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Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely 
dependent on transporters to salvage purines from the environment. Only one low-
affinity adenosine transporter has been characterised to date. Here we report a 
comprehensive study of purine nucleobase and nucleoside transport by 
intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (a) a high 
affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (b) 
a separate high affinity transporter for adenine (c) a low affinity adenosine transporter 
and (d) a low affinity/high capacity adenine carrier. Hypoxanthine was taken up with 
12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted 
PfNT1 gene we found that the high affinity hypoxanthine/nucleoside transport activity 
was completely abolished whereas the low affinity adenosine transport activity was 
unchanged. Adenine transport was increased, presumably to partly compensate for the 
loss of the high affinity hypoxanthine transporter. We thus propose a model for purine 
salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by 
PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.  
 
Keywords: Purine salvage; Plasmodium falciparum; nucleobase transporter; 
Equilibrative Nucleoside Transporter family; drug target; PfNT1. 
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Abbreviations used: 42 

43 
44 
45 
46 

ENT, Equilibrative Nucleoside Transporter; hFNT1, human Facilitative Nucleoside 
Transporter; NPP, New Permeation Pathways; PfADET, Plasmodium falciparum 
Adenine Transporter; PfLAAT, Plasmodium falciparum Low Affinity Adenosine 
Transporter; PfNT1, Plasmodium falciparum Nucleoside Transporter 1; PV 
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Plasmodium spp. are auxotrophic for purines, as are all other parasitic protozoa 
studied to date, and require an efficient salvage system for these essential nutrients 
[1]. Purine salvage may be especially important during the fast dividing intra-
erythrocytic stages, and it has long been known that Plasmodium trophozoites 
accumulate some purines very rapidly [1,2]. Tracy and Sherman [2] found that 
hypoxanthine, adenosine and inosine but not adenine or nucleotides were efficiently 
taken up by the avian malaria parasite P. lophurae. Similarly, the rodent malaria P. 
berghei was reported to have two separate uptake systems for purines: one for adenine 
and one for adenosine, inosine and hypoxanthine [3]. The study of purine metabolism 
in the human malaria species P. falciparum, however, showed clearly that 
hypoxanthine was by far the preferred purine source for the parasite, with very high 
activities of hypoxanthine-guanine phosphoribosyltransferase and inosine 
phosphorylase but not of adenine phosphoribosyltransferase or adenosine kinase [4]. 
Adenosine salvage appeared to proceed through rapid deamination to inosine and 
thence to hypoxanthine [4], and this process mostly occurs extracellularly [5]. This 
explains the observation of Hansen et al. [3] that inhibition of adenosine deaminase 
with deoxycoformycin potently reduced [3H]-adenosine uptake by P. berghei. The 
resulting model of a crucial role for hypoxanthine transport in Plasmodium purine 
salvage was further validated by the study of Berman et al. [6] who showed that 
depletion of hypoxanthine from infected erythrocytes by xanthine oxidase reduced P. 
falciparum growth by ~90%.  

While hypoxanthine transport clearly plays a pivotal role in an essential 
function of the malaria parasite, almost all available information on Plasmodium 
purine transporters concerns uptake of adenosine. Penny et al. [7] injected Xenopus 
oocytes with mRNA from P. falciparum and observed increased uptake of adenosine 
and hypoxanthine, sensitive to at least partial reciprocal inhibition, demonstrating the 
presence of at least one transporter capable of recognizing both substrates. Two 
groups have independently cloned the same P. falciparum gene of the Equilibrative 
Nucleoside Transporter family, which they termed PfENT1 or PfNT1, respectively 
[8,9], and the PfNT1 protein was found to be localised in the parasite’s plasma 
membrane [10]. Both groups expressed the cloned transporter in Xenopus oocytes for 
characterization, but they arrived at strikingly different conclusions. Carter et al. [9] 
described PfNT1 as a broad specificity nucleoside transporter of moderately high 
affinity for adenosine and inosine and no affinity for nucleobases. In contrast, Parker 
et al. [8] report a purine nucleoside/nucleobase transporter with a similar, but low, 
affinity for adenosine, adenine and hypoxanthine. The presence of a low affinity 
adenosine transporter was recently confirmed by Downie et al. [11] using P. 
falciparum trophozoites isolated after treatment with saponin. On the basis of the 
adenosine Km value, they concluded that this activity must be PfNT1, and this seemed 
to be confirmed by expression of PfNT1 in oocytes, which revealed a low affinity 
nucleoside transporter. However, in the current manuscript we will demonstrate 
conclusively that the low affinity adenosine transporter is not encoded by PfNT1. 

