; both GK�� and Hxk2 have a nuclear 

location during growth in high-glucose conditions and both are able to regulate the 

glucose-responsive SUC2 gene in S. cerevisiae. We also report that GK�� is physically 

associated with the Mig1 protein repressor and ChIP assays confirmed that both GK�� 

and Hxk2 interacted with Mig1 in a cluster with DNA fragments containing the MIG1 

site of the SUC2 promoter. Therefore, our results suggest that GK�� and Hxk2 use 

similar mechanisms to regulate glucose signalling in yeast.  

The other important finding of this study regards the subcellular location of GK�. 

We report that GK�� moves between the nucleus and mitochondria in the yeast cell in 

response to glucose concentration in the medium: under high-glucose conditions, GK�� 

is enriched in the nucleus and resides there in association with Mig1; however, under 

low-glucose conditions, GK�� exits the nucleus and eventually reaches the 

mitochondria, either because it has uncharacterized mitochondrial determinants (GK�, 

lacks the hydrophobic N-terminal sequence present in hexokinases I and II that allows 

their binding to the mitochondria [35]), or because it interacts with another protein that 

has these mitochondrial localization determinants, as in the case of mammalian pro-

apoptotic factor BAD which is involved in the mitochondrial targeting of glucokinase in 

both liver and pancreatic beta-cells [6]. To reach GK� this subcellular location, first, 

Mig1 must be present in the cell and Snf1 must be active. Then, binding of Mig1 to 

GK� allows the Mig1-GK� complex to exit the nucleus by a mechanism dependent on 

the exportin Msn5. Finally, the complex is located in the mitochondrial network, 

location that has never been reported for either Mig1 or Hxk2.  
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Since the subcellular distribution of glucokinase in mammalian pancreatic �-cell 

is also regulated by glucose: low levels of glucose causes an association of GK with 

mitochondria [8], whereas, high glucose levels prevents GK translocation to this 

organelle [8], the yeast system offers a possibility to study the nature of the 

determinants present in GK� or the identification of interactive proteins that target GK� 

to the mitochondria under low-glucose conditions.  

The role of Mig1 in regulating GK� exit from the nucleus could be compared to 

the role of the glucokinase regulatory protein (GKRP) in mammalian cells [4, 5]. 

However these two proteins present different domain structures and only 17% similarity 

(assessed by CLUSTAL analysis), suggesting that the relationship between the two 

proteins is only at the level of their interaction with GK. 

Altogether, our results indicate that despite the strong phylogenetic difference 

between the human GK��and the yeast Hxk2 proteins, the mechanism of glucose 

signalling is maintained, suggesting that the function of the regulatory domain of these 

proteins has been conserved throughout evolution. 
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FIGURE LEGENDS

Figure 1. Glucose regulates the subcellular localization of both Hxk2-GFP and 

GK�-GFP 

(A) Yeast strain DBY1315 (WT) expressing Hxk2-GFP, GK�-GFP or GKL-GFP, 

from plasmids YEp352-HXK2/gfp, YEp352-GK�/gfp or YEp352-GKL/gfp respectively, 

was grown on high-glucose synthetic medium (H-Glc) until an OD 600nm of 1.0 was 

reached and then transferred to low glucose synthetic medium (L-Glc) for 60 min. Then, 

cells were stained with DAPI and imaged for GFP and DAPI fluorescence. (B) Cells 

growing under low-glucose conditions and expressing GK�-GFP were stained with 

Mitotracker® Red 580. Cells growing under low-glucose conditions and expressing 

both GK�-GFP and Su9-RFP were stained with DAPI and imaged for DAPI, GFP and 

RFP fluorescence. (C) The localization of fluorescent reporter proteins was determined 

in at least 100 cells in three independent experiments; N, denotes a nuclear fluorescence 

signal; C, cytoplasmic fluorescence signal without nuclear or mitochondrial 

fluorescence signals; M, mitochondrial fluorescence signal. Means and standard 

deviations are shown for at least three independent experiments. 

 

Figure 2. Mig1 and Snf1 regulate the subcellular localization of GK�-GFP 

(A) Yeast strain H250 (�mig1), expressing GK�-GFP from a plasmid (YEp352- 

GK�/gfp) was transformed or not with plasmid YEp351-MIG1. Transformants were 

grown on high-glucose synthetic medium (H-Glc) until an OD 600nm of 1.0 and then 

transferred to medium with low-glucose synthetic medium (L-Glc) for 60 min. Then, 

cells were stained with DAPI and imaged for GFP and DAPI fluorescence. (B) Yeast 

strains DBY1315 (WT) and DBY2052 (�hxk1 �hxk2) and (C) yeast strains �snf1 and 

�snf1 �hxk1 �hxk2, expressing GK�-GFP from a plasmid YEp352- GK�/gfp, were 

analyzed in the same way. 

 

Figure 3. Msn5 directs the nuclear export of GK���and GK� directs mitochondrial 

localization of Mig1. 

 (A) Yeast strain Y03694 (�msn5), expressing Mig1-GFP or GK�-GFP from 

plasmids YEp352-MIG1/gfp or YEp352- GK�/gfp was grown on high-glucose synthetic 

medium (H-Glc) until an OD 600nm of 1.0 and then transferred to medium with low-

glucose synthetic medium (L-Glc) for 60 min. Then, cells were stained with DAPI and 
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imaged for GFP and DAPI fluorescence. (B) Yeast strain FMY388 expressing a gfp 

tagged MIG1 ORF at its chromosomal location, was transformed or not with plasmid 

YEp352-GK�. Transformants were analysed as indicated in part A. 

 

Figure 4. Two-hybrid interaction between GK� and Mig1 

Plasmids containing full-length Hxk2, Mig1, Mig1S311A and GK� fused to the 

Gal4 DNA binding domain (GBD) and the empty plasmid were co-transformed into 

yeast strain Y187 with a construct encoding the Gal4 activating domain (GAD) fused to 

full-length GK�. Transformants were grown on high-glucose synthetic medium (H-Glc) 

and protein-protein interactions were examined by measuring the �-galactosidase 

activity. Values are averages of �-galactosidase activities for three transformants, with a 

standard deviation of less than 10% in all the cases. 

 

Figure 5. In vivo binding of GK� to the MIG1 element of the SUC2 promoter 

Wild type W303-1A (A) and �mig1 mutant cells (B) containing a HA-tagged 

version of GK� (from plasmid pWS-GST/GK�) were grown in high (H-Glc) or low (L-

Glc) glucose conditions. Cell extracts were prepared and immunoprecipitated with anti-

HA or anti-Hxk2 antibodies and the DNA fragments were amplified by PCR using the 

combination of oligonucleotides indicated in Materials and Methods. The amplified 

fragments were resolved by agarose gel electrophoresis. Migration of standard markers 

is indicated on the left. A representative ChIP assay out of three independent 

experiments is shown. 
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