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ABSTRACT

Type I interferons (IFNα/β) form a family of related cytokines that control a variety of

cellular functions through binding to a receptor composed of IFNAR1 and IFNAR2. Among
type I IFN, the α2 and β subtypes exhibit a large difference in their binding affinities to

IFNAR1 and it was suggested that high concentration of IFNAR1 may compensate for its low

intrinsic binding affinity to IFNα2. We tested whether receptor-proximal signaling events are

sensitive to IFNAR1 surface concentration by investigating the relationship between relative

IFNAR1/IFNAR2 surface levels and IFNα2 vs IFNβ signaling potencies in several cell lines.

For this, we monitored the activation profile of Jak/Stat proteins, measured basal and ligand-
induced surface decay of each receptor subunit and tested the effect of variable IFNAR1

levels on IFNα2 signaling potency. Our data show that the cell surface IFNAR1 level is

indeed a limiting factor for assembly of the functional complex, but an increased

concentration of it does not translate into an IFNα/β differential Jak/Stat signaling nor it

changes the dynamics of the engaged receptor. Importantly, however, our data highlight a
differential effect upon routing of IFNAR2. Following binding of IFNα2, IFNAR2 is

internalized but, instead of being routed towards degradation as it is when complexed to

IFNβ, it recycles back to the cell surface. These observations strongly suggest that the

stability and the intracellular lifetime of the ternary complex account for the differential

control of IFNAR2. Moreover, this work opens up the attractive possibility that endosomal-
initiated signaling may contribute to IFNα/β differential bioactivities.
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INTRODUCTION

Type I IFNs are helical cytokines with pleiotropic activities that contribute to immediate
defense against pathogens, development of adaptive immunity and protective antitumor

responses [1]. Accordingly, type I IFNs regulate diverse activities of non immune and
immune cells and are also regulators of bone homeostasis. A unique feature of this cytokine

family is the existence of a multiplicity of ligands. In humans the family comprises 16 IFN

subtypes, broadly referred to as IFNα/β, all binding the ubiquitously expressed type I IFN

receptor, made of IFNAR1 and IFNAR2. These latter are single membrane-spanning proteins
belonging to the class 2 cytokine receptor superfamily [2]. Upon IFN binding, membrane-

proximal immediate signaling is initiated through catalytic activation of receptor-associated

Tyk2 and Jak1 tyrosine kinases [3, 4]. Stat family members, such as the ubiquitously
expressed Stat1/2/3, are then tethered to the activated receptor complex via specific phospho-

tyrosine recruitment motifs, undergo phosphorylation on tyrosine and translocate to the
nucleus to drive gene expression. Non-Stat signaling pathways can also be activated by type I

IFNs and are believed to modulate gene expression and to shape IFN-induced bioactivities in

defined cellular contexts [5, 6]. IFN also activates membrane-proximal signaling events that
promote receptor down-modulation and signal termination [7, 8].

It is well documented that IFNα and IFNβ engage the receptor components with

different efficiencies [9-11]. Recent work has extended previous studies and determined the
biophysical parameters of binding (association and dissociation rate constants) of type I IFN

subtypes to the extracellular domains of the two receptor subunits immobilized on an artificial

lipid support [12]. These in vitro analyses showed that affinities and rate constants of IFNα2

and IFNβ interaction with the receptor ectodomains are different. IFNα2 exhibits nanomolar

binding affinity and IFNβ exhibits ~100 pM binding affinity towards IFNAR2. Larger

differences were observed in the ligand binding affinity to IFNAR1. IFNα2 exhibits

micromolar binding affinities to the IFNAR1 ectodomain, while IFNβ exhibits ~50 nM

binding affinity towards IFNAR2. It was demonstrated that the kinetics of dissociation of

IFNα, but not of IFNβ , from the immobilized complex is strongly affected by the

concentration of IFNAR1 [12, 13]. Moreover, it was proposed that the differential potency of
IFN subtypes to elicit an antiproliferative response lies in their different ability to bind

IFNAR1 [14]. Overall, these studies suggested that recruitment of IFNAR1 is a rate limiting
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step in the assembly of the ternary ligand-receptor complex and that a sufficiently high

concentration of IFNAR1 may compensate for its low intrinsic affinity to IFNα2.

Since IFNAR1 is the low affinity component in the formation of the ternary complex,

one would predict that immediate receptor-initiated signaling events may be sensitive to
IFNAR1 surface concentration. Indeed, the level of cellular IFNAR1 appears to be tightly

regulated. We have shown that IFNAR1 is a relatively short lived protein that matures to the

cell surface and is rapidly internalized and degraded, unless stabilized through its association
with Tyk2 [15]. Upon IFNα  binding, IFNAR1 is targeted to degradation through a

biochemical cascade that has been in part elucidated and requires Tyk2 catalytic activity [8,

16].
Based on these premises, our primary goal was to investigate the relationship between

IFNAR1 and IFNAR2 surface levels and immediate-early signaling events, ie activation of

Jak/Stat molecules and receptor down-modulation, induced by IFNα2 or IFNβ. For this, we

have measured relative levels of IFNAR1 and IFNAR2 expressed in different human cell
lines and monitored herein early kinetics and dose dependence of Jak/Stat activation. We

have also studied basal and ligand-induced surface decay of IFNAR1 and IFNAR2. To
directly test the effect of variable IFNAR1 levels, we have artificially modulated its

concentration and analyzed possible effects on IFN signaling potency.

