

Redox regulation of methylthioadenosine phosphorylase in liver cells. Molecular mechanism and functional implications

Joaquín Fernández-Irigoyen, Mónica Santamaría, Virginia Sánchez-Quiles, Maria Ujue Latasa, Enrique Santamaría, Javier Muñoz, Manuel Mateo Sánchez del Pino, Maria Luz Valero, Jesús Prieto, Matías Antonio Ávila, et al.

▶ To cite this version:

Joaquín Fernández-Irigoyen, Mónica Santamaría, Virginia Sánchez-Quiles, Maria Ujue Latasa, Enrique Santamaría, et al.. Redox regulation of methylthioadenosine phosphorylase in liver cells. Molecular mechanism and functional implications. Biochemical Journal, 2008, 411 (2), pp.457-465. 10.1042/BJ20071569. hal-00478917

HAL Id: hal-00478917 https://hal.science/hal-00478917

Submitted on 30 Apr 2010 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Redox regulation of methylthioadenosine phosphorylase in liver cells. Molecular mechanism and functional implications.

Joaquín Fernández-Irigoyen^{*}, Mónica Santamaría^{*}, Virginia Sánchez-Quiles^{*}, Maria U. Latasa^{*}, Enrique Santamaría^{*}, Javier Muñoz^{*}, Manuel M. Sánchez del Pino[†], María L. Valero[†], Jesús Prieto^{*}, Matías A. Ávila^{*}‡ and Fernando J. Corrales^{*}‡

^{*}Division of Hepatology and Gene Therapy. Center for Applied Medical Research (CIMA). University of Navarra. 31008 Pamplona, Spain.

Proteomics Laboratory. Príncipe Felipe Research Center (CIPF). 46013 Valencia, Spain.

[‡]These authors share senior authorship

Page heading title: Redox regulation of Methylthioadenosine phosphorylase

Address correspondence to

Fernando J. Corrales. Division of Hepatology and Gene Therapy CIMA. University of Navarra 31008 Pamplona, Spain Tel.: 34-948-194700 Fax: 34-948-194717 E-mail address: <u>fjcorrales@unav.es</u>

Synopsis

5'-methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present work we have investigated the regulation of MTAP by reactive oxygen species. We show data supporting the inactivation of MTAP in the liver of bacterial lipopolysaccharide (LPS) challenged mice as well as in HepG2 cells after exposure to tert-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of Vmax and involves the specific oxidation of Cys136 and Cys223 thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys145 and Cys211 were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to mediate the loss of MTAP activity as assessed by site directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of methionine catabolic pathway in the liver. Reduced MTA degrading activity may compensate the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation.

Keywords: Methylthioadenosine phosphorylase, methylthioadenosine, oxidative stress, inflammation, cyteine oxidation, sulfenic acid.

Abbreviations: MTAP, 5'-methylthioadenosine phosphorylase; MTA, 5'-deoxy-5'methylthioadenosine; ROS, reactive oxygen species; SAH, S-adenosylhomocysteine; SAM, Sadenosylmethionine; Ade, adenine; MTR1P, 5-methylthioribose-1-phosphate; AMP, adenosine monophosphate: ATP, adenosine triphosphate; HCC, hepatocellular carcinoma; DTT, dithiothreitol; TNB, 5-thio-2-nitrobenzoic acid; DTNB, 5,5'-dithiobis-2-nitrobenzoic acid; NBD-Cl, 4-nitrobenzo-2-oxa-1,3-diazole; WT, wild type; FBS, Fetal Bovine Serum ; IAA, iodoacetamide; MALDI, Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry; GPS, gentamicin-penicillin-streptomycin.

Introduction

5'-deoxy-5'-methylthioadenosine (MTA) is a sulphur containing nucleoside that is present in all cell types including prokaryotes, yeast, plants and higher eukaryotes. In mammalian tissues MTA is generated from its precursor, decarboxylated Sadenosylmethionine (SAM), during the synthesis of polyamines spermine and spermidine [1] or, alternatively, from the spontaneous splitting of SAM under physiological conditions [2]. Although MTA is known for more than a century, its biological importance was firstly proposed in 1952 [3]. The enzyme catalyzed conversion of MTA to adenine (Ade) and 5-methylthioribose-1-phosphate (MTR1P) provides the first and rate limiting step in purine and methionine salvage pathways. MTR1P is recycled into methionine and Ade is used to replenish the AMP and ATP pools [3]. Additionally to its central role in cellular metabolism, MTA also participates in the regulation of a wide variety of cellular functions. Intracellular fluctuations in MTA levels could participate in the regulation of proliferative responses [4], as well as in the modulation of inflammatory responses [5]. These effects might be mediated by its inhibitory effect on polyamine biosynthesis [6], by its capacity to interfere with key signalling pathways through the inhibition of growth-factor induced protein tyrosine phosphorylation and cAMP phosphodiesterase [7], and by the inhibition of protein methylation [3], a well known posttranslational modification involved in the modulation of cellular signalling and gene expression. Therefore, it appears clear that regulation of MTA levels is crucial to preserve cellular homeostasis. This concept is further reinforced by studies suggesting the therapeutic potential of this natural compound in different diseased conditions [8, 9].

5'-methylthioadenosine phosphorylase (5'-deoxy-5'methylthioadenosine:orthophosphate methylthioribosyltransferase), (EC 2.4.2.28) (MTAP) catalyzes the reversible phosphorolytic cleavage of MTA leading to the production of MTR1P and Ade [10]. After the pioneer description of this enzymatic activity, MTAP has been purified and characterized from different organisms and tissues [11, 12]. Biochemical and structural evidence indicate that mammalian MTAP is a trimer constituted by three identical subunits of 32 kDa [13] that in humans contain 283 amino acid residues. MTAP is abundantly expressed in normal cells and tissues [14] where it accounts for the production of most of the free adenine generated in human cells [15]. In contrast, lack of MTAP activity is frequently observed in tumour cells [16]. The *MTAP* gene has been mapped to human chromosome 9p21 [14] in a

2008 The Authors Journal compilation ' 2008 Biochemical Society

region that is often deleted in tumour cells. In most cases, it appears that the loss of MTAP activity or mRNA is the result of homozygous deletions of *MTAP* gene [17]. However alternative mechanisms must also exist since MTAP impairment was detected in lymphoma and melanoma-derived cell lines with intact *MTAP* gene [18, 19]. It has been recently reported the presence of a CpG island proximal to the transcription start of the MTAP promoter [18], suggesting a transcriptional regulation of the gene through a methylation-demethylation mechanism. This notion was confirmed in HCC cell lines showing down-regulation of MTAP gene expression that could not be attributed to genomic losses or mutations but to promoter hypermethylation [20]. Additionally, it has been found that the transcriptional activation of the human MTAP gene is mediated by the binding of CCAAT binding factor to a distal CCAAT motif in the promoter [21]. Besides the regulation at the transcriptional level, there are also evidences suggesting modulation of MTAP activity. Phosphorylation of serine 183 and threonine 188 residues have been recently reported, although the biological transcendence of these modifications must be demonstrated [22]. Oxidation arises also as a mechanism to modulate MTAP activity as suggested by the requirement of the enzyme for thiol reducing agents and its specific and rapid inactivation by thiol-blocking groups [23]. However, although it has been established the implication of cysteine residues in the stabilization of the MTAP protein from hyperthermophilic organisms through the formation of disulfide bridges [24], the role of specific thiols in the modulation of MTAP activity is less evident.

In this study we provide data supporting MTAP inactivation in the liver of mice after induction of an inflammatory reaction by administration of LPS. Reduction of MTAP activity was also demonstrated in MTAP expressing HepG2 cells after exposure to tert-butyl hydroperoxide. Reversible inactivation of MTAP by reactive oxygen species (ROS) occurs by specific oxidation of C136 and C223 to sulfenic acid as illustrated by the loss of sensitivity of mutants in which these residues were substituted by serine. MTAP inactivation by ROS arises then as a specific regulatory mechanism that might be pivotal in cellular adaptation to physiological or pathological conditions, such as inflammation, that involve oxidative stress.