Studies to date have not investigated the possibility of a very high affinity 
purine transporter, such as found in other intracellular [12-14] and extracellular 
[15,16] protozoan parasites. However, a recent report [17] did strongly suggest that 
PfNT1 must encode a high affinity purine transporter, as wild-type P. falciparum were 
able to grow in very low levels of purines, but ∆PfNT1 parasites grew only in >10 µM 
hypoxanthine, adenosine or inosine. The same study also showed that, at 1 µM 
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concentrations, accumulation of those three purines was reduced in ∆PfNT1 but the 
characteristics of this transporter in terms of substrate affinity and specificity was not 
further investigated. 
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We report here the first systematic study of high affinity hypoxanthine, 
adenine and adenosine transport activities in P. falciparum trophozoites. We have 
identified and characterised a broad-specificity carrier that transports hypoxanthine, 
guanine, adenosine, guanosine and inosine, but not for adenine. In addition we 
characterised a low affinity adenosine transporter (which we denote PfLAAT) and a 
high affinity adenine transporter (denoted PfADET1) and demonstrate the existence 
of a further low affinity uptake route for adenine (PfADET2). To confirm our 
hypothesis that the high affinity transport activity is encoded by the previously 
reported PfNT1, we generated a mutant parasite clone with a disrupted PfNT1 gene, 
designated ∆Pfnt1GU to distinguish itself from the clone generated by El Bissati et al. 
[17]. ∆Pfnt1GU had completely lost both the high affinity adenosine uptake capacity 
and over 85% of hypoxanthine uptake, while low affinity adenosine uptake was 
unchanged and high affinity adenine uptake was slightly increased. We therefore 
conclude that PfNT1 encodes a high affinity hypoxanthine/purine nucleoside 
transporter.  

We present for the first time a comprehensive model of purine uptake by P. 
falciparum, in which the intraerthrocytic stages express at least four distinct purine 
transport activities. This model finally identifies the biochemical and genetic basis for 
the parasite’s overwhelming reliance on hypoxanthine salvage as its main purine 
source and is in line with a recent analysis of the P. falciparum permeome that 
showed the presence of four genes of the Equilibrative Nucleoside Transporter (ENT) 
family in its genome [18]. This family includes all protozoan purine transporters 
known to date [1]. 
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Plasmodium lines, human cells and chemicals. 
All transport experiments were performed with the standard 3D7 drug sensitive 
laboratory clone of Plasmodium falciparum, originally obtained from David Walliker, 
University of Edinburgh, UK. Human blood and serum used for Plasmodium culture 
was obtained from the Glasgow and West of Scotland Blood Transfusion Service. 
Standard chemicals including purines and pyrimidines were obtained from Sigma and 
of the highest purity available. The purine analogues JA-23 (2-Amino-N6-amino-N6-
methyladenosine), JA-24 (2-Amino-N6-amino-adenosine) and JA-32 (N6-Hydroxy-
9H-purin-6-amine) were kindly donated by Daniel Brown and David Loakes of the 
MRC Laboratory of Molecular Biology, Cambridge, UK. 
 
Culturing of P. falciparum for transport assays 
Asexual parasites of P. falciparum were maintained in continuous culture using 
slightly modified standard methods [19]. Briefly, parasites were grown in RPMI 1640 
medium supplemented with 5.94 g/l HEPES, 0.21% NaHCO3 and 10% heat-
inactivated normal human serum at 5% haematocrit. The culture was incubated at 37 
oC under a gas mixture of 1% O2, 3% CO2, 96% N2 and medium was changed daily. 
Parasitaemia of the culture was routinely maintained below 5%, unless otherwise 
stated. Prior to use in experiments, parasite cultures were synchronised using a 
previously described method [20]. Transport experiments were performed with 
cultures of parasitaemia between 7 and 10% in order to maximise yield. 
 
Saponin permeabilization of P. falciparum-infected erythrocytes 
Permeabilised P. falciparum-infected erythrocytes were prepared by incubating 
parasitised red blood cells with 0.15% (w/v) saponin as described [21]. Briefly, the 
culture was centrifuged at 600 × g and the supernatant removed. The cell pellets were 
re-suspended in 5 volumes of 0.15% (w/v) saponin in phosphate-buffered saline (137 
mM NaCl, 27 mM KCl, 1.76 mM K2HPO4, 8 mM Na2HPO4) for one minute. The 
freed parasites were washed three times with purine-free RPMI 1640 culture medium 
without serum, and resuspended in the same medium. Parasitaemia was determined by 
microscopical examination of thin blood smears stained with Giemsa’s stain, and red 
cell density was estimated using a Neubauer counting chamber.  
 
Transport assays with saponin-permeabilised Plasmodium falciparum-
infected erythrocytes 
Transport assays were performed with synchronised cultures in the trophozoite stage. 
After permeabilisation of the erythrocytes with saponin [22], which leaves the parasite 
plasma membrane intact [23,24], the cells were resuspended in purine-free RPMI 
1640 at a concentration of 5×108 cells/ml. Uptake of [3H]-hypoxanthine (GE 
Healthcare, 31 Ci/mmol), [3H]-adenosine (GE Healthcare, 16.0 Ci/mmol), or [3H]-
adenine (Perkin-Elmer, 32.2 Ci/mmol) by P. falciparum trophozoites was measured 
using a rapid stop/spin method essentially as described previously for Trypanosoma 
brucei [25], Leishmania spp [14,26], Toxoplasma gondii [13] and human erythrocytes 
[27]. Transport was measured either at various time intervals to generate plots of 
uptake rate versus time, or over fixed time intervals in the presence of variable 
inhibitor concentrations to generate plots for the determination of Km and Ki values, 
using non-linear regression (GraphPad Prism version 4). Briefly, equal volumes of a 
suspension of permeabilised-infected erythrocytes and a radiolabeled permeant at 
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twice its final concentration (as well as inhibitor at 2× concentration, where 
applicable) were mixed for a predetermined time. Influx of permeant into the cells 
was terminated by adding 1 ml ice-cold stop solution (unlabelled permeant at 
saturating concentrations) and immediately pelleting the cells by centrifugation at 
13,000 × g in a microfuge through an oil-mix (300µl of 5 parts dibutylphthalate 
(Aldrich):4 parts dioctylphthalate (Aldrich), v/v), thus preventing further uptake of 
permeant, which remains in the aqueous layer. Non-mediated influx of the respective 
permeant was assessed by determining the rate of uptake of the radiolabelled 
permeant in the presence of a saturating concentration of unlabelled permeant at both 
room temperature and 0 °C.  