Despite the heterogeneity in the levels of the two subunits in different cell lines, a
unifying concept emerges from this comprehensive analysis that points to comparable level of

activation of Jak/Stat molecules in response to the two IFN subtypes and to a differential

effect on traffic of the IFNAR2 receptor subunit.

EXPERIMENTAL PROCEDURES
Cell culture and transfection procedures

293T and HeLa cells were cultured in DMEM (Dulbecco's modified Eagle's medium) and

Daudi and Jurkat cells in RPMI supplemented with 10% foetal calf serum at 37°C in 6% CO2.
Human amnion-derived WISH cells were transfected using the calcium phosphate DNA

precipitation technique. To over-express IFNAR1, a plasmid encoding IFNAR1 and pSV2neo
were co-transfected at a ratio of 10/1. Clones were selected in 1.2 mg/ml of G418 (Geneticin,

Invitrogen).

To silence IFNAR1, a 19 nt siRNA was designed to target the 3’UTR mRNA sequence of
IFNAR1. The sequence ATACGGGCAAGCTCTTAAC was inserted into the RNAi vector
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pSUPERretro (OligoEngine, Seattle) as indicated by the manufacturer. This puroR-siRNA

plasmid was co-transfected with pSV2neo at molar ratio of 10/1. Cells were first selected in

G418 to favour clones with highest amount of plasmid DNA. G418R clones were then kept in
puromycin to maintain pressure for the siRNA plasmid. Clones were screened for IFNAR1

levels by flow cytometry using mAb AA3. For the experiment shown in Fig. 8, 293T cells
were transiently transfected using Lipofectamine (Invitrogen) with an expression plasmid

encoding either IFNAR1 or the IFNAR1 specific RNAi described above. All transfections

included an EGFP expression plasmid at a ratio of 1/50 of total DNA. Transfection mixtures
were normalized for the same concentration of total DNA with the corresponding empty

vector. Two days after transfection, cells were treated for 2 hrs with 200 pM IFNα2 or β or

left untreated and receptor levels were analyzed by flow cytometry.

Antibodies and other reagents

Recombinant IFNα2b was a gift of D. Gewert (Wellcome, U.K.) or G. Adolf (Ernst

Boehringer Institute, Vienna) and IFNβ was from L. Runkel (Biogen Idec, Boston). IFN were

purified to specific activities > 108 IU/mg of protein. Cycloheximide (CHX) (Sigma) was

used at 20 µg/ml on HeLa and 293T cells and at 10 µg/ml on Jurkat and Daudi cells.

Monensin (Sigma) was solubilized in absolute ethanol and used at 25 µM. Human transferrin

(Sigma) was solubilized in cell culture medium and was used at 50 µg/ml. Phospho-Ser535-

specific IFNAR1 Abs, described in [17], was a gift of S. Fuchs (University of Pennsylvania,

Philadelphia, PA). Tyk2 phospho-specific Abs was from Calbiochem. Tyk2 mAb T10-2 was
described in [18]. Phospho-tyrosine Stat1 and Stat2 Abs were from Upstate and phospho-

tyrosine Stat3 Abs from BioLabs. Stat1, Stat2, Stat3 Abs and 4G10 anti-phosphotyrosine
mAB were from Upstate. Ubiquitin FK2 mAb was from Biomol; IFNAR1 mAbs (AA3,

EA12) were a gift from L. Runkel and 64G12 from P. Eid (CNRS, Villejuif, France).

IFNAR2 mAb CD118 was purchased from PBL Biochemical Laboratories. IFNAR2 mAbs
H10 and D5 were from L. Runkel.

Flow cytometric analysis

Transiently transfected 293T cells (Fig. 8) were stained with mAbs AA3 (IFNAR1) and D5
(IFNAR2) and signals were amplified with biotinylated rat anti-mouse IgG (Jackson

Immunochemicals) and APC-conjugated streptavidin (Becton Dickinson) and analyzed with a
FACScalibur. IFNAR1 and IFNAR2 expression levels were determined by the Geometric

mean APC fluorescence values within subpopulations of transfected cells identified by the

intensity of EGFP fluorescence. To assess the effect of monensin in Fig. 9A, down-regulation
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of the transferrin receptor from the cell surface was studied. Briefly, HeLa cells were starved

for 1 hr, preincubated for 15 min with monensin (25 µM) before addition of transferrin (50

µg/ml) for 30 min. In Fig. 9B, cells were preincubated with monensin 15 min before addition

of IFNα or IFNβ. Surface IFNAR1 was monitored by incubating cells with 10 µg/ml mAb

AA3 and surface IFNAR2 was monitored with 10 µg/ml of mAb CD118 for 30 min on ice,

followed by 30 min incubation with 10 µg/ml biotinylated anti-mouse IgG and with

streptavidin-phycoerythrin (Jackson ImmunoResearch Laboratories, Inc.). The level of

surface transferrin receptor (TrR) was monitored with OKT9 mAb (a gift from A. Alcover,
Institut Pasteur, Paris). Cells were analyzed using a FACscan (Becton Dickinson), using

CellQuest software.