Materials and methods:

Animal experiments: Male C57Bl6 mice (19-21 g of weight) were from Harlan. Studies were approved by the University of Navarra Committee on Animal Care and

satisfied National Institutes of Health guidelines for humane treatment of animals. Mice were injected intraperitoneally with 15 mg/kg endotoxin (*Salmonella typhimurium* lipopolysaccharide, Sigma) dissolved in sterile, pyrogen free saline. Liver tissue was removed after 22 h, snap-frozen in liquid nitrogen and stored at -80° C until analysis.

SAM, SAH and MTA measurements. Liver samples (50 mg) were homogenized in 250 μ l of 0.4 M perchloric acid. Homogenates were centrifuged at 10,000 x g and 4° C for 15 min. SAM, SAH and MTA levels were measured in the supernatant by HPLC as described previously [25]. 100 μ l aliquots were loaded onto a Bio-Sil® ODS-5Scolumn equilibrated in 0.01 M ammonium formate, 4 mM heptanesulphonic acid pH 4.0. MTA was eluted with a linear gradient (25-100%) acetonitrile in the same buffer. Chromatograms were analyzed with the software 32 Karat 5.0 (Beckman Coulter).

Cell transfection. SK-Hep1 cells grown in 60-mm dishes until 70% confluence were transfected with a pcDNA3.1 HisA plasmid harboring the complete human MTAP cDNA, or the empty pcDNA3.1 HisA vector. Transfections were carried out using Tfx-1 (Promega) according to the manufacturer instructions, and transfectants were selected in complete medium containing 0.6 mg/mL of G418 sulfate (Geneticin; Invitrogen) as described [26]. After 2 weeks, individual colonies were harvested, and clones transfected with the empty vector pcDNA3.1 HisA (SK-EV) or the MTAP expressing construct (SK-WT) were expanded.

MTAP activity in liver cell lines. 10^6 HepG2 or SK-Hep1 cells were plated on 60 mm dishes and were incubated with DMEM supplemented with 10% FBS, 1% GPS and 0.6 mg/ml G418. Then, after cell adhesion, cells were incubated overnight with DMEM deprivated of methionine and supplemented with 10% horse serum, 1% GPS, at 37° C and 5% CO₂. Then, after 40 min incubation with the indicated concentration of tertbutyl hydroperoxide at 37° C, 16 μ M MTA was added to the culture medium. MTA consumption was determined by measuring the extracellular MTA remaining after different incubation periods as described above.

MTAP cloning and site-directed mutagenesis. Total human resting peripheral blood lymphocyte RNA was isolated by the guanidinium thiocyanate method [27] and transcribed to cDNA using the Superscript preamplification system (Invitrogen). The cDNA was amplified using Taq Long Plus enzyme (Stratagene) and the sense 5-CTCGAGATCTGCATGGCCTCTGGCACC-3 and antisense 5-ATGAATTCCTTAATGTCTTGGTAATAAAAC-3 primers, derived from the human MTAP subunit cDNA sequence. The PCR products were purified using QIAquick Gel

Extraction kit (Qiagen) and ligated into the expression vector pCDNA3.1, according to the supplier's instructions (Eukaryotic TA cloning Kit Unidirectional, Invitrogen) or into the plasmid pRSETA (Invitrogen), resulting in constructs that include a 5'-sequence coding for 6 histidine residues and a protease cleavage site in frame with the human MTAP coding region. Cysteine replacement by serine was performed by site-directed mutagenesis with the QuickChange Site-Directed Mutagenesis kit (Stratagene) using the primers indicated in the suplemental information (Supp info table 1). The cloned products and all mutants were confirmed by sequencing the complete MTAP cDNA. Stable transfectants of each MTAP mutant were established in SK-Hep1 cells as described above.

Expression and purification of recombinant MTAP. Recombinant WT and MTAP mutants were expressed in *E. coli* BL21(DE3) (Invitrogen) as described previously [28]. Cells were homogenized in 100 mM Tris/HCl pH 8, 0.5 M NaCl with 1mM benzamidine, 1mM PMSF and 0.5 mg/ml lysozime. After 30 min incubation on ice, cell extracts were obtained by sonication and the cytosolic fraction was separated by ultracentrifugation at 100,000 x g at 4° C for 1 h. Recombinant WT and MTAP mutant proteins were purified from the bacterial cytosolic extracts by affinity chromatography on a Ni²⁺-Sepharose column (GE Healthcare) equilibrated in 50 mM Tris/HCl pH 8, 0.5 M NaCl and 40 mM imidazole. After washing with 10 column volumes with equilibration buffer, elution was performed with a linear gradient from 40 mM to 1 M imidazole in the same buffer. His-tagged MTAP proteins eluted from the Ni²⁺ column at 250 mM imidazole. Protein purity was always more that 95% as estimated by SDSpolyacrylamide gel electrophoresis [29]. MTAP containing fractions were pooled, desalted with 5 ml HiPrep desalting columns (GE Healthcare) and the protein concentration was determined using the Bio-Rad protein assay kit based on Bradford assay [30]. The purified protein was then stored at -80° C in the presence of 5 mM DTT. Enterokinase processing performed was according to the manufacturer recommendations.

MTAP activity assays. DTT was removed from the preparation with HiPrep Desalting columns equilibrated in 10 mM Tris/HCl pH 7.4, 10 mM KCl immediately before use. Two independent procedures were used to measure the activity of purified WT and MTAP mutant proteins. Firstly the reaction mixture always contained 1 μ M MTAP protein or liver homogenates (400 μ g total protein) in 50 mM phosphate buffer pH 7.4 and the appropriate concentration of MTA in a final volume of 400 μ l. Preincubation

with 5 mM DTT or different H_2O_2 concentrations was performed as indicated. The mixture was then incubated at 37° C for the indicated period of time and the reaction was stopped with perchloric acid to a final concentration of 0.4 M. MTA measurements were performed by HPLC as indicated previously. Alternatively, MTAP activity was determined according to the procedure described by Singh et al [31]. Conditions were as described above. The reaction was started by the addition of MTA and consumption was followed by the reduction of the absorbance at 275 nm. H_2O_2 was added when required to the enzyme and the mixture was incubated for 10 min at 37° C before adding MTA. Time course assays were performed in the presence of different concentrations of MTA and initial velocity values were obtained in each case from the linear fitting of MTA variation in the first 3 minutes of the reaction. V_i vs MTA concentration plots were fitted to Michaelis Menten equation using Kaleidagraph 3.5b5.

Quantification of free thiol groups and sulfenic derivatives. Purified MTAP was preincubated during 5 or 30 min with DTT or the appropriate concentration of H₂O₂ that were subsequently eliminated with a HiPrep Desalting column equilibrated in 50 mM phosphate buffer pH 7.4. Free thiol groups were quantitated by incubation with DTNB following the absorbance at 412 nm resulting from the liberation of TNB after interaction with SH groups. DTNB reaction was performed in a final volume of 400 µl containing 50 mM phosphate buffer pH 7.4, 1 mM EDTA, 6 M guanidinium chloride, 25 µM protein and 20 mM DTNB. The amount of accessible sulfhydryl groups was calculated by measuring the TNB released using a molar extinction coefficient of 13.600 M⁻¹ cm⁻¹ [32, 33]. Determination of sulfenic acid from cysteine SH oxidation was performed using two different approaches. In the first method, sulfenic acid was titrated with TNB according to the procedure described by Poole et al [34]. Protein samples prepared as indicated above were incubated with 20 mM TNB at 25° C for 30 min. The excess of TNB was then removed with HiPrep Desalting columns under the same conditions described above. DTT was added (50 mM) to release the TNB associated to SOH groups that was measured by absorbance at 412 nm. Alternatively, NBD-Cl (20 mM) was used following the procedure described elsewhere [35]. NBD-Cl was added to protein preparations and the mixture was incubated at 25° C for 30 min. After elimination of the NBD-Cl excess with HiPrep Desalting columns, SH derived adducts and sulfenic resulting derivatives were measured at 420 and 347 nm respectively.

THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20071569

Size exclusion chromatography. WT and MTAP mutants were chromatographed in a Superdex-200 HR 10/30 column (GE Healthcare) equilibrated in 50 mM Tris/HCl pH 7.5. Isocratic elution with the same buffer (0.8 ml/min) was monitored at 280 nm. The column was calibrated in the same conditions using as standard proteins catalase (232 kDa), BSA (67 kDa), trypsin (21 kDa) and ribonuclease A (13.7 kDa). Alternatively MTAP was denatured by 2 h incubation with 6 M guanidinium chloride after the indicated treatments. Unfolded proteins were then analyzed with the same column equilibrated in 100 mM Tris/HCl pH 3.0, 6 M guanidinium chloride.

Mass spectrometry analysis. Samples of MTAP protein (50-100 µg) were incubated with 500 μ M H₂O₂ or 5 mM DTT and subsequently prepared for matrix-assisted laser desorption mass spectrometry analysis (MALDI TOF GL-REF mass spectrometer, Waters). After desalting to eliminate the excess of H_2O_2 or DTT, free cysteines were alkylated by reaction with 100 mM iodoacetamide for 30 min and the protein was precipitated in chloroform-methanol (4:1). Protein pellets were resuspended in 25 mM ammonium bicarbonate and incubated with 2 µl of 50 µg/µl trypsin (Promega, wisconsin, US) at 37°C for 12h. Alternatively, the protein was dissolved in 10mM Tris /HCl pH 7.8, 10mM calcium chloride and incubated with 2 µl of 25 µg/µl chymotrypsin (Roche) at 25°C for 12h. Half of the sample was then reduced with 10 mM DTT at 55°C 30 min. The digestion mix was desalted with reversed phase C18- ZipTip (Millipore). Then 1 μ l of the resulting solutions were mixed with an equal volume of α -cyano-4hydroxy-trans-cynnamic acid (CHCA) in 50% acetonitrile with 0.1% TFA and spotted onto a MALDI target plate. The system was calibrated daily with a tryptic digest of ADH, and after analysis near point calibration was performed using ACTH as lockmass standard. Data processing was performed with Masslynx release 4.0 (Waters) to subtract background noise using polynomial order 10 with 10% of the data points below this polynomial. Data were also smoothed by one smooth operation (Savitzky Golay) with a window of two channels. MS spectra were processed automatically with MASCOT and then interpreted by manual inspection using Masslynx 4.0 (Waters). The presence of disulfide bridges was analyzed using the MS-Bridge 4.0.8 from Protein prospector webpage (http://prospector.ucsf.edu/).

Western blot analysis. Liver tissues and cultured cells were lysed and proteins were extracted as previously described (7). Equal amounts of protein ($20 \mu g$) were resolved in 12.5% SDS-polyacrylamide gels. Proteins were electrophoretically transferred to nitrocellulose membranes for 45 min at 120 V. Membranes were probed with a 1:5,000

or 1:1,000 dilution of anti-MTAP (the generous gift of Dr. D.A. Carson, University of California San Diego, USA) or anti-hemoxygenase 1 (HO-1) (Stressgene) antibodies respectively. Anti-chicken and anti-rabbit IgG peroxidase-conjugated secondary antibodies were used for MTAP and HO-1 assays. Blots were developed by enhanced chemoluminiscence (Perkin Elmer).

Results:

Impaired MTA degradation in the liver of LPS challenged mice. To evaluate MTA metabolism under oxidative stress, SAM, SAH and MTA levels were measured in the liver of LPS treated mice, a well known condition inducing a redox imbalance in hepatic cells. As previously shown [36], the inflammatory reaction associated with LPS administration induced 50% reduction of hepatic SAM and SAH. However, MTA concentration was 2.5 fold higher than that measured in control livers (Fig. 1A). No change in MTAP protein levels was observed upon LPS administration as assessed by Western blot analysis (Fig. 1B). In agreement with previous studies [37], heme oxygenase-1 (HO-1) expression was increased in response to the oxidative stress associated with the inflammatory reaction (Fig. 1B). Since MTAP catalyzes the only known MTA catabolic reaction, the increase in hepatic MTA levels in LPS-treated mice, even when the concentration of the precursor SAM was diminished, suggests impairment in MTAP activity. In order to further support this idea, MTAP activity was measured (Fig. 1C) in liver extracts from control and treated mice and a 65% inactivation was observed upon LPS administration (1.52±0.02 vs 0.66±0.08 nmol MTA/min/mg protein in controls and challenged livers respectively).

ROS-mediated MTAP inactivation in hepatic cells. To investigate the effect of ROS on MTAP activity, HepG2 cells were incubated with tert-butyl hydroperoxide and the rate of exogenous MTA consumption was determined. As a negative control the experiment was also performed with SK-Hep1 cells, which we have previously shown to lack MTAP expression [19] (Fig. 2B). In all cases, the culture medium was deprived of methionine to prevent endogenous MTA synthesis and was supplemented with horse serum to avoid extracellular MTA degradation by the MTAP present in the commonly used bovine serum [38]. MTA was efficiently degraded by HepG2 MTAP activity within the first 30 h of incubation. As expected, the levels of MTA in the culture medium remained unchanged in the presence of SK-Hep1 cells. Induction of oxidative

stress with tert-butyl hydroperoxide significantly reduced the capacity of HepG2 cells to metabolize the supplemented MTA (only 30% of the initial MTA was degraded under these conditions), likely resulting from the inactivation of the constitutive MTAP (Fig. 2A). The steady state levels of MTAP protein remained unchanged upon tert-butyl hydroperoxide exposure (Fig. 2B). These evidences suggest that cellular MTAP is inactivated by reactive oxygen species.

H₂O₂-induced MTAP inactivation. The activity of purified MTAP was measured before and after digestion with enterokinase to determine the effect of the N-terminal tag. Only preparations with more than 95% purity were used for subsequent experiments. Digestion with enterokinase removed the N-terminal tag and resulted in the expected 32 kDa subunits as assessed by SDS-PAGE. Both, tagged and digested enzymes had similar MTA degrading rates of 57.6 and 398 nmol min⁻¹ mg⁻¹ when the assay was performed with 15 and 200 µM MTA respectively (not shown). Since no apparent change of activity was associated with the N-terminal tag, all the experiments were carried out using the His-tagged recombinant proteins. The putative effect of ROS on MTAP activity was studied by preincubation of the enzyme with H_2O_2 . Independently on whether the protein was processed with enterokinase or not, a 60% decrease of the enzymatic activity was measured after oxidation and the inactivation was reversed when the activity assay was performed in the presence of reducing agents (Fig. 1 Supp Info). The hydrodynamic properties of the recombinant MTAP purified from E. coli extracts were analyzed by size exclusion chromatography. The elution volume of recombinant MTAP was 13.28 ml, which is compatible with a molecular mass of 108 kDa according to the elution profile of standard proteins. This result indicates that the purified MTAP is a trimer of tagged subunits. Since the elution volume of the protein remained unchanged upon incubation with H₂O₂ (13.22 ml), oxidation associated changes of the trimeric structure of MTAP were ruled out (data not shown). To get insight into the mechanism of H₂O₂-mediated inactivation of MTAP, kinetic experiments were performed. V_{max} was reduced from 433±29 to 169±8 nmol MTA consumed min⁻¹ mg⁻¹ in the absence or presence of 500 μ M H₂O₂, respectively (Table I and Fig 1 Supp Info). The estimated K_m for MTA (around 30 µM) remained unchanged upon oxidation (Table I and Fig 1 Supp Info), suggesting that the loss of activity might result from impairment of the catalytic mechanism more than from impeded MTA binding to the active site of the enzyme. Therefore, these data suggest that H_2O_2 is a non-competitive inhibitor with an estimated $[I]_{50}$ of about 300 μ M.