The parasite pellets were processed after the uptake using the method 
previously described by Saliba et al [28], with a slight modification. The aqueous 
phase was removed by aspiration and the inside walls of the tube carefully washed 
with distilled water. The water was aspirated out, followed by the oil-mix, and the 
inside of the tube wiped with folded tissue paper. The cells were resuspended in 200 
µl of 1% Triton X-100 in water (v/v) for 10 minutes at room temperature and proteins 
were precipitated with 200 µl of 5% trichloroacetic acid (TCA). The mixture was 
finally centrifuged for 7 minutes at 13000 × g and the supernatant transferred into a 
scintillation vial and mixed with 3.5 ml scintillation fluid (OptiPhase HiSafe, Perkin 
Elmer). Radioactivity was determined with a Perkin-Elmer 1450 Microbeta Wallac 
Trilux liquid scintillation counter. All uptake experiments were performed in 
triplicate.  

For any given permeant, the linear phase of uptake was first determined, with 
a constant permeant concentration incubated for various times to generate a plot of 
uptake versus time. Linearity was assessed using linear regression and defined as a 
correlation coefficient >0.95 and significant difference from zero uptake (F-test; 
GraphPad Prism version 4). When uptake was too rapid to obtain linearity of transport 
at room temperature, this was reassessed at 6 °C using a ThermoStat plus (Eppendorf, 
Germany), as indicated in Results. Inhibition studies were always performed well 
within the linear phase of uptake, and thus reflect true initial rates of transport across 
the P. falciparum plasma membrane rather than rates of metabolism or sequestration. 
 
Generation of Plasmodium falciparum clones with disrupted PfNT1 
Our strategy for knocking-out the Plasmodium gene PfNT1 relies on single crossover 
homologous recombination and full details of the methods are provided in the on-line 
data supplement. Briefly, a plasmid was constructed containing the central sequence 
of PfNT1 spanning the predicted transmembrane domains 3-6 and part of 
transmembrane domain 2. The construct was used to transfect P. falciparum parasites 
of clone 3D7 using standard methods [29], with control parasites treated similarly but 
with no construct present during electroporation. Transformed parasites were selected 
with blasticidin and cloned. Successful disruption of the gene was confirmed using 
PCR and Southern blot as described in the data supplement. 
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High affinity hypoxanthine transport in P. falciparum trophozoites 
In order to study the transporters in the plasma membrane of P. falciparum, infected 
human erythrocytes were permeabilised with saponin, after which the erythrocyte 
plasma membrane ceases to be a barrier to the passage of solutes [22] but the parasite 
membranes are not significantly affected by this saponin treatment protocol [23,24]. 
The parasitophorous vacuole membrane remains but this membrane is intrinsically 
permeable to small solutes [30]. Therefore, initial rates of transport measured in this 
system reflect uptake by the Plasmodium-encoded transporters located in the 
parasite’s plasma membrane.  

Uptake of 0.25 µM or 0.1 µM [3H]-hypoxanthine followed a hyperbolical 
curve, which was linear for up to 120 s at 20 °C, with a rate of 0.62 ± 0.04 and 0.40 ± 
0.03 pmol(107 cells)-1s-1, respectively, and was completely inhibited by 1 mM 
hypoxanthine (Figure 1A). The hypoxanthine thus accumulated would, in the absence 
of metabolism, reach very high intracellular concentrations: based on an intracellular 
volume of 2.8 × 10-7 l/107 parasites isolated by saponin treatment [28] uptake of 0.25 
µM hypoxanthine would be over 1000-fold concentrated in the parasite – reaching a 
level of 260 µM in 2 minutes. Transport rates remained constant during this time (i.e. 
linear phase of uptake) because the rate of metabolism was greater than the rate of 
transport, making transport the rate-limiting step. Alternatively, high affinity purine 
transport in P. falciparum may be energy-dependent, as it is in other protozoan 
species [31,16,25], allowing uptake against a concentration gradient – but this 
possibility was not further investigated in this study. 