Protein analysis by immunoblot

Cell lysates were prepared in modified RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl,

1% NP40, 0.5% DOC, 0.03% SDS) with 1 mM Na3VO4 and a cocktail of antiproteases from

Sigma. For the experiment in Fig. 5, cells were lysed in NP40 buffer (50 mM Tris/HCl pH 8,
150 mM NaCl, 1% NP40, 0.5 mM EDTA, 1 mM Na3VO4, 10 mM N-ethylmaleimide and

antiproteases). IFNAR1 was immunoprecipitated with 1 µg of mAb EA12 and detected with

mAb 64G12. IFNAR2 was immunoprecipitated with 1 µg of mAb CD118 and detected with a

mixture of H10 and D5 mAbs.
Antiproliferative effect

HeLa cells were plated in 96-well plates at a density of 2500 cells/well. Twenty hours later

cells were left untreated or treated with 1-10000 pM of either IFNα or IFNβ for additional 72

h. Cells were then washed with PBS, fixed with paraformaldehyde and stained with 0.5%
crystal violet for 5 min. After removing the solution, cells were washed with deionized water

and air-dried. Crystal violet was solubilized with 1% Triton-X-100. Optical density was

analyzed at 570 nm.

RESULTS
Lack of correlation between relative R2/R1 ratios and Jak/Stat activation

In order to analyze early signaling events in cells expressing different surface levels of

IFNAR1, we first measured the relative ratio of IFNAR1 and IFNAR2 present at the surface
of four human cell lines. The steady state level of IFNAR1 and IFNAR2 was measured by

flow cytometry, using two mAbs (AA3 and CD118) and an identical staining protocol
(Experimental procedures). Daudi (Burkitt’s lymphoma B lymphocytes), Jurkat (leukemia T
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lymphocytes), HEK293T (embryonic kidney cells) and HeLa (carcinoma-derived epithelioid

cells) were analyzed. As shown in Fig. 1A, the relative expression of the two subunits

(referred as the R2/R1 ratio) was remarkably dissimilar, with two extreme profiles
represented by Jurkat (R2/R1 around 4) and HeLa cells (R2/R1 around 0.5).

Based on these profiles, we chose Daudi and Jurkat for further studies. These cells
express different R2/R1 ratios (around 2 in Daudi and 4 in Jurkat) and, being both of

lymphoid origin, are best amenable to direct comparison. We first analyzed early kinetics of

Jak/Stat phosphorylation induced by a single dose (500 pM) of either IFN subtype. Within 15
min of stimulation, phosphorylation of examined proteins was close to maximal level (Fig. 1B

and C). At around 30 min, phosphorylation started to decline, with the exception of Stat2

which persisted for at least 4 hr. The profiles of IFNα2 and IFNβ stimulated signals in each

cell line were remarkably similar. However, phosphorylated Tyk2 and Stat2 were more
abundant in Daudi cells, while phosphorylated Stat3 was more abundant in Jurkat cells.

Notably, the extent of phosphorylation of these proteins closely reflected their total content in
each cell line (Fig. 1B and C).

Next, we analyzed dose response profiles of Tyk2, Stat1/2/3 phosphorylation after 30

min of treatment with IFNα2 or IFNβ (Fig. 1D). In both cell lines, phosphorylation of Tyk2,

Stat1/3 was dose-dependent, reaching saturation at around 100 pM of either IFN subtype.
Surprisingly, phosphorylation of Stat2 appeared not to be dose-dependent within the range of

cytokine dose tested (Fig. 1D). In conclusion, the magnitude and duration of Jak/Stat
activation by IFNα and IFNβ were virtually identical in each of the two cell lines and similar

conclusions were reached from analyses of phosphorylation profiles in 293T and HeLa cells
(data not shown). Moreover, we could not directly correlate R2/R1 ratios neither with α/β

differential signaling nor with sensitivity to IFNα2.

IFNAR1 is limiting for ligand-induced Jak/Stat activation

Comparison of signaling in different cell types presents obvious limitations, one being the

variable content of signaling effectors. Thus, we decided to monitor α/β signaling in sister

clones expressing different levels of IFNAR1. For this, we chose human WISH cells, well

known for their α/β differential antiproliferative response [13]. As shown in Fig. 2, the

comparative analysis performed in these cells did not reveal α/β differential potency in

Jak/Stat signaling and confirmed the distinctive profile of Stat2 activation with respect to
Stat1/3.
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Three stable transfectants were derived from WISH (parental) cells: a control clone

(R23) expressing IFNAR1 to the same level as parental cells, a clone that over-expressed

IFNAR1 (R16) and a clone with low IFNAR1 (CPO2) which was obtained by RNAi
technology (see Experimental procedures). The relative surface level of the two receptor

subunits in these clones is shown in Fig. 3A. IFNAR1 was approximately 7 fold higher in
R16 cells and 2 fold lower in CPO2 cells with respect to R23 or parental WISH. As expected,

IFNAR2 levels were comparable in all clones. In western blot analysis, IFNAR1 level was

barely detectable in CPO2 cells and was strongly increased in R16 cells as compared to
endogenous IFNAR1 in R23 cells (Fig. 3B, top panels).