Identification of target cysteine residues involved in the impairment of MTAP activity by ROS. In order to elucidate the participation of cysteine residues on MTAP inactivation by oxidation and to identify the targeted cysteine(s), nine mutant MTAP proteins in which a single cysteine residue was replaced by serine were obtained and their susceptibility to inactivation by H₂O₂ was analyzed. Mutants were expressed and purified from E. coli extracts and the purity of the corresponding proteins was always more than 95% in all preparations used. Replacement of cysteine by serine had no effect on the enzymatic activity of MTAP mutants. Similarly to the WT enzyme, the activity measured at saturating concentration of MTA was close to 396 nmol MTA consumed min⁻¹ mg⁻¹ in all cases (Fig. 3A). Incubation with 500 μ M H₂O₂ reduced the activity of WT and mutant proteins to about 132 nmol MTA consumed min⁻¹ mg⁻¹ with the exception of C136S and C223S MTAP species that remained fully active after oxidation (Fig. 3A). These results suggest that the oxidation of both, C136 and C223, is required to mediate MTAP inactivation. The loss of sensitivity to inactivation by ROS of C136S and C223S mutants was also investigated in hepatic cells. With this purpose stably transfected SK-Hep1 cells expressing these two MTAP mutants were challenged with 10 µM tert-butyl hydroperoxide and the consumption of extracellular MTA was measured after 30 h. MTAP mutant protein levels (as determined by Western blotting) and the capacity of MTA degradation by transfected SK-Hep1 cells were similar to those observed in HepG2 cells that express the endogenous enzyme (800-1000 pmol MTA consumed mg⁻¹ min⁻¹). SK-Hep1 cells expressing either of the two mutants were not sensitive to tert-butyl hydroperoxide and their MTA metabolizing activity remained unchanged after exposure to the oxidant (Fig. 3B), further supporting the central role of C136 and C223 in mediating MTAP inactivation by ROS. In contrast, SK-Hep1 cells transfected with a vector expressing WT MTAP showed the expected decrease (about 60%) of MTA consumption upon exposure to tert-butyl hydroperoxide.

Identification of Cys–SH oxidation derivatives. To characterize the thiol oxidation derivatives leading to MTAP inactivation we firstly measured the number of accessible cysteines remaining upon incubation with H_2O_2 . The protein was oxidized and then denatured in 6 M guanidinium chloride to ensure titration of all free Cys residues with DTNB. This procedure allowed detection of 10 Cys in the reduced protein, which is compatible with the presence of 9 Cys in the MTAP sequence and one additional residue provided by the N-terminal tag. Incubation with H_2O_2 restricted the access of the thiol reacting reagent to 4 Cys independently of the time of exposure to the oxidant,

suggesting the oxidation of 6 Cys residues as was further supported by the recovery of reactivity of all 10 Cys with DTT. This evidence indicates oxidation of Cys residues additional to those responsible of MTAP inactivation by ROS. Mass spectrometry analyses were then performed on tryptic and chimotryptic digests from reduced and H₂O₂-treated MTAP aiming to identify Cys residues involved in a putative disulfide bonding. Ion assignment from MALDI TOF spectra allowed more than 60% coverage of MTAP sequence in all cases. Interestingly, a 1797.13 Da ion was specifically detected on peptide fingerprints from H₂O₂ oxidized MTAP and the presence of this peptide species was prevented when oxidation was reversed with DTT (Fig. 4). The differential ion might result from interaction between Cys145 and Cys211 leading to the association of the corresponding chymotryptic peptides as suggested by the experimental molecular mass which is 2 Da less than the theoretically predicted from the sequence, in agreement with a disulfide bridged dipeptide. Since no additional cysteine derivatives were identified, the oxidation state of Cys136 and 223, responsible for MTAP inactivation, remained unclear. Oxidation to sulfenic acid was then explored using TNB or, alternatively, NBD-Cl. Control MTAP yielded negative results when incubated with either sulfenic-specific reagents. However, after exposure to H_2O_2 , sulfenic acids were observed independently of the detection method used and were not detectable if the oxidized and modified enzyme was treated with DTT. TNB reagent allowed titration of 2 sulfenics per MTAP subunit (Fig. 5). Substitution of Cys136 or Cys223 by Ser resulted in MTAP variants that contained only one sulfenic acid after oxidation (Fig 5). These results indicate that H₂O₂-induced MTAP inactivation results from oxidation of Cys136 and Cys223 to sulfenic acid. A reduction of the 412 nm signal was observed if oxidation was prolonged over 30 min, suggesting that the sulfenic groups might evolve to more stable derivatives (Fig 2 supp. info.).

Discussion

The participation of MTA in essential metabolic and signaling pathways suggests that the regulation of MTAP activity might be important in facilitating cellular adaptation to physiological or pathological conditions. The liver parenchyma is one of the normal human tissue types where *MTAP* gene expression is higher [39]. It has been demonstrated that methionine metabolism must be precisely tuned to maintain normal

liver function and that impairment of this pathway correlates with hepatocyte dedifferentiation and proliferation leading to the progression of liver diseases [4, 40]. Consistent with the central role of MTA in the cell, a conservative mechanism based on a coordinated regulation of methionine adenosyltransferase (MAT), the enzyme catalyzing the synthesis of the precursor SAM, and MTAP might prevent deleterious MTA decrease in hepatocytes (Fig 6). Firstly, the oxidative stress resulting from mild and transient liver damage inactivates MAT perhaps providing an adaptive response that allows hepatocyte survival [41]. Down-regulation of MAT might be correlated with reversible inactivation of MTAP, as has been shown in the present study, to compensate the impaired SAM synthesis leading to maintenance of cellular MTA. Cellular antioxidant defences might reactivate MAT [42] and MTAP returning methionine catabolism and salvage pathways to their normal steady state. However, the maintenance of the diseased condition derives in a persistent impairment of liver MAT [43] and MTAP [19] gene expression through epigenetic mechanisms. In light of these observations it might by hypothesized that impairment of SAM synthesis might be compensated, at least partially, by inactivation of MTAP leading to maintenance of MTA levels that may be critical for cellular stability. The idea of a coordinated regulation of MTA metabolism by the redox state of the cell might be further reinforced by evidences indicating the inactivation of SAM decarboxylase by reactive species [44]. Interestingly, it has been reported that the hepatic levels of putrescine are increased in murine liver upon treatment with LPS resulting from up-regulation of ornitine decarboxylase. However, the increment of putrescine did not promote a parallel increase in spermidine and spermine (Fig. 6) [45]. Our results might explain these observations since MTA, which accumulates in the liver of LPS treated mice as a result of MTAP inactivation, inhibits spermine and spermidine syntases [1, 6].

Protein oxidation is a common regulatory mechanism of metabolic and signaling pathways [46]. Native MTAP is a homo-trimer with active sites composed entirely of residues of the same subunit with the exception of His137 and Leu279 that are provided by the neighbouring monomer [13]. The loss of MTAP activity upon exposure to H_2O_2 is a reversible process that results from the specific oxidation of cysteine residues 136 and 223 as was demonstrated by using the purified enzyme as well as cellular systems whose MTA consumption capacity was severely impaired after an oxidative challenge. These two cysteines are conserved in mammalian MTAPs and in the *D. melanogaster* ortholog but are not present in other MTAP sequences, explaining the lack of cys-

mediated redox regulation reported in different Archaea species [11]. No structural or functional evidences support a direct participation of cysteine residues in MTA binding or in the catalytic mechanism of MTAP, consistently with our finding that the activity of the enzyme remains as in the WT protein when Cys residues were replaced by serine. However, specific oxidation of Cys136 and Cys223 resulted in a reduced V_{max} while the K_m of the enzyme remained unchanged, suggesting that the binding of MTA to the active site of MTAP is not modified in the oxidized form. Interestingly, Cys223 is located on a flexible loop over the active site cleft of MTAP connecting B strand 11 with α -helix 5 and is close to Asp220 and Asp222 which participate in the catalytic process and Cys136 is adjacent to His137 that integrates the MTA binding pocket of the neighbouring subunit [13]. Moreover, non-conservative substitution of Cys223 by Tyr resulted in an inactive MTAP mutant [47]. Therefore, it is tempting to speculate that the oxidation of Cys136 and Cys223 might alter the microenvironment of these catalytic residues modifying their chemical reactivity and consequently the activity of the enzyme.