Determining [3H]-hypoxanthine transport at sub-micromolar concentrations 
revealed a very high affinity transporter for oxopurines, with a mean Km value for 
hypoxanthine of 0.34 ± 0.05 µM (n = 6; Figure 1B, inset), a Vmax of 0.36 ± 0.12 
pmol(107 cells)-1s-1 (n=6) and a mean Ki value of 0.11 ± 0.01 µM for guanine (n=3). 
In addition, the nucleosides adenosine (Figure 1B), inosine and guanosine displayed 
affinity in the low micromolar range (Table 1). This hypoxanthine transporter with 
high affinity for purine nucleosides was designated Plasmodium falciparum 
Nucleoside Transporter 1 (PfNT1) based on our later observations linking the PfNT1 
gene to this transport activity (see “Purine transport in the ∆pfnt1GU clone”). 

PfNT1 exhibited low affinity for pyrimidines. Only uridine, uracil and 
thymidine inhibited transport of 30 nM [3H]-hypoxanthine significantly, at a 
concentration of 1 mM inhibitor, by 36 ± 9% (P<0.05), 49 ± 6% (P<0.01) and 57 ± 
6% (P<0.02) respectively (Paired Student’s t-test against no-inhibitor control, based 
on four independent experiments in duplicate). Cytosine, thymine and cytidine (up to 
1 mM) did not significantly inhibit 30 nM [3H]-hypoxanthine transport (data not 
shown). This result is not surprising, in the light of the well-documented inability of 
Plasmodium spp to salvage preformed pyrimidine nucleobases and nucleosides [1,32]. 

Of all the natural purines tested, only adenine had very little effect on transport 
of 0.03 µM [3H]-hypoxanthine, with less than 50% inhibition at 1 mM. However, the 
antiplasmodial adenine analogue JA-32 [33] displayed a Ki value of 14 ± 3 µM (Fig. 
1B), probably as a result of its ‘hypoxanthine-like’ conformation (i.e. lactam 
hydrogen on N1 and H-bond acceptor at the N6 position, see figure 1B). Two N6 
substituted adenosine analogues, JA-23 and JA-24, with antiplasmodial activities in 
the low micromolar range [33], had little (Ki = 320 ± 80 µM for JA-24) or no effect 
(JA23) on high affinity hypoxanthine transport (not shown).  
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The transporter appeared to display a preference for oxopurine nucleobases 
over aminopurine bases whereas this preference appears to be curiously absent in the 
binding of nucleosides: e.g. guanine is the highest affinity nucleobase whereas 
guanosine is the lowest affinity purine nucleoside (Table 1). Two testable hypotheses 
may be proposed to explain this apparent paradox: (i) the nucleosides are not actually 
substrates, but allosteric inhibitors of hypoxanthine transport, or (ii) the nucleosides 
and nucleobases assume a different orientation within the binding pocket, due to the 
presence of the ribose moiety. In order to distinguish between these alternatives, we 
assessed the uptake of low concentrations of [3H]-adenosine. 
 
High affinity adenosine transport in P. falciparum trophozoites 
Uptake of 0.25 µM [3H]-adenosine proceeded with a rate of 0.015 ± 0.002 pmol(107 
cells)-1s-1 over the linear phase (at least 30 s), and was completely inhibited by 1 mM 
adenosine (see figure S1 of the supplementary material). At the end of linear phase, 
cells had transported approx. 0.55 pmol [3H]-adenosine/107 cells, which would 
correspond to ~8-fold the extracellular concentration if unmetabolised. Both the rate 
of uptake and the level of concentration of adenosine were much less than for 
hypoxanthine. 

Uptake of 0.25 µM [3H]-adenosine was potently inhibited by hypoxanthine 
(mean Ki = 0.75 ± 0.18 µM; n=3) and unlabelled adenosine, but only by very high 
concentrations of adenine (Figure 2). Over three separate experiments, the average of 
the extrapolated values for an adenine IC50 value would be ~1 mM – three orders of 
magnitude lower affinity than for hypoxanthine. In the same three experiments, the 
inhibition by hypoxanthine was not quite complete at 100 µM (6.1 ± 0.2%; P<0.05, 
paired Student’s t-test), possibly the result of a minor contribution to 0.25 µM [3H]-
adenosine flux from a second, low affinity adenosine transporter, that is insensitive to 
hypoxanthine (see “Low affinity transport of [3H]-adenosine in P. falciparum 
trophozoites”). The mean Km for adenosine on the high affinity transporter was 
determined to be 2.0 ± 0.2 µM and the Vmax as 0.18 ± 0.08 pmol(107 cells)-1s-1 (n=3; 
Figure 2, inset). The strikingly similar reciprocal Km and Ki values for adenosine and 
hypoxanthine uptake are consistent with high affinity uptake of both hypoxanthine 
and adenosine by PfNT1. However, the Vmax/Km ratio indicates an 11.9-fold higher 
efficiency of translocation for hypoxanthine compared to adenosine, consistent with 
the preference for hypoxanthine for optimal growth in vitro.  

The different selectivity for aminopurine nucleobases and nucleosides noted in 
the previous section thus seems to indicate that nucleobases and nucleosides orient 
differently in the same binding site and the kinetic profiles presented here are 
consistent with competitive inhibition (Figures 1B and 2). There are precedents for 
this; for instance, there is good evidence for different binding orientations for xanthine 
and uric acid in the Aspergillus nidulans UapA purine transporter [34].  
 