To investigate whether surface IFNAR1 concentration affected sensitivity to IFNα2,

we compared the Jak/Stat activation profile of these clones. Cells were incubated with 500

pM IFNα2 for 5, 15 and 30 min and protein phosphorylation was monitored (Fig. 3B).

Phosphorylation of all proteins, with the exception of Stat2, was reduced in CPO2 cells as
compared to the other clones. Interestingly, Stat2 phosphorylation was comparable in the

three clones and did not decay with time. We further compared CPO2 and R23 cells to assess
whether the weak response of CPO2 cells could be augmented further by increasing IFNα2

dose. As shown in Fig. 4A, even at the highest dose tested (2500 pM), the response of CPO2

cells remained low, approaching that of control R23 cells stimulated with 10 pM.

Despite the remarkable difference of IFNAR1 levels in R16 and R23 cells, their
Jak/Stat phosphorylation profiles by IFNα were quite comparable (Fig. 3B). To explore the

possibility of an increased IFNα2 sensitivity of R16 cells, we compared response profiles of

the two clones to low ligand doses (Fig. 4B). If anything, R16 cells were slightly less

responsive than R23 to low cytokine doses. Altogether, these data showed that a mere 2 fold

decrease in surface IFNAR1, as in CPO2 cells, had a considerable impact on the magnitude of
signaling and on the IFNα sensitivity threshold. Conversely, a surplus of IFNAR1 over

endogenous level did not translate into increased signaling nor in increased sensitivity to

IFNα. These results demonstrate that cell surface IFNAR1 concentration is indeed a critical

factor for assembly of a functional signaling complex, but its increased concentration does not

augment IFNα, nor IFNβ (data not shown), signaling potency. Moreover, these results imply

that assembly of the trimeric ligand-receptor complex is the step determining the extent of
downstream Jak/Stat activation.
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IFNβ, but not IFNα2, induces IFNAR2 down-regulation

Along with Jak/Stat engagement, binding of IFN also triggers membrane-proximal signals

which promote internalization and drive endosomal sorting of the engaged receptor.

Numerous studies have implicated ubiquitination of ligand-activated receptors as a signal for
endosomal sorting towards degradation [19-21]. Recent data showed that, upon IFNα

binding, IFNAR1 becomes serine phosphorylated and consequently ubiquitinated prior to

lysosomal degradation [8]. Much less is known about ligand-induced post-translational

modification and traffic of IFNAR2. We therefore tested whether IFNα2 and IFNβ led to

differential modification of IFNAR1 and/or IFNAR2. As shown in Fig. 5 (left panels),
IFNAR1 was inducibly phosphorylated on tyrosine and on Ser535 and heavily ubiquitinated.

IFNAR2 was inducibly phosphorylated on tyrosine but was not ubiquitinated (Fig. 5, right
panels). All modifications were induced to a similar extent by IFNα2 and IFNβ. Similar

conclusions were reached upon analysis of HeLa cells (data not shown).

Jaitin et al. [13] recently showed that a 2 hr stimulation of 293T cells with IFNβ, but

not IFNα, causes down-regulation of surface IFNAR2. We thus asked whether this β-specific

effect could be generalized to other cell types and whether different surface R2/R1 ratios (as

in cell lines shown in Fig. 1A) influenced this α/β differential trait. In order to thoroughly

assess the effect of ligand binding on receptor dynamics, we first determined in the four cell
lines the surface stability of each receptor subunit in the absence of stimulus. Cells were

treated with cycloheximide (CHX) to prevent new protein synthesis and the decay of each

subunit was followed by flow cytometry (Fig. 6). Interestingly, IFNAR2 displayed an
apparent slow basal turnover, with 90% of the initial content present at 3 h. On the other

hand, surface IFNAR1 decayed rapidly in all but Daudi cells, with between 55 to 60% of the

initial values remaining at 3 h (Fig. 6). The different stability of the two receptor subunits was
also confirmed by western blot analyses (data not shown). Overall, these results showed that

the two receptor subunits have different basal turnovers, with IFNAR1 being considerably
more dynamic than IFNAR2.