Oxidation of the two cysteines is required to promote MTAP inactivation as indicated by the loss of sensitivity of Cys136S and Cys233S mutants to be inactivated by H₂O₂. The idea of a disulfide interaction between these residues arises as a likely explanation to the coordinated effect of the two oxidation events on MTAP inactivation. However, the distances separating the corresponding sulphur atoms of Cys136 and Cys233 from adjacent subunits are 15.77 Å and 35.54 Å in the same MTAP monomer [13], too far away to allow prediction of their interaction without assuming conformational rearrangements that to our knowledge have not yet been demonstrated. Consistently, the only disulfide bond clearly identified upon oxidation with H₂O₂ involved Cys145 and Cys211 as expected from the 3.63 Å separating their thiol groups. Additionally DTNB titration data indicate that six cysteines from the MTAP monomer become oxidized upon incubation with H₂O₂ and therefore two cysteines supplementary to Cys 136, 145, 211, and 223 may undergo oxidation.

Incubation of MTAP with H_2O_2 led to oxidation of Cys136 and Cys223 to reversible sulfenic acid. Longer exposures of MTAP to H_2O_2 to those reported in this study resulted in oxidized forms that displayed hydrodynamic volumes larger than those expected for the monomer when analyzed by size exclusion chromatography under denaturing conditions (Fig 2 Supp. Info.). This observation may suggest a reversible inter-subunit interaction that should involve Cys136 and Cys223 since the effect was

reversed by reducing agents, and mutants lacking these residues failed to accumulate the putatively cross-linked intermediate. Since no disulfide interactions additional to Cys145-S-S-Cys211 were detected, our observations may be explained alternatively assuming the stabilization of Cys136 and/or Cys223 sulfenic derivatives through reaction with residues located in the adjacent monomer leading to the formation of reversible intermediates such as sulfenyl amides [48, 49]. This notion might find further support on the time dependent reduction of sulfenic content per protein subunit observed after oxidation periods longer than 30 min, suggesting their stabilization to derivatives that were recycled back to reduced thiols with reducing agents (Fig. 2 Supp Info). Detailed structural studies are required to demonstrate these hypotheses and to fully elucidate the ROS-induced oxidation intermediates of MTAP.

In summary, we have presented evidences in this study supporting the loss of MTAP activity in the liver of LPS challenged mice as well as in HepG2 cells exposed to tert-butyl hydroperoxide. MTAP activity is regulated by mechanisms involving the specific and reversible oxidation of cysteine residues Cys136 and Cys233 to sulfenic acid that may be further stabilized to a sulfenyl amide intermediate. Additional oxidation events result in disulfide bonding of Cys145 and Cys211 thiols, although this modification has no impact on the enzymatic activity of MTAP. In the liver this regulatory mechanism might provide means to maintain intracellular MTA levels under stress conditions such as those imposed by inflammatory reactions ensuring hepatocyte viability.

Acknowledgments

The technical assistance of Goretti Azparren, Sonia Beaumont, and María I. Mora is acknowledged. This work was supported by: the agreement between FIMA and the "UTE project CIMA"; grants Plan Nacional I+D+I 2004-03538 and 2004-01855 from Ministerio de Educación y Ciencia to MAA and FJC; grant ROI AA-12677 from the National Institute on Alcohol Abuse and Alcoholism to, MAA; grant R01 AT1576 from the National Center for Complementary and Alternative Medicine to MAA and FJC; grant RO1 AA013847 from the National Center for Complementary and Alternative Medicine to FJC; grant STREP FP6-2004-LIFESCIHEALTH-5 018649 from the 6th framework programm of the UE to FJC. ISCIII-RETIC RD06/0020 to MAA and FJC. Grant FIS CP04/00123 from Ministerio de Sanidad y Consumo to MS and MAA. MUL is supported by a Juan de la Cierva contract from the Ministerio de Educación y

Ciencia, Spain. This laboratory is member of the National Institute of Proteomics Facilities, ProteoRed.

References

- 1 Pegg, A. E. (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. **48**, 759-774
- 2 Wu, S. E., Huskey, W. P., Borchardt, R. T. and Schowen, R. L. (1983) Chiral instability at sulfur of S-adenosylmethionine. Biochemistry **22**, 2828-2832
- 3 Williams-Ashman, H. G., Seidenfeld, J. and Galletti, P. (1982) Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochem. Pharmacol. **31**, 277-288
- 4 Mato, J. M., Corrales, F. J., Lu, S. C. and Avila, M. A. (2002) S-Adenosylmethionine: a control switch that regulates liver function. Faseb J. 16, 15-26
- Hevia, H., Varela-Rey, M., Corrales, F. J., Berasain, C., Martinez-Chantar, M.
 L., Latasa, M. U., Lu, S. C., Mato, J. M., Garcia-Trevijano, E. R. and Avila, M.
 A. (2004) 5'-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology 39, 1088-1098
- Pascale, R. M., Simile, M. M., De Miglio, M. R. and Feo, F. (2002)
 Chemoprevention of hepatocarcinogenesis: S-adenosyl-L-methionine. Alcohol 27, 193-198
- 7 Maher, P. A. (1993) Inhibition of the tyrosine kinase activity of the fibroblast growth factor receptor by the methyltransferase inhibitor 5'methylthioadenosine. J. Biol. Chem. **268**, 4244-4249
- 8 Avila, M. A., Garcia-Trevijano, E. R., Lu, S. C., Corrales, F. J. and Mato, J. M. (2004) Methylthioadenosine. Int. J. Biochem. Cell Biol. **36**, 2125-2130
- Moreno, B., Hevia, H., Santamaria, M., Sepulcre, J., Munoz, J., Garcia-Trevijano, E. R., Berasain, C., Corrales, F. J., Avila, M. A. and Villoslada, P. (2006) Methylthioadenosine reverses brain autoimmune disease. Ann. Neurol. 60, 323-334
- 10 Pegg, A. E. and Williams-Ashman, H. G. (1969) Phosphate-stimulated breakdown of 5'-methylthioadenosine by rat ventral prostate. Biochem. J. 115, 241-247
- Cacciapuoti, G., Forte, S., Moretti, M. A., Brio, A., Zappia, V. and Porcelli, M. (2005) A novel hyperthermostable 5'-deoxy-5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Febs J. 272, 1886-1899
- 12 Della Ragione, F., Takabayashi, K., Mastropietro, S., Mercurio, C., Oliva, A., Russo, G. L., Della Pietra, V., Borriello, A., Nobori, T., Carson, D. A. and Zappia, V. (1996) Purification and characterization of recombinant human 5'methylthioadenosine phosphorylase: definite identification of coding cDNA. Biochem. Biophys. Res. Commun. 223, 514-519
- Appleby, T. C., Erion, M. D. and Ealick, S. E. (1999) The structure of human 5'deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure 7, 629-641
 Olopade, O. I., Pomykala, H. M., Hagos, F., Sveen, L. W., Espinosa, R., 3rd,
 - Dreyling, M. H., Gursky, S., Stadler, W. M., Le Beau, M. M. and Bohlander, S. K. (1995) Construction of a 2.8-megabase yeast artificial chromosome contig

THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20071569

and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Proc. Natl. Acad. Sci. U S A **92**, 6489-6493