Uptake of [3H]-adenine is mediated by a separate high affinity 
transporter 
At 1 µM of [3H]-adenine, uptake was 0.0091 ± 0.0025 pmol(107 cells)-1s-1 over the 
linear phase (6 s; r2 = 0.93) and mostly inhibited by 1 mM unlabelled adenine (data 
not shown). At 120 s the accumulation ratio (intracellular/extracellular radiolabel 
concentration based on the intracellular volume of 2.8 × 10-7 l/107 parasites cited 
above) had reached ~0.6, consistent with an equilibrative process and at best a slow 
rate of metabolism or no metabolism at all. We tentatively designate this novel 
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transport activity Plasmodium falciparum adenine transporter 1 (PfADET1), pending 
the identification of the encoding gene.  
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In order to determine the Km value for this high affinity transporter, uptake of 
adenine was assessed at 50 nM of radiolabel. Uptake was linear and did not reach 
equilibrium for up to 240 s (accumulation ratio was 0.65) (Figure 3A). This allowed 
inhibition experiments at an incubation time of 150 s, although it was clear that there 
was a small uptake component that was not sensitive to 1 mM adenine (Figure 3A) – 
possibly resulting from the presence of a very low affinity transporter. Adenine 
transport was not inhibited by the oxopurines hypoxanthine (Figure 3B), guanine and 
inosine (not shown), though it was sensitive to adenosine, with a Ki value of 2.0 ± 0.2 
µM (Figure 3B).The sub-micromolar Km value, similar to the hypoxanthine Km for 
PfNT1, and very low Vmax (Figure 3B), make PfADET1 a high affinity but low 
capacity transport system with a maximum uptake rate 2 – 3 orders of magnitude 
lower than that measured for high affinity transport of hypoxanthine and adenosine 
(Table 1). 
 
A very low affinity/high capacity transporter of adenine 
As the uptake of 0.05 µM [3H]-adenine was consistently not fully inhibited by 1 mM 
unlabelled adenine (previous section) we investigated the possible presence of a low-
affinity adenine transport activity in saponin-isolated P. falciparum trophozoites. 
Uptake of 10 µM [3H]-adenine was linear for up to 12 s, with a rate of 0.13 ± 0.01 
pmol(107 cells)_1s-1 (r2 = 0.96), reaching an accumulation ratio of 0.85 in 30 s. This 
could not be entirely attributed to simple diffusion as it was partly inhibited (~60%) 
by 1 mM adenine (Figure S2A, supplementary material). Attempts to establish a Km 
value for [3H]-adenine uptake on this transporter were unsuccessful – due in part to 
the high rate of diffusion of adenine at high concentrations,  as reported for the related 
apicomplexan parasite Toxoplasma gondii [13], and because the limitations of adenine 
solubility prevented the determination of a complete inhibition curve (Figure S2B, 
supplementary material). However, the Km for adenine was estimated to be 
approximately 1 mM, and the Ki value for adenosine >2.5 mM. There was no clear 
inhibition by up to 1 mM hypoxanthine (data not shown). This observation, and the 
fact that these experiments were carried out at 10 µM [3H]adenine – which fully 
saturates PfADET1 – as well as the low affinity for adenosine, clearly shows that this 
adenine transport phenomenon must be mediated by a low affinity transporter separate 
from either PfNT1 or PfADET1. The low affinity adenine transport activity was 
provisionally designated PfADET2. 
 Despite the presence of two adenine transporters, it is not at all clear whether 
adenine salvage is important to Plasmodium spp and there is considerable controversy 
about whether Plasmodium can utilise adenine at all, as several groups report the 
inability to identify genes encoding adenine phosphoribosyltransferase (APRT) and 
methylthioadenosine phosphorylase in any Plasmodium species [35,36] nor is there 
any evidence for the activity of adenine deaminase [35]. Yet, the characterisation of 
APRT from P. chabaudi and P. falciparum have been reported [37,38]. In addition, P. 
falciparum is reportedly able to grow in vitro on adenine as sole purine source [39] 
and P. knowlesi incorporated adenine into nucleic acids [32]. Although these latter 
observations could be explained by conversion of the adenine to hypoxanthine in the 
host cell, Van Dyke reported that the free parasite can also incorporate adenine into 
nucleic acids, albeit at 1% of the efficiency by which hypoxanthine is incorporated 
[40]. The report here of uptake of adenine by P. falciparum trophozoites, however 
inefficient, would be compatible with the view that adenine can be utilised in some 
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way but is unlikely to play any major role in the synthesis of nucleotides. It is 
conceivable that the parasite has a different use for low levels of adenine, which it 
cannot generate itself from other purines [35], or that adenine at high concentrations 
could be deaminated by adenosine deaminase. 
 
