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École Polytechnique de Tunisie
hammmdihabib@yahoo.fr, chokri.mechmeche@esstt.rnu.tn, naceur.benhadj@ept.rnu.tn

†Laboratoire d’Automatique et de Génie des Proćed́es (LAGEP),
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Abstract— A large class of engineering systems are modeled
by coupled Differential and algebraic Equations (DAEs), called
also singular or descriptor systems. Due to the singular nature
of the algebraic equations, descriptor systems do not satisfy the
standard state-space description and require special techniques.
So far, the literature has concentrated mostly on the numerical
analysis and control aspects of descriptor or DAEs systems. This
paper investigates the problem of faults detection in nonlinear
DAE systems described by a multi-model with the design of
an Unknown Input Observer. The stability and robustness
properties of the fault diagnosis scheme are investigated in term
of LMIs. A simulation example illustrating the ability of the
proposed fault diagnosis architecture to detect multiple faults
is presented.

Index Terms— Nonlinear descriptor systems, multi-model,
fault diagnosis, LMIs.

I. I NTRODUCTION

It is well recognized that many practical dynamical sys-
tems are subject to various environmental changes, unknown
disturbances, and changing operating conditions, thussen-
sors/ actuators/ components failure and faults in those sys-
tems are inevitable. Since anyfaults/ failures in a dynamical
system may lead to significant performance degradation,
serious system damages, and even loss of human life, it is
essential to be able to detect and identify faults and failures
in a timely manner so that necessary protective measures can
be taken in advance. To that end, fault diagnosis of dynamic
systems has received much attention and significant progress
has been made in recent years in searching for model-based
diagnosis techniques. Much attention has been devoted to
the development of robust fault-detection methods under
external disturbances for continuous time systems modeled
via Ordinary Differential Equations (ODE)[14], [4], [12].
In contrary, rare are the methods dealing with the systems
consisting of both Differential and Algebraic Equations
(DAE), called also, differential-algebraic systems, implicit
differential equations, singulars or descriptor systems.The
field of the DAE systems was the witness of much activity
of research in a variety of axis.
Indeed, many work of fault diagnosis for descriptor systems
have been developed [6], [8], [1].

However, robust fault detection is still an open problem for
further research. One of the most important approaches for
robust fault detection is the use of disturbance decoupling
principles. The aim of this approach is to completely cancel
the disturbance effect from the residual. Nonetheless, the
complete elimination of disturbance effects may not be
possible due to the lack of design freedom. Moreover, it
may be problematic, in some cases, because the fault effect
may also be eliminated. Hence an appropriate criterion for
robust residual design should be to take into account the
effects of both disturbance and faults. There is a compromise
between sensitivity to faults and robustness to disturbance.
Robust residual generation can be then considered as a
multi-objective optimization problem, i.e, the maximization
of fault effects and the minimization of disturbance effects.
The multi-objective problem in time domain for ordinary
systems is studied by Chen et al [2]. On the other hands,
the residual generator design can become very delicate even
impossible according to the type and the complexity of
the employed model, from where the importance to have a
mathematical model of the system where it’s at the same
time, simple and precise. The multi-model approach is a
powerful technique of modeling of nonlinear systems which
makes it possible to get a good compromise between the
precision and the complexity of the model [13]. The multi-
models are recognized for their capacity to take into account
the changes in the operating mode of the system and to
reproduce its behavior with precision in a broad operating
range. Moreover, they offer mathematical properties which
can be made profitable during the design of the observer.
These properties hold in particular, the extension to the
nonlinear systems, a certain results obtained for the linear
systems and this, without to have carried out a specific
analysis of non-linearity of the system.
The multi-model representation was generalized to the sin-
gular systems with [15] and [10]. The stability and the
design of the controllers for multi-model singular systems
are characterized by the LMIs in [17], the formalism of the
singular systems is employed also by [16] for theH∞ filter
design. The problem of Fault Diagnosis and Isolation (FDI)
of LPV descriptor systems was studied in [5].



This paper considers the problem of the robust faults diag-
nosis for the nonlinear process modeled by a multi-model
descriptor system. The presented method is an extension of
the work of Ichalal et al. [7] for the ordinary nonlinear sys-
tems. First of all, the following process consists in obtaining
a more interesting representation of the nonlinear dynamic
systems. This representation is based on the interpolation
of the linear local models, representing the local behaviors
of the nonlinear system, by weighings functions. Then, an
unknown inputs multi-observer approach is developed for
robust residual generator and fault diagnosis which mini-
mizes the sensitivity to the disturbances and maximizes the
sensitivity to the faults. The existence and stability conditions
of the residual generator are also studied.
The paper is organized as follows, section II formulates the
problem of this note. The design of the residual generation
is considered in section III. The study of stability is also
introduced. It is based on the design of LMIs. An illustrative
example is introduced into the section IV to validate the
design suggested.