- 15 Kamatani, N. and Carson, D. A. (1981) Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts. Biochim. Biophys. Acta 675, 344-350
- 16 Christopher, S. A., Diegelman, P., Porter, C. W. and Kruger, W. D. (2002) Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res. **62**, 6639-6644
- Illei, P. B., Rusch, V. W., Zakowski, M. F. and Ladanyi, M. (2003)
 Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin. Cancer Res. 9, 2108-2113
- Behrmann, I., Wallner, S., Komyod, W., Heinrich, P. C., Schuierer, M.,
 Buettner, R. and Bosserhoff, A. K. (2003) Characterization of
 methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma.
 Am. J. Pathol. 163, 683-690
- 19 Berasain, C., Hevia, H., Fernandez-Irigoyen, J., Larrea, E., Caballeria, J., Mato, J. M., Prieto, J., Corrales, F. J., Garcia-Trevijano, E. R. and Avila, M. A. (2004) Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochim. Biophys. Acta 1690, 276-284
- 20 Hellerbrand, C., Muhlbauer, M., Wallner, S., Schuierer, M., Behrmann, I., Bataille, F., Weiss, T., Scholmerich, J. and Bosserhoff, A. K. (2006) Promoterhypermethylation is causing functional relevant downregulation of methylthioadenosine phosphorylase (MTAP) expression in hepatocellular carcinoma. Carcinogenesis 27, 64-72
- Kadariya, Y., Nakatani, K., Nishioka, J., Fujikawa, T., Kruger, W. D. and Nobori, T. (2005) Regulation of human methylthioadenosine phosphorylase gene by the CBF (CCAAT binding factor)/NF-Y (nuclear factor-Y). Biochem. J. 387, 175-183
- 22 Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C. and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U S A 101, 12130-12135
- Della Ragione, F., Carteni-Farina, M., Gragnaniello, V., Schettino, M. I. and Zappia, V. (1986) Purification and characterization of 5'-deoxy-5'methylthioadenosine phosphorylase from human placenta. J. Biol. Chem. 261, 12324-12329
- Zhang, Y., Porcelli, M., Cacciapuoti, G. and Ealick, S. E. (2006) The crystal structure of 5'-deoxy-5'-methylthioadenosine phosphorylase II from Sulfolobus solfataricus, a thermophilic enzyme stabilized by intramolecular disulfide bonds. J. Mol. Biol. 357, 252-262
- 25 Perez-Mato, I., Castro, C., Ruiz, F. A., Corrales, F. J. and Mato, J. M. (1999) Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J. Biol. Chem. **274**, 17075-17079
 - Velasco, J. A., Avila, M. A. and Notario, V. (1999) The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene **18**, 689-701

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

- Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.
 162, 156-159
- Mingorance, J., Alvarez, L., Sanchez-Gongora, E., Mato, J. M. and Pajares, M. A. (1996) Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state. Biochem. J. 315 (Pt 3), 761-766
- 29 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature **227**, 680-685
- 30 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. **72**, 248-254
- 31 Singh, V., Shi, W., Evans, G. B., Tyler, P. C., Furneaux, R. H., Almo, S. C. and Schramm, V. L. (2004) Picomolar transition state analogue inhibitors of human 5'-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A. Biochemistry 43, 9-18
- 32 Cavallini, D., Graziani, M. T. and Dupre, S. (1966) Determination of disulphide groups in proteins. Nature **212**, 294-295
- Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70 77
- 34 Poole, L. B. and Claiborne, A. (1989) The non-flavin redox center of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid. J. Biol. Chem. 264, 12330-12338
- Ellis, H. R. and Poole, L. B. (1997) Novel application of 7-chloro-4-nitrobenzo 2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36, 15013-15018
- 36 Payabvash, S., Ghahremani, M. H., Goliaei, A., Mandegary, A., Shafaroodi, H., Amanlou, M. and Dehpour, A. R. (2006) Nitric oxide modulates glutathione synthesis during endotoxemia. Free Radic. Biol. Med. 41, 1817-1828
- 37 Schock, B. C., Van der Vliet, A., Corbacho, A. M., Leonard, S. W., Finkelstein, E., Valacchi, G., Obermueller-Jevic, U., Cross, C. E. and Traber, M. G. (2004) Enhanced inflammatory responses in alpha-tocopherol transfer protein null mice. Arch. Biochem. Biophys. 423, 162-169
- 38 Riscoe, M. K. and Ferro, A. J. (1984) 5-Methylthioribose. Its effects and function in mammalian cells. J. Biol. Chem. **259**, 5465-5471
- 39 Nobori, T., Takabayashi, K., Tran, P., Orvis, L., Batova, A., Yu, A. L. and Carson, D. A. (1996) Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc. Natl. Acad. Sci. USA 93, 6203-6208
- Calvisi, D. F., Simile, M. M., Ladu, S., Pellegrino, R., De Murtas, V., Pinna, F., Tomasi, M. L., Frau, M., Virdis, P., De Miglio, M. R., Muroni, M. R., Pascale, R. M. and Feo, F. (2007) Altered methionine metabolism and global DNA methylation in liver cancer: Relationship with genomic instability and prognosis. Int. J. Cancer. 121, 2410-2420
 - Sanchez-Gongora, E., Pastorino, J. G., Alvarez, L., Pajares, M. A., Garcia, C., Vina, J. R., Mato, J. M. and Farber, J. L. (1996) Increased sensitivity to oxidative injury in chinese hamster ovary cells stably transfected with rat liver S-adenosylmethionine synthetase cDNA. Biochem. J. **319** (Pt 3), 767-773

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

- 42 Corrales, F. J., Ruiz, F. and Mato, J. M. (1999) In vivo regulation by glutathione of methionine adenosyltransferase S-nitrosylation in rat liver. J. Hepatol. **31**, 887-894
- Avila, M. A., Berasain, C., Torres, L., Martin-Duce, A., Corrales, F. J., Yang,
 H., Prieto, J., Lu, S. C., Caballeria, J., Rodes, J. and Mato, J. M. (2000) Reduced
 mRNA abundance of the main enzymes involved in methionine metabolism in
 human liver cirrhosis and hepatocellular carcinoma. J. Hepatol. 33, 907-914
- Hillary, R. A. and Pegg, A. E. (2003) Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochim. Biophys. Acta 1647, 161-166
- Endo, Y. (1982) Simultaneous induction of histidine and ornithine decarboxylases and changes in their product amines following the injection of Escherichia coli lipopolysaccharide into mice. Biochem. Pharmacol. 31, 1643-1647
- 46 Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. **82**, 47-95
- 47 Kadariya, Y., Nishioka, J., Nakamura, A., Kato-Nakazawa, K. and Nobori, T. (2003) Molecular characterization of 5'-deoxy-5'-methylthioadenosine phosphorylase-deficient mutant clones of murine lymphoma cell line R1.1. Cancer Sci. **94**, 519-522
- Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks, N. K. and Barford, D. (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769-773
- van Montfort, R. L., Congreve, M., Tisi, D., Carr, R. and Jhoti, H. (2003)
 Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
 Nature 423, 773-777

Figure legends

Figure 1. MTAP inactivation in the liver of LPS challenged mice. Hepatic levels of SAM, SAH and MTA in LPS treated mice are represented as the percentage of control values (100%) measured in saline injected animals (n=6 per condition) (A). 100% values were 38 ± 6.12 , 12 ± 1.5 and 4.2 ± 1.1 pmol/mg protein for SAM, SAH and MTA respectively. Levels of MTAP and HO-1 proteins were determined in control and LPS challenged mice by Western blotting (representative blots are shown) (B).