Surface IFNAR1 and IFNAR2 levels were then monitored in cells treated with IFNα2

or IFNβ, in the presence of CHX (Fig. 7A). Within the first hour, IFNAR1 decreased more

rapidly in cells treated with either ligand than in CHX only treated cells shown in Fig. 6. This

ligand-induced acceleration was observed in all cell types (Fig. 7A, left panels). At 90 min,
the rate of decay decreased, approaching the basal rate seen in Fig. 6. Importantly, a clear

difference in down-regulation of IFNAR2 by the two ligands was observed for 293T and
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HeLa cells. IFNβ caused a substantial decrease (approaching 50% at 90 min) in surface

IFNAR2, whereas IFNα2 had a minimal effect (Fig. 7A, right panels). The differential effect

of IFNα2 and IFNβ on IFNAR2 down-regulation was less pronounced in Daudi cells and

appeared negligible in Jurkat cells. Since these cells express higher level of IFNAR2 relative
to IFNAR1 (high R2/R1 ratio), the percentage of mobilized IFNAR2 may be small and

uncomplexed IFNAR2 may remain at the cell surface. Indeed, a differential effect between
IFNα2 and IFNβ was evident upon plotting arbitrary IFNAR2 internalization units instead of

percentages of initial values (insets in Fig. 7A). Western blot analyses of total receptor

content confirmed the ligand-induced decrease of IFNAR1 in the four cell lines. The decrease

of IFNAR2 was detectable in IFNβ-treated 293T and Hela cells, but not in Jurkat or Daudi

cells (Fig. 7B).
To study the effect of varying IFNAR1 level on IFNAR2 down-regulation, we

depleted or over-expressed IFNAR1 in 293T cells (see Experimental procedures) and

monitored by FACS receptor levels after a 2 hr-treatment with IFNα2 or IFNβ. As seen in

Fig. 8, in response to IFNα2 the surface decay of IFNAR2 was minimal even in cells with a

surplus of IFNAR1 as compared to control cells (endogenous IFNAR1 level taken as 1).
Thus, the failure of IFNα2 to promote IFNAR2 down-regulation is not due to limiting amount

of IFNAR1. In response to IFNβ, IFNAR2 was down-regulated in control cells as expected.

The amount of down-regulated IFNAR2 diminished in cells depleted of IFNAR1, but did not

proportionally increase in cells with a surplus of IFNAR1.

Overall, these results demonstrate a differential effect on post-binding receptor
dynamics, with solely IFNβ being able to down-modulate IFNAR2. While this IFNβ specific

effect can be generalized to different cell types, the extent by which it is experimentally

detectable appears to depend on the relative expression level of the two chains and hence on
the proportion of IFNAR2 which is engaged in the trimeric complex.

IFNα2 induces IFNAR2 recycling

We have shown above that IFNα2 failed to down-regulate surface IFNAR2, although it

efficiently accelerated IFNAR1 down-regulation. We reasoned that the constant level of
IFNAR2 measured at the cell surface could either reflect stability at the plasma membrane or

it could result from the dynamic equilibrium between IFNα-induced internalization and

recycling. In order to distinguish between these two possibilities, we used monensin, a drug

that blocks recycling without affecting the internalization process [22]. The toxic effect of
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monensin on the viability of different cell lines was tested. HeLa cells were chosen as they

were minimally affected by the drug. Moreover, in these cells a 2 log difference in the

antiproliferative potencies of IFNβ and IFNα2 could be measured (Fig 9A).

To control the action of the ionophore, we monitored the surface level of the
transferrin receptor (TrR), which undergoes continuous recycling in the presence of

transferrin [23]. As expected, TrR level decreased approximately 50% in monensin-treated

cells. In the same condition, basal IFNAR2 turnover was unaffected (Fig. 9B). HeLa cells
were then treated with IFNα2 or IFNβ in the presence or absence of monensin, and surface

decay of IFNAR1 and IFNAR2 was measured by flow cytometry. Monensin did not affect

IFNAR1 dynamics (Fig. 9C, top panels) nor it affected the disappearance of surface IFNAR2
induced by IFNβ (bottom right panel). However, monensin led to a substantial decrease of

surface IFNAR2 in cells treated with IFNα (bottom left panel). Thus, following binding of

IFNα2 to the receptor complex, IFNAR2 is indeed internalized but, instead of being routed

towards a degradation pathway, it appears to recycle back to the cell surface.

DISCUSSION
The evolutionary conservation of multiple type I IFN subtypes in all eutherian mammals

evokes distinct physiological roles despite shared receptor usage. Here, we have investigated

whether IFNα2 and IFNβ, well described for their different mode of engagement of the

receptor, differ in membrane-proximal signaling potency and in receptor down-regulation
processes. In particular, we have studied cell lines that express endogenous IFNAR1 and

IFNAR2 at different relative ratios and evaluated potential contribution of this ratio to early
Jak/Stat signaling by the two IFN subtypes. Our major observations can be summarized as

follows : (i) within each cell line, the phosphorylation profiles of Jak/Stat molecules induced

by IFNα2 or IFNβ are virtually identical within the first four hours of stimulation; (ii) the

extent of tyrosine phosphorylation of Jak/Stat components appears to be proportional to the
amount of protein in the cell, rather than to the R2/R1 ratio; (iii) the activation profile of Stat2

differs from that of Tyk2, Stat1 and Stat3 and this in all cellular contexts analyzed; (iv) most

remarkably, IFNα2 and IFNβ lead to differential down-regulation and routing of IFNAR2.