Low affinity transport of [3H]-adenosine in P. falciparum trophozoites 
Several groups have reported a much lower affinity adenosine transport process than 
the Km value reported here for PfNT1 [8, 9, 11]. We therefore decided to reinvestigate 
the presence of such a transporter and found that 25 µM [3H]-adenosine is extremely 
rapidly taken up at room temperature (22 °C) (see Figure S3A, supplementary data), 
as reported by Downie et al. [11], reaching an accumulation ratio of ~0.6 by 30 s. We 
therefore conducted our experiments at 6 °C and consistently found that uptake of 25 
µM [3H]-adenosine was linear over a period of 4 – 6 s at this temperature (see Figure 
S3B, supplementary data), and that initial rates of transport could therefore be 
assessed over a three second interval. At 22 °C, 10 °C or 6 °C we found that transport 
was saturable by 1 mM unlabelled adenosine, although this never inhibited fully 
100% of transport (Figures 4 and S3), reflecting the low affinity of this transporter for 
the substrate. At 6 °C the rate of uptake of 25 µM [3H]-adenosine was 0.041 ± 0.004 
pmol (107 cells)-1. The mean Km value under these conditions was 197 ± 20 µM, with 
a Vmax of 0.19 ± 0.03 pmol(107 cells)-1s-1 (n=3; Figure 4). This transporter was not 
sensitive to the nucleoside transport inhibitor dipyridamole at concentrations up to 25 
µM (data not shown). We have designated this activity the P. falciparum Low 
Affinity Adenosine Transporter (PfLAAT). 
 These observations are entirely consistent with the only other characterisation 
of adenosine transport in P. falciparum trophozoites, by Downie et al. [11]. They 
reported a low affinity adenosine transporter that mediated uptake of adenosine, 
inosine and thymidine very quickly, equilibrating within seconds, and insensitive to 
dipyridamole. 
 
Disruption of the PfNT1 gene.  
In order to gain insight into the possible role of PfNT1 in purine salvage, a parasite 
line with a disrupted locus was generated. Single crossover homologous 
recombination at the PfNT1 locus was expected to generate a pseudodiploid 
configuration, with both truncated copies lacking some of the transmembrane domains 
of the protein predicted to be essential for the function of the protein (Supplementary 
data; Figure S4). As the parasite is haploid and PfNT1 is a single copy gene, only one 
round of drug selection is necessary to obtain a null-mutant. Four parasite clones, 
denoted B11, D6, B7 and B9, were obtained, and successful disruption of the PfNT1 
gene was verified in each clone by PCR and by Southern blot (Figures S5 and S6, 
supplementary data). The mutant PfNT1 clones were designated ∆pfnt1GU, in order to 
distinguish them from the independently derived ∆pfnt1 clone of El Bissati et al. [17]. 
 
Purine transport in the ∆pfnt1GU clone. 
We next determined the purine uptake profile in ∆pfnt1GU clone D6, using as controls 
untransformed parasites (wild-type) that had undergone the same procedures. The 
transport assays were performed simultaneously on both clones, to assess which, if 
any, of the above identified purine transport activities was affected in the parasites 
with the disrupted gene. Uptake of 25 µM [3H]-adenosine at 6 °C was not affected by 
the disruption of PfNT1, and identical rates of uptake were measured in the two lines: 
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0.069 ± 0.05 and 0.070 ± 0.07 pmol(107 cells)-1s-1 for ∆pfnt1GU and control, 
respectively (Figure 5A). 
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In contrast, in several experiments uptake of 0.25 µM [3H]-adenosine was 
reduced by 97 – 100% in ∆pfnt1GU (n = 3; Figure 5B), clearly indicating the loss of 
high-affinity transport in the mutant line. Similarly, uptake of 0.4 µM [3H]-
hypoxanthine over 120 s was reduced by 82 – 98% (n = 3; Figure 5C). The small 
residual hypoxanthine transport leads us to speculate that a low-affinity hypoxanthine 
activity might also be expressed in P. falciparum. This would be consistent with the 
observation of El Bissati et al. [17] that ∆pfnt1 P. falciparum are able to grow in the 
presence of high concentrations of hypoxanthine but not in low concentrations. 

Transport rates of 1 µM [3H]-adenine were not affected in the ∆PfNT1 
parasites: the initial rates of transport over 12 s were not significantly different in the 
∆pfnt1GU line and control cells (n = 3; Paired t-test, P>0.05) (Figure 5D and inset). 
However, in three independent experiments the maximum level of [3H]-adenine 
transport in the ∆pfnt1GU line was double that of the control (0.16 ± 0.06 vs 0.077 ± 
0.022 pmol(107 cells)-1s-1; n=3, non-linear regression). Rather than upregulation of the 
transporter we believe this may reflect an increased rate of adenine metabolism in the 
absence of a source for hypoxanthine. 