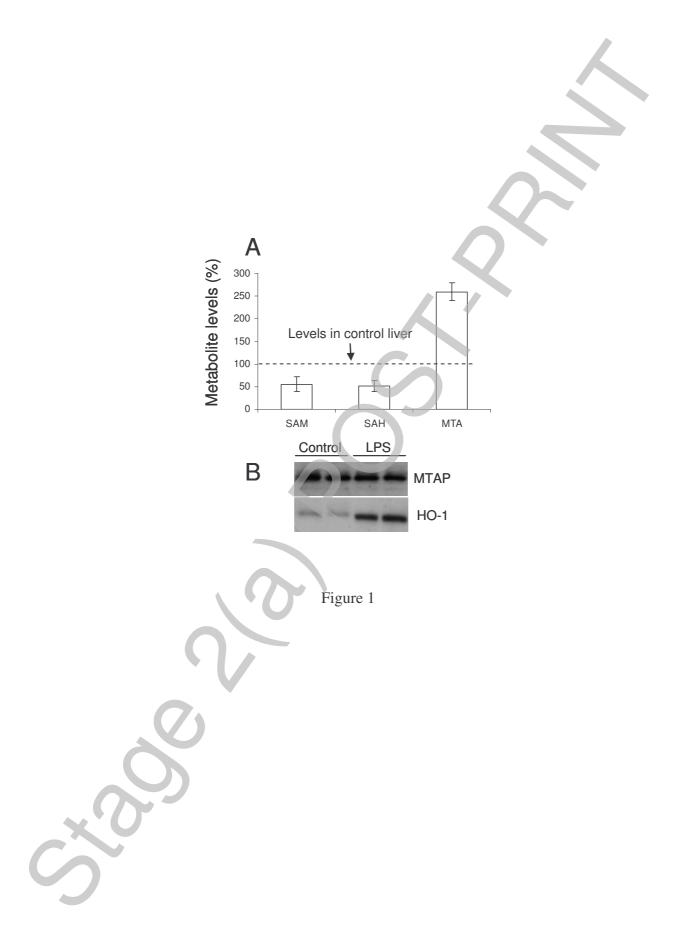
Figure 2. Impairment of MTAP activity in HepG2 cells upon an oxidative challenge. HepG2 cells were incubated in the absence (**•**) or presence of 1 μ M tert-butyl hydroperoxide (**•**), and their capacity to metabolize MTA was measured. As a negative control the MTA consuming capacity of SK-Hep1 cells (Δ) lacking MTAP was measured in the same conditions (A). The initial MTA concentration was 16 μ M. The remaining MTA after the different incubation times was measured in the culture

medium by HPLC. The MTAP activity calculated for HepG2 cells without tert-butyl hydroperoxide was 971.95 pmol MTA consumed $mg^{-1}min^{-1}$. MTAP levels were determined by Western blotting in HepG2 cells after 48 h in the absence (1) or presence of 1 μ M tert-butyl hydroperoxide (2) and in SK-Hep1 cells (3) (B). Data are the mean±stdev of three independent experiments.

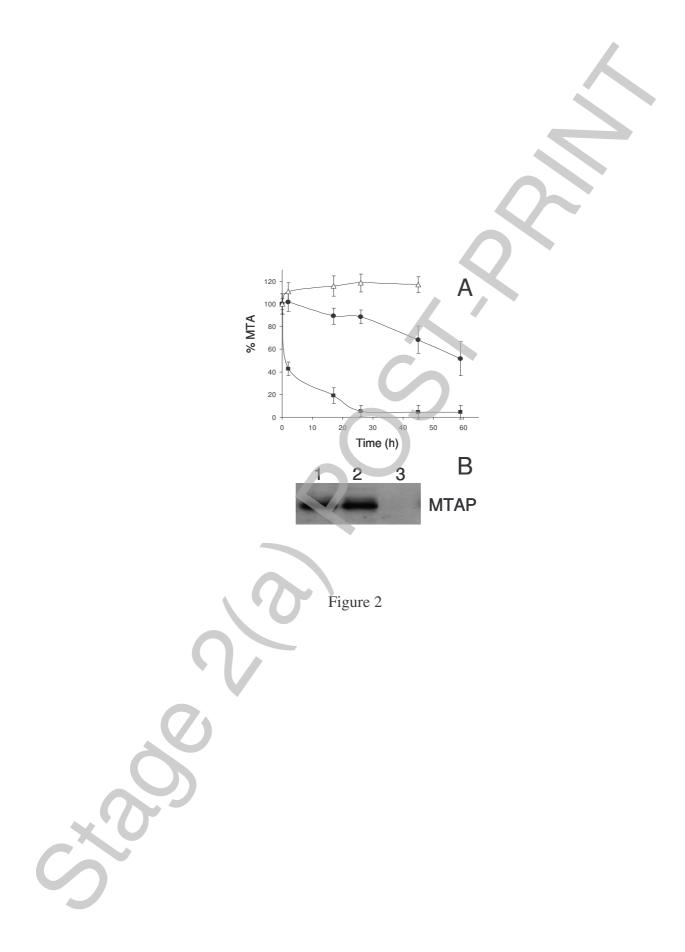
Figure 3. Identification of cysteine residues mediating MTAP inactivation by reactive oxygen species. (A) The activity of WT and mutant MTAP proteins was measured in the absence (solid bars) or presence of 500 μ M H₂O₂ (empty bars). MTAP concentration was 1 μ M in all cases and the initial and final amount of MTA was measured by HPLC. (B) The MTA metabolizing rate was measured in SK-Hep1 cells stably transfected with an empty vector (SK-EV) or expressing human WT (SK-WT), C136S or C223S MTAP mutants in the absence (solid bars) or presence (empty bars) of 10 μ M tert-butyl hydroperoxide. MTA was added to the culture medium at initial concentration of 16 μ M. The MTA content in the culture medium was measured by HPLC. The Western blot shows MTAP levels in HepG2 (1) and SK-Hep1 cells expressing WT MTAP (2), C136S (3), C223S (4) or transfected with an empty vector (5). All data are the mean±stdev of three independent experiments.

<u>Figure 4</u>. Mass spectrometric detection of Cys145-S-S-Cys211 disulfide interaction. MALDI TOF MS spectra of tryptic digests from DTT (A), H_2O_2 (B) or H_2O_2 and then DTT treated (C) WT MTAP were obtained. H_2O_2 was removed before chymotrypsinolysis to avoid peptide crosslinking by disulfide interactions during digestion. The insert on panel B indicates the sequence of the two MTAP peptides containing Cys145 and Cys211 which interaction is consistent with the H_2O_2 -associated detection of a 1797.13 Da ion.

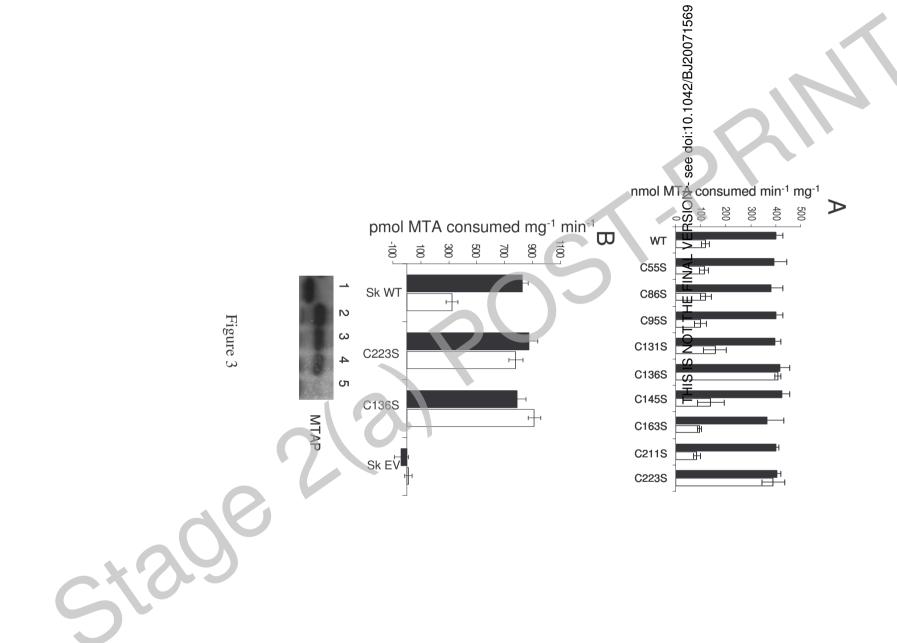
Figure 5. Oxidation of Cys136 and Cys233 to sulfenic acid. Sulfenic acid derivatives were detected by incubation of reduced or oxidized native MTAP with TNB or NBD-CL (A). For TNB experiments, control (dashed line) or H_2O_2 (solid line), DTT (dotted line) and H_2O_2 and then DTT (dashed and dotted line) treated MTAP were assayed. For NBD-CL control (solid line) or H_2O_2 conditions (dashed line) were analyzed. The number of sulfenic derivatives per MTAP subunits was estimated by titration with TNB (B). Results express the mean±stdev of three independent experiments.