Previous studies have reported some differences in the phosphorylation profile of
Jak/Stat proteins by IFNα and IFNβ. In human myocardial fibroblasts selective IFNβ-induced

activation of Jak1 and higher Stat1/2 phosphorylation were observed, along with a 120-fold

higher sensitivity to the antiviral effect of IFNβ as compared to IFNα [24]. In human vascular
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endothelial cells, a 2-3 fold higher Stat1 phosphorylation was observed with IFNβ, whereas a

2-3 log difference in α/β potency was measured in functional assays [25]. In monocyte-

derived immature dendritic cells, levels of activation of Stat1/2 by IFNα2 and β were found

to be comparable [26], as in the four human cell lines described in the present work. In sum,
these results suggest that cell type differences in the potency of the two IFN subtypes to

activate membrane-proximal signaling events do exist. However, when present, these
differences are relatively modest, do not reflect ligand binding affinities to IFNAR1 and are

unlikely to account for the large differences in potencies measured in functional assays.

Indeed, in spite of identical phosphorylation potency, we did measure a 2 log difference in the
antiproliferative potencies of IFNα2 and IFNβ on HeLa cells (Fig. 9A).

It has been previously shown that IFNAR1 contributes to enhance the affinity of the

cellular receptor complex for the ligand and also modulates ligand selectivity [9, 27]. Studies
of the assembly of the trimeric complex on artificial surfaces argued against a substantial

interaction between the receptor subunits in the absence of ligand. Instead, the local

concentration of IFNAR1 was shown to influence the assembly of the IFNα ternary complex

[12, 13]. Not suprisingly, we found that the relative surface expression level of the two IFN

receptor subunits varies in different cell lines. Yet, within each cell line and regardless of the
R2/R1 ratio, IFNα 2 and IFNβ-induced phosphorylation profiles were comparable.

Furthermore, IFNAR1 does indeed represent a critical factor for both IFNα2 and IFNβ-driven

activation of the Jak-Stat signaling complex. In fact, depletion of endogenous IFNAR1 in

WISH cells led to a significant reduction of signal activation which could not be compensated
by increased ligand dose. On the other hand, a surplus of IFNAR1 in WISH cells did not

change the IFN sensitivity profile nor the kinetics of Jak/Stat activation (Fig. 3, data not
shown). Thus, in spite of the ability of IFNAR1 to compensate for weak IFNα binding,

increased surface concentration of IFNAR1 does not change signaling potency.

Comparison of IFN signaling in Jurkat and Daudi cells indicated that the basal cellular

content of Stat1/3, rather than receptor levels, impacts on the extent of their phosphorylation
and thus, most likely, on downstream gene induction profiles. While this may contribute to

cell type specific differences in IFN action, it also evokes the notion that changes in the
content of Stats, as upon cell activation or differentiation, may tune IFN responses and gene

induction programs [28-31]. Interestingly, Stat2 phosphorylation appears quite unique in all

cellular contexts tested: it is saturated more readily and at lower IFN doses, is more sustained
and barely affected by IFNAR1 depletion. We previously showed that Stat2, as opposed to
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Stat1/3, is not engaged at all upon induced dimerization of the IFNAR1 cytoplasmic domain

[16]. Thus, the unique Stat2 activation profile may, at least in part, be consequent to its

constitutive association to the IFNAR2 chain [32].
The lack of correlation between ligand-IFNAR1 affinity and Jak/Stat activation

potency suggests that α/β differential bioactivities must be achieved through mechanisms

other than immediate Jak/Stat activation. Moreover, these mechanisms are likely to be

influenced by ligand binding affinity. Our present analysis of ligand-induced receptor traffic
provides some interesting clues to this issue. Despite the heterogeneity in the expression level

of the two subunits in different cell lines, consistent differences were observed in the
dynamics of the two receptor subunits. With the exception of Daudi cells, where IFNAR1 is

highly expressed and stable, in all other cell lines studied IFNAR1 exhibits a relatively short

half-life and is down-regulated similarly by IFNα2 and IFNβ. Interestingly, IFNAR2 exhibits

a longer half-life which is differentially affected by the two IFN subtypes: following binding
of IFNβ, surface IFNAR2 levels decrease, whereas following binding of IFNα2 surface

IFNAR2 remains constant as the internalized pool predominantly recycles back to the cell

surface. This notion was supported by an experiment that tested the effect of monensin on
receptor dynamics. In the presence of this well characterized inhibitor of recycling, IFNα2 led

to significant down-regulation of IFNAR2 (Fig. 9). These data evoke previous biochemical
demonstrations that IFNAR1 and IFNAR2 can be co-immunoprecipitated after stimulation

with IFNβ, but not IFNα [33-36]. Moreover, in one such study performed on Daudi cells,

active IFNβ, but not IFNα, could be recovered in the immunoprecipitated complex [37].