The clear conclusion from these results is that PfNT1 encodes the high affinity 
hypoxanthine/adenosine transporter. This conclusion is somewhat at odds with the 
reports of PfNT1 as a relatively low affinity transporter when expressed in Xenopus 
laevis oocytes [8,9,11]. However, these previous reports differ substantially from each 
other, producing adenosine Km values of 320 µM, 13.2 µM and 1.86 mM, 
respectively. It may be that the Xenopus expression system produces ambiguous 
results when expressing some Plasmodium transporters, possibly as a result of the 
extremely high A+T content of the P. falciparum genome [41]; PfNT1 is 72% A+T. 
This would also explain the reported difficulties of expressing other P. falciparum 
ENT genes in this system [11]. Also, the Carter study used a different parasite clone 
than the Parker and Downie studies (W2 and 3D7, respectively), which had a single 
amino acid difference in their PfNT1 gene (Leu or Phe, respectively, at position 385). 
This could perhaps explain some of the discrepancy, especially since the Phe385 
polymorphism is unusual: in a multiple alignment of 28 protozoan ENT family genes 
plus the four human ENT sequences, the equivalent amino acid residue was conserved 
in so far as it was never aromatic, amide, charged, cysteine or proline. However, it is 
unlikely that the 3D7 clone of P. falciparum encodes a partly deficient PfNT1, as this 
clone was also used in the study reported by El Bissati et al that first suggested that 
PfNT1 is essential for growth on low purine concentrations [17]. We also used the 
3D7 clone here and verified that its PfNT1 sequence was 100% identical to the entry 
in PlasmoDB (PF13_0252) and to the sequence reported by Parker et al. [8]. 

 
A new model for purine salvage by P. falciparum. 

Our results, establishing a central role for a high affinity hypoxanthine 
transporter in the purine salvage of Plasmodium falciparum, agree very well with the 
early studies of purine salvage in other Plasmodium species, which describe a 
transport system for hypoxanthine with secondary capacity for purine nucleosides and 
a separate uptake system for adenine [1]. It is also consistent with the current 
understanding that purine nucleotide synthesis in Plasmodium spp. is overwhelmingly 
through phosphoribosylation of nucleobases, particularly hypoxanthine, rather than 
nucleoside kinases [4,5,42] and they do not seem to encode an adenosine kinase in 
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their genome [35,36]. Furthermore, it brings purine uptake in P. falciparum very close 
to purine transport activities reported for other protozoa, which typically display Km 
values in the 0.2 – 5 µM range for their substrates [1]. Earlier proposals that P. 
falciparum may rely exclusively on low affinity purine transporters seemed hard to 
reconcile with a free concentration of purine nucleosides and bases in the infected 
erythrocyte that is presumably at best in the low micromolar range. Both the hENT1 
nucleoside [43] and hFNT1 nucleobase [27] transporters of human erythrocytes are 
equilibrative, making it impossible for the free concentrations of substrates to exceed 
those in plasma. Nor is it likely that purine concentrations are much higher at the 
parasite plasma membrane, as the parasitophorous vacuole membrane is freely 
permeable to such low molecular weight solutes [30].  
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However, at adenosine concentrations that saturate the high affinity PfNT1 
transporter, a very rapid and saturable nucleoside transport activity, PfLAAT, was 
observed. Our transport experiments with ∆Pfnt1GU prove that this is indeed a 
separate transporter from PfNT1. We conclude that P. falciparum trophozoites 
express both a high affinity purine nucleobase/nucleoside transporter and a low 
affinity/high capacity adenosine transporter in addition to a saturable transport system 
for [3H]-adenine. The Km value of ~200 µM for PfLAAT rules out the possibility that 
it might be identical to the high affinity adenine transporter PfADET1 (Ki(adenosine) 
= 2.0 µM) and equally appears to rule out that it is identical to the low affinity adenine 
transport activity PfADET2 that is almost insensitive to adenosine. However, this 
awaits formal proof, consisting of experiments with genetic deletion lines of the genes 
encoding these purine transporters – which are in progress. 

Thus a model arises (depicted in Figure 6) that closely mirrors the model for 
purine transport in the only other apicomplexan parasite for which purine transport 
has been studied in detail. Toxoplasma gondii is known to express a low affinity 
adenosine transporter TgAT1, with a Km value of ~110 µM [13,44,45], as well as a 
high affinity transporter TgAT2 (Km is 0.49 µM for adenosine and 0.77 µM for 
inosine) [13]. The main difference between purine salvage in the two apicomplexan 
species is that, unlike P. falciparum, T. gondii expresses separate high affinity 
transporters for purine nucleosides (TgAT2) and oxopurine nucleobases (TgNBT1). 
Like PfNT1, TgNBT1 does not transport adenine [13]. 
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Figure 1. Hypoxanthine transport in saponin-isolated Plasmodium falciparum 
trophozoites. (A) Uptake of 0.25 µM [3H]-hypoxanthine (squares) and 0.10 µM [3H]-
hypoxanthine (circles) into saponin-permeabilised P. falciparum-infected erythrocytes 
in the presence (open symbols) or absence (filled symbols) of 1 mM unlabelled 
hypoxanthine at 20 °C. The correlation coefficients (r2) were determined as 0.99 and 
0.98 for 0.25 µM and 0.1 µM radiolabel, respectively, by linear regression over the 
first 120 s. (B) Uptake of 30 nM [3H]-hypoxanthine in the presence or absence of 
various concentrations of unlabelled hypoxanthine (□), adenosine (●) or JA32 (∆). 
Uptake rates are presented as percentage of no-inhibitor controls  and combined from 
two experiments with 100% values of 0.013 (adenosine and JA32) and 0.033 
pmol(107 cells)-1s-1 (hypoxanthine), respectively. Inset: conversion of hypoxanthine 
inhibition data to Michaelis-Menten plot for determination of Km and Vmax. 
Representative experiments are shown, conducted in triplicate. Error bars indicate 
SEM 
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Figure 2. Uptake of low concentrations of [3H]-adenosine in isolated Plasmodium 
falciparum trophozoites. Transport of 0.25 µM [3H]-adenosine was measured over 
30 s in the presence or absence of various concentrations of unlabelled adenosine (□), 
adenine (▲) and hypoxanthine (●). Inset: conversion of the adenosine inhibition data 
to a Michaelis-Menten plot. The adenine IC50 value was obtained by extrapolation to 
100% inhibition. Representative experiments performed in triplicate are shown; error 
bars represent SEM. 
 