<u>Figure 6</u>. Schematic representation of MTA metabolism. Checkpoints modulated by redox imbalance are indicated. (1) Methionine adenosyltransferase, (2) methyl transferases, (3) S-adenosylmethionine decarboxylase, (4) ornithine decarboxylase, (5) spermidine synthase, (6) spermine synthase, (7) 5'-methylthioadeosine phosphorylase.

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

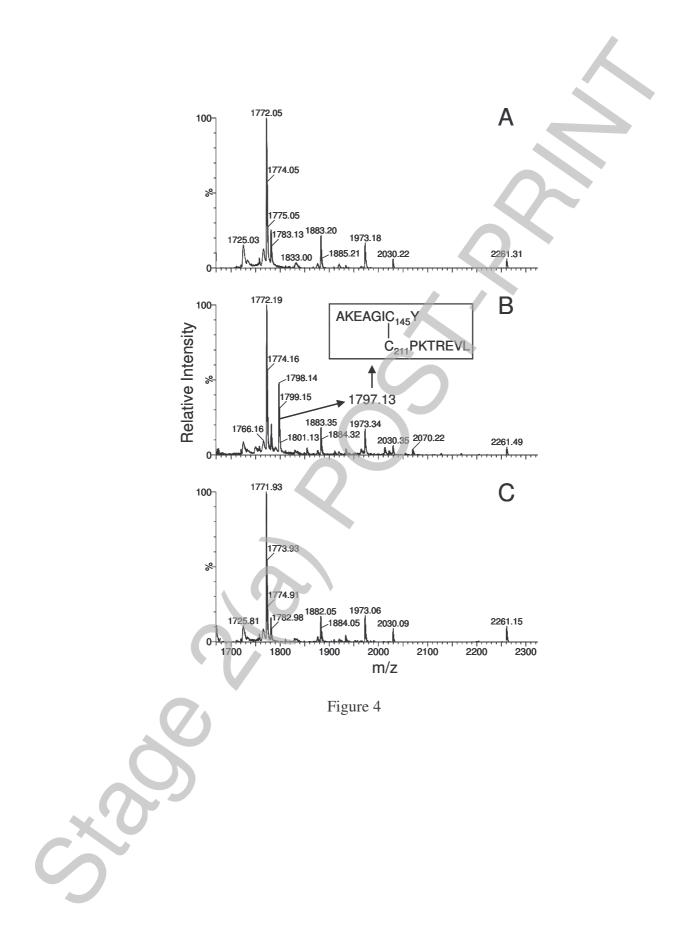

Table 1. V_{max} and K_{m} values for reduced and oxidized MTAP

	V _{max} (nmol MTA consumed min ⁻¹ mg ⁻¹)	K _m (μM)
ITAP	433±29,37	32,77±9,42
$ITAP + 100 \ \muM \ H_2O_2$	271,9±22,45	24,93±9,78
ITAP + 500 μM H ₂ O ₂	168,97±8,34	37,18±7,42
	\mathcal{O}	
	() ,)	
Ť V		
0.		

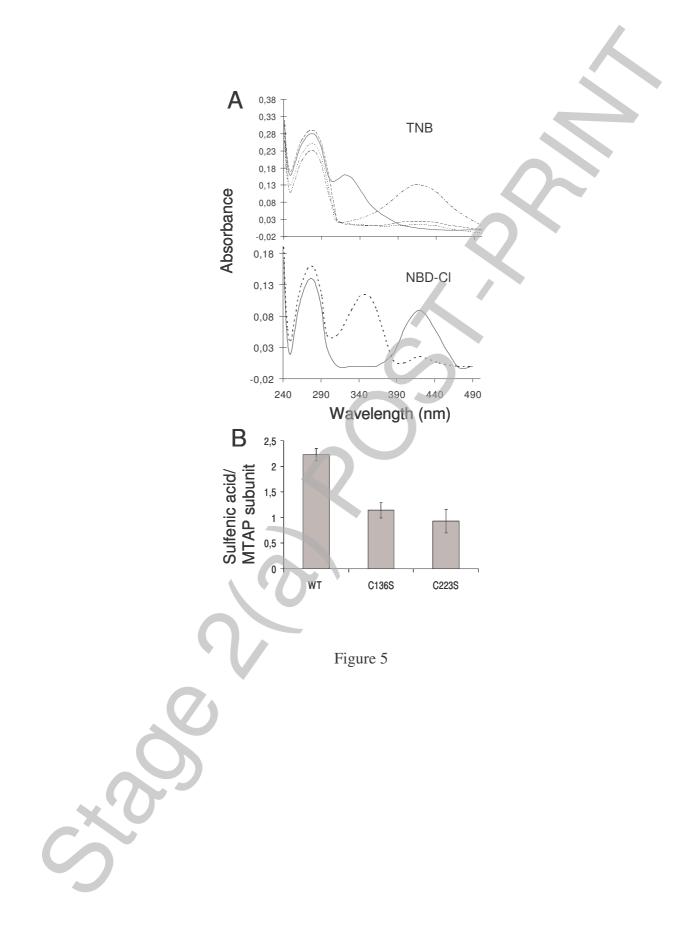

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

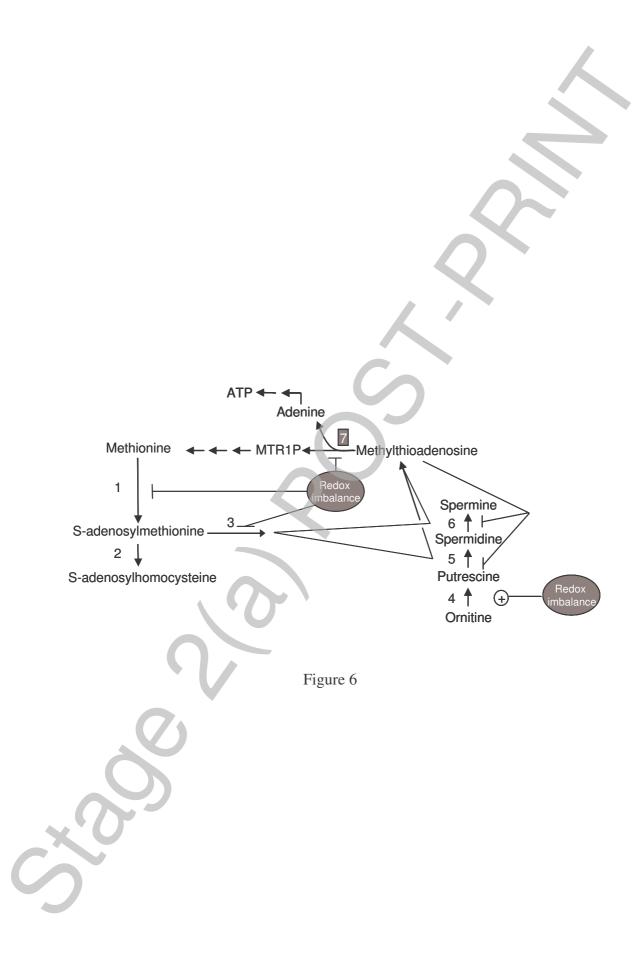
Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society



25


BJ


Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

' 2008 The Authors Journal compilation ' 2008 Biochemical Society

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law. ' 2008 The Authors Journal compilation ' 2008 Biochemical Society