II. PROBLEM FORMULATION

Consider the following continuous-time nonlinear descrip-
tor system:

{

Eẋ(t) = F (x(t), u(t), d(t))
y(t) = Cx(t)

(1)

where x(t) ∈ R
n is the singular state vector,u(t) ∈ R

p

(p ≤ n) is the input vector,d(t) ∈ R
q is a disturbance

vector andy(t) ∈ R
m is the output vector.F (.) is continuous

and indefinitely derivable nonlinear function.rank(E) = r
and E is a singular matrix with constant parameters. The
linearization of the functionF (.) by Taylor series aroundh
operating points(xi, ui) gives a set of local linear singular
model as follow:

{

Eẋ(t) = Aix(t) + Biu(t) + Rid(t) + ∆xi

y(t) = Cx(t)
(2)

Ai, Bi, and C are jacobian matrices relating to theith

operating point.Ri is a disturbance matrix and∆xi is a
vector depend on theith operating point. Then, the non-
linear system represented by (1) can be written according
to the multi-model structure [12] (withh local models) as
presented below:







Eẋ(t) =
h
∑

i=1

hi(ξ(t))(Aix(t) + Biu(t) + Rid(t) + ∆xi)

y(t) = Cx(t)
(3)

The hi(ξ(t)) are the weighting functions that measure the
relative contribution of each local model to build the global
model. The functionhi(ξ(t)) checks the property of the
convex sum.







h
∑

i=1

hi(ξ(t)) = 1

0 ≤ hi(ξ(t)) ≤ 1
(4)

The multi-model structure makes it possible to represent any
non-linear behavior. It provides a mean of generalization

of the tools developed for the linear systems to the non-
linear systems. In order to do fault diagnosis of nonlinear
systems by using the multi-model approach, one considers
the singular multi-model system subject to the faultf(t) and
the disturbancesd(t) given by:






Eẋ(t) =
h
∑

i=1

hi(ξ(t))(Aix(t) + Biu(t) + Rid(t) + Fif(t) + ∆xi)

y(t) = Cx(t) + Hf(t)
(5)

wheref(t) ∈ R
nf is a fault vector. It is of interest to notice

that sinceH is non null, the approach is more generic than
for instance in [5]. The singular multi-model (5) is observable
[3] if and only if:

rank

[

sE − Ai

Ci

]

= n (6a)

rank

[

E Ai

0 E
0 C

]

= n + rank(E), ∀ i = 1, . . . , h (6b)

The fault diagnosis of nonlinear singular systems were rarely
been approached. Arun et al. [1], present a method of faults
diagnosis based on the use of the online estimators for
the dynamic systems described by nonlinear differentials-
algebraic equations. In Marx et al. [10], a design method
of unknown inputs observers for Takagi-Sugeno descriptor
systems was proposed. In this work, the authors supposed
that the activations functions depend on the measurable
variables. The obtained observer was used in faults detection
and isolation. The majority of the dedicated works for
fault diagnosis in singular systems concerns the residual
generation by the nonsingular unknown inputs observers. In
this work, one proposes a method of faults detection for
nonlinear singular systems represented by a multi-model.
The residual generation is built according to a standardH∞

design.

III. T HE RESIDUAL GENERATION DESIGN

In this section, one addresses the design of a residual
generator based on an unknown input observer for nonlinear
singular systems represented by a multi-model. Let us con-
sider the following singular multi-model given by (5), the
global model of the residual generator is defined by:



















ż(t) =
h
∑

i=1

hi(ξ(t))(Niz(t) + Giu(t) + Liy(t) + ∆zi)

x̂(t) = z(t) + T2y(t)

r(t) = M(y(t) − ŷ(t))

(7)

where z(t) ∈ Rn is the observer state vector and
r(t) ∈ Rnf is the residual vector. The unknown matrices
Ni, Gi, ∆zi, Li, T2 and M are of appropriate dimensions.
The objective is to find out the gains of the residual generator
in order to maximize the transfer of the faults towards the
error. The estimation error is defined as:e(t) = x(t) − x̂(t)

e(t) = x(t) − z(t) − T2y(t)

e(t) = (In − T2C)x(t) − z(t) − T2Hf(t)



Let the matrixT1 ∈ Rn×n such that:

T1E = In − T2C (8)

So, for

[

E
C

]

is full rank column, we have,

[T1 T2 ]

[

E
C

]

= In then (9)

[

T1 T2

]

=

[

E
C

]+

(10)