Figure 3. Characterization of a high affinity adenine transporter in P. falciparum 
trophozoites. (A) Transport of 0.05 µM [3H]-adenine over 240 s, in the presence (○) 
or absence (■) of 1 mM unlabelled adenine. In the absence of inhibitor the transport 
rate was 3.9 ± 0.2 × 10-5 pmol(107 cells)-1s-1 as calculated by linear regression (r2 = 
0.98). At 240 s, uptake was inhibited 70% by 1 mM adenine. (B) Transport of 0.05 
µM [3H]-adenine was inhibited by increasing concentrations of unlabelled adenine (○) 
or adenosine (■). Adenine uptake was expressed as % of control because two different 
experiments were combined, with no-inhibitor values of 2.4 × 10-4 and 1.5 × 10-4 
pmol(107 cells)-1s-1. Inset: conversion of the inhibition data to a Michaelis-Menten 
plot, yielding a Km value of 0.12 µM for this experiment. Units of uptake were 
pmol(107 cells)-1s-1. Error bars represent SEM. 
 
Figure 4. Low affinity transport of adenosine in saponin-isolated Plasmodium 
falciparum trophozoites. Transport of 25 µM [3H]-adenosine was determined over a 
three second interval at 6 °C, in the presence of various concentrations of unlabelled 
adenosine as indicated. Inset: conversion to a Michaelis-Menten plot. Error bars are 
SEM; where not shown fall within the symbol.  
 
Figure 5. Purine transport in P. falciparum trophozoites lacking PfNT1. Transport 
in ∆PfNT1GU is indicated with open squares and in control 3D7 parasites with filled 
circles. (A) 25 µM [3H]-adenosine at 6 °C. (B) 0.25 [3H]-adenosine at 22 °C. (C) 0.4 
µM [3H]-hypoxanthine at 22 °C. (D). 1 µM [3H]-adenine at 22 °C. Insets display the 
linear phase of uptake (r2 = 0.99 for ∆PfNT1GU and 0.98 for control 3D7). 
 
Figure 6. Model of purine uptake into intraerythrocytic P. falciparum 
trophozoites. Double-headed arrows indicate presumed equilibrative transport, 
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whereas the single headed arrow of PfNT1 indicates possible active transport. 
However, the assignment of active or equilibrative transport is speculative and was 
not investigated in the current study. hFNT1 and hENT1 are endogenous to the human 
erythrocyte whereas the origin of the NPP is unknown. The thickness of arrows for 
the P. falciparum transporters is meant to convey the relative flux of purines. NPP, 
New Permeation Pathways; PV, Parasitophorous vacuole; IEC, infected erythrocyte 
cytoplasm; Pf, Plasmodium falciparum. 
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Table 1. Profile of purine transport in P. falciparum trophozoites.716

717

High affinity [
3
H]-

hypoxanthine uptake 

(PfNT1)

High affinity [
3
H]-

adenosine uptake 

(PfNT1)

Low affinity [
3
H]-

adenosine uptake 

(PfLAAT)

High affinity [
3
H]-

adenine uptake 

(PfADET1)

Ki or Km value

(at 22 C; M, SEM)

n Ki or Km value

(at 22 C; M, SEM)

n Ki or Km value
(at 6 C; M,

SEM)

n Ki or Km value
(at 22 C; M,

SEM)

n

Vmax
(a)

0.36  0.12 6 0.18  0.08 3 0.19  0.03 3 0.0004  0.0002 3

Vmax/Km 1.1 0.090 0.00096 0.0019

Hypoxanthine 0.34  0.05 6 0.75  0.18 3 ND >1000 3

Guanine 0.11  0.01 3 ND ND >50 3

Inosine 2.0  0.2 3 ND ND >1000 3

Adenosine 4.0  0.67 3 2.0  0.2 3 197  20 3 2.0  0.2 3

Guanosine 11.6  2.7 3 ND ND ND

Adenine >500 3 240  70 3 ND 0.23  0.07 3

718

719

720

721

722

723

724

725

Values in bold are Km values obtained with radiolabelled substrate; other values are Ki

values, obtained from dose-dependent inhibition of radiolabelled substrate. All values

were determined using non-linear regression from experiments in duplicate or 

triplicate with a minimum of 8 points over the relevant range. Zero values were taken 

to be radiolabel associated with the cell pellet in the presence of saturating

concentrations of unlabelled permeant.
a
 units for Vmax are pmol(10

7
 cells)

-1
s

-1
. ND,

not determined.
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Fig. 2
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Fig. 3A
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Fig. 3B
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Fig. 4
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