Our results extend to several human cell lines the α/β differential  down-regulation of

IFNAR2 originally reported in 293T cells [13]. Moreover, our studies in these latter cells

demonstrate that the IFNβ-induced down-regulation of IFNAR2 indeed depends on formation

of the ternary complex and that increasing IFNAR1 does not modify ligand capacity to down-
regulate IFNAR2. These observations strongly suggest that it is the strength of ligand binding

and/or the lifetime of the ternary complex which may account for the differential control of
IFNAR2.

That the strength of ligand binding may be critical for receptor routing is well

established. A more stable ligand-receptor interaction at the moderately acidic conditions of
early endosomes, may promote receptor degradation and prevent recycling [38, 39]. Recent

studies have implicated ubiquitination of activated receptors as a signal for endosomal sorting
towards degradation [19] and the absence of ubiquitination was shown to divert internalized
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receptors towards the recycling pathway [20, 21, 40]. While ligand-induced ubiquitination of

IFNAR1 promotes its efficient sorting towards degradation [8, 16], we showed here that

IFNAR2 does not undergo ligand-induced ubiquitination (Fig. 5). Hence, differential
ubiquitination is unlikely to underlie the α/β differential effect on IFNAR2 routing. An

alternative possibility is that IFNβ, through efficiently bridging IFNAR2 to ubiquitinated

IFNAR1, drives the complex towards a degradative pathway. While the molecular steps by

which IFNα2 and IFNβ lead to differential intracellular routing of IFNAR2 remain to be

elucidated, our results imply that neither ligand properties nor receptor traffic impacts on

immediate-early activation of Jak/Stat.
Divergent endosomal sorting of activated receptors has emerged as a dynamic process

that can tune and diversify intracellular signaling [41]. For example, it was shown that TGF-β

receptors, residing in different membrane microdomains, can internalize through distinct
endocytic compartments, which in turn mediate either signal activation or receptor

degradation [42]. Interestingly, it has been reported that a fraction of IFNAR1 can be found in

lipid rafts in HeLa cells and mouse embryo fibroblasts [43, 44]. This observation raises the
possibility that membrane accessibility of (competent) receptor subunits may control their

basal and ligand-induced dynamics. In this scenario, the intrinsic binding property of the

ligand combined with cell type differences in availability of competent receptors would
contribute to the α/β differential IFNAR2 routing. Whether divergent traffic routes of the

engaged receptors may shape IFN subtype-specific signaling and/or contribute to Stat-

independent signaling [6] remains an appealing and open question.
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FIGURE LEGENDS

Figure 1. Surface levels of IFNAR1 and IFNAR2 and profiles of IFN-induced Jak/Stat

phosphorylation in four cell lines.

(A) Steady-state levels of IFNAR1 and IFNAR2 at the cell surface of the indicated cell lines

were measured by flow cytometry. (B and C) Kinetics of IFNα and IFNβ-induced Tyk2 and

Stat1/2/3 phosphorylation in Daudi and Jurkat cells. Cells were incubated with 500 pM

IFNα2 or IFNβ for the indicated time. Total lysates (40 µg) were resolved by SDS/PAGE and

the levels of phosphorylated or total Tyk2 and Stat1/2/3 were analyzed by western blot. (D)
Dose response profiles of Tyk2 and Stat1/2/3 phosphorylation after IFNα2 or IFNβ treatment

of Daudi and Jurkat cells. Cells were treated with the indicated doses (from 2.5 to 500 pM) of

IFNα2 or IFNβ for 30 min. Lysates (40 µg) were analyzed as described in (A). Data are

representative of at least 3 different experiments.

Figure 2. IFNα2 and IFNβ-induced phosphorylation profiles in WISH cells.

(A) Kinetics of Tyk2 and Stat1/2/3 phosphorylation in WISH cells treated with 500 pM of

IFNα2 or IFNβ, for the indicated time. (B) Dose response profiles of Tyk2 and Stat1/2/3

phosphorylation in WISH cells treated for 15 min with IFNα2 or IFNβ. Lysates (40 µg) were

analyzed by western blot. Data are representative of at least 3 different experiments.

Figure 3. Levels of IFNAR1 and IFNAR2 and IFNα2-induced phosphorylation profiles in

WISH-derived clones.

(A) Surface IFNAR1 and IFNAR2 levels in stable WISH clones measured by flow cytometry.

Three stable clones were derived from WISH parental cells, one depleted of endogenous
IFNAR1 (CPO2), one over-expressing IFNAR1 (R16) and one expressing IFNAR1 as in

parental cells (R23). (B) Total IFNAR1 content and IFNα-induced Jak/Stat phosphorylation

in CPO2, R23 and R16 clones. Cells were incubated with 500 pM IFNα2 for the indicated

time. Lysates (40 µg) were analyzed by western blot. Representatives of at least 3 different

experiments are shown. The lower band visible in the R16 samples represents a 95 kDa

incompletely processed IFNAR1 species which accumulates when the protein is
overexpressed [15].
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Figure 4. Dose response profiles of IFNα2-induced Jak/Stat phosphorylation in WISH-

derived clones.

(A) CPO2 and R23 cells were treated with increasing doses of IFNα2 for 15 min. Note the

maximal dose (2500 pM) added on CPO2 cells. (B) R23 and R16 cells were treated with

IFNα2 (from 1 to 100 pM) for 15 min. Total lysates (40 µg) were resolved by SDS/PAGE

and levels of phosphorylated Tyk2, Jak1 and Stat1/2/3 were analyzed by western blot. The
arrow points to a band, identified as phospho-Tyk2, which cross-reacts with anti-phospho-

Jak1 Abs.

Figure 5. Ligand-induced post-translational modifications of IFNAR1 and IFNAR2.

Daudi cells were treated with 500 pM IFNα2 or IFNβ for the indicated times. Total lysates (5

mg) were used to immunoprecipitate endogenous IFNAR1 and IFNAR2. Immunoprecipitates
were resolved by SDS/PAGE and the extent of ubiquitination of the receptors was analyzed

using anti-ubiquitin Abs (top panels). Note the shift in migration of IFNAR1 due to induced

ubiquitination. The left membrane was stripped and reprobed with anti-phosphotyrosine 4G10
mAb, P-Ser535-IFNAR1-specific Abs and anti-IFNAR1 mAb, as indicated. The right

membrane was stripped and reprobed with anti-phosphotyrosine 4G10 mAb and anti-IFNAR2

mAb, as indicated. Migration of the 116 kDa marker is indicated on the left. Data are
representative of at least 3 different experiments.

Figure 6. Basal decay of surface IFNAR1 and IFNAR2.

Surface stability of IFNAR1 and IFNAR2 in unstimulated cells. Decay of IFNAR1 (empty

squares) and IFNAR2 (filled squares) from the surface of Daudi, Jurkat, 293T and HeLa cells
treated with cycloheximide (CHX) was measured by flow cytometry. The results are plotted

as percentages of the mean fluorescence at time 0. Mean values of 4 different experiments are
presented.

Figure 7. Ligand-induced down-regulation of IFNAR1 and IFNAR2.

(A) IFNAR1 (left panels) and IFNAR2 (right panels) decay from the cell surface were

measured by flow cytometry in cells treated with CHX and 500 pM IFNα2 (empty circles) or

IFNβ (filled circles) for the indicated time. Data are plotted as the percentage of mean

fluorescence at time 0. Mean values of at least 3 different experiments are shown. In the

insets the difference between mean fluorescence values measured on untreated and IFN-
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treated cells is plotted. (B) Daudi, Jurkat, 293T and HeLa cells were treated with 500 pM

IFNα2 or IFNβ for the indicated time. Total lysates (40 µg) were resolved by SDS/PAGE and

levels of IFNAR1 and IFNAR2 were analyzed by western blot using corresponding

antibodies.

Figure 8. Ligand-induced down-regulation of IFNAR2 in 293T cells expressing different

levels of IFNAR1.

293T cells were transiently cotransfected with EGFP and either an IFNAR1-silencing vector

or an IFNAR1-expression vector. An aliquot of the transfected cells was monitored for EGFP
and IFNAR1 levels. In parallel, cells were treated with 200 pM IFNα2 or IFNβ for 2 h, or left

untreated, and levels of IFNAR2 were measured in chosen EGFP-positive subpopulations.

IFNAR1 relative level (horizontal axis) represents the amount of surface IFNAR1 in

transfected cells relative to endogenous IFNAR1 (marked as 1) in untreated cells. The extent
of IFNAR2 down-regulation (vertical axis) is expressed as the difference in the Geo Mean of

IFNAR2 specific fluorescence between untreated cells and cells treated with IFNα2 (empty

circles) or IFNβ (filled circles).

Figure 9. IFNα2-induced recycling of IFNAR2 in HeLa cells.

(A) IFN-induced antiproliferative effect in HeLa cells. Cells were either left untreated or
treated with the indicated concentrations of  IFNα2 (open circles) or IFNβ (closed circles) for

72 hr. Cell density was monitored by crystal violet staining as described in Experimental

procedures. The mean optical density values of triplicate datasets are presented. (B) HeLa
cells were either left untreated or treated with 25 µM monensin for 30 min in the presence of

transferrin (50 µg/ml) and the level of TrR at the cell surface was measured by flow

cytometry (left panel). Data are plotted as percentages of the mean fluorescence in control
condition. The mean value of 4 different experiments is presented. In the right panel, the basal

decay of IFNAR2 from the cell surface was monitored in the presence (open squares) or
absence (filled squares) of monensin for the indicated times using flow cytometry. The results

are plotted as percentages of the mean fluorescence at time 0. The mean values of 3 different

experiments are presented. (C) IFNα2-induced IFNAR2 recycling. HeLa cells were treated

with 500 pM IFNα2 (left panels) or IFNβ (right panels) in the presence (open circles) or

absence (closed circles) of monensin for the indicated times and the surface levels of IFNAR1
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and IFNAR2 were analyzed by flow cytometry. The results are plotted as percentages of the

mean fluorescence at time 0. The mean values of 3 different experiments are presented.

Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society



Biochemical Journal Immediate Publication. Published on 13 Jul 2007 as manuscript BJ20070605

© 2007 The Authors Journal compilation © 2007 Biochemical Society