Now, we assume that the faults are with slow variation, i.e
ḟ(t) ≃ 0. Then, using (5) and (7), the dynamics error is:

ė(t) = T1Eẋ(t) − ż(t)

ė(t) =
h
∑

i=1

hi(ξ(t)) {T1(Aix(t) + Biu(t) + Rid(t) + Fif(t)

+∆xi) − (Niz(t) + Giu(t) + Liy(t) + ∆zi)}

ė(t) =
h
∑

i=1

hi(ξ(t)) {Nie(t) + (T1Ai − NiT1E − LiC)x(t)

+(T1Bi − Gi)u(t) + T1Rid(t)
+(T1Fi − LiH)f(t) + T1∆xi − ∆zi}

(11)

Moreover, the residual equation can be written such that:

r(t) = M(y(t) − ŷ(t))

r(t) =
h
∑

i=1

hi(ξ(t))(M {Cx(t) + Hf(t) − Cx̂(t) )

By using the static error equation and the relations (5), the
residual is written as:

r(t) =

h
∑

i=1

hi(ξ(t))({MCe(t) +MHf(t)}) (12)

Then, if the constraints

T1Ai − NiT1E − LiC = 0 (13a)

T1Bi − Gi = 0 (13b)

∆zi = T1∆xi (13c)

(13d)

are checked, so the relations (11) and (12) become:

ė(t) =
h
∑

i=1

hi(ξ(t)) {Nie(t) + T1Rid(t)

+(T1Fi − LiH)f(t)}
(14a)

r(t) =
h

∑

i=1

hi(ξ(t))({MCe(t) +MHf(t)}) (14b)

By using the equalities (8) and (13a);

Ni = T1Ai + KiC (15a)

where Ki = NiT2 − Li (15b)

From where, the relations (14a) and (14b) are written as
follows:

ė(t) =
h
∑

i=1

hi(ξ(t)) {(T1Ai + KiC)e(t) + T1Rid(t)

+(T1(Fi − AiT2H) − Ki(CT2H − H))f(t)}
(16a)

r(t) =

h
∑

i=1

hi(ξ(t))({MCe(t) +MHf(t)}) (16b)

Therefore, the transfer matrices from the disturbance to the
residual and from the fault to the residual (16) are given by:

r(t) =

h
∑

i=1

hi(ξ(t))(G
i
rdd(t) + G

i
rff(t)) (17)

A state-space realization of theith transfer matricesGi
rd and

Gi
rf is denoted as:

Gi
rf =

(

(T1Ai + KiC)|

MC |

Υi

MH

)

(18a)

Gi
rd =

(

(T1Ai + KiC)|

MC |

T1Ri

0

)

(18b)

whereΥi = T1(Fi − AiT2H) − Ki(CT2H − H)
Both faults and disturbances affect the residual and discrim-
ination between these two effects is difficult. To reduce false
and missed alarm rates, the effect of faults on the residual
should be maximized and the effect of disturbances on the
residual should be minimized. To avoid this conflict, the
effect of the faultf(t) on the residualr(t) can be expressed
like a problem of minimization. Indeed, by introduction of
a weighting parameterW i

f , the problem is reduced to a
minimization of the effect of the fault on the residual error:

r̃(t) =

h
∑

i=1

hi(ξ(t))(r(t) − W
i
ff(t)) (19)

W i
f is a weighting parameter which makes it possible to

take account the knowledge of the fault distribution. The
detection and isolation of the fault depend on the selected
structure ofW i

f . Indeed, the estimated faults are obtained
when W i

f = I and the problem of detection is considered
whenW i

f ∈ R1×nf .
The problem of faults detection and isolation can be formu-
lated into the form of multi-objective optimization problem
which consists in determining the matricesKi andM which
minimize aγf + (1 − a)γd under the following constraints:

∥

∥Gi
rf − W i

f

∥

∥

∞
< γf (20a)

∥

∥Gi
rd

∥

∥

∞
< γd (20b)

the system (16) is stable (20c)

wherea ∈ [0 1]. Note that, the condition (20a) measures
the deviation of the faults compared to the residual with
the parameter of weighting functions, while the condition
(20b) represents the robust decoupling of the disturbances
compared to the residual.

A. Linear Matrices Inequalities Formulation

In this subsection, the main idea is to express the con-
straints (20) into the form of a LMIs problem optimization
whereW i

f is a dynamic weighting parameter defined by:

W
i
f =

(

Aif |

Cif |

Bif

Dif

)

(21)

whereW i
f ∈ ℑ. ℑ is the whole of the stable transfer matrices

such as [11]:
∥

∥

∥W
i
f

∥

∥

∥

−

= inf
w∈R

(W i
f (jw)) ≥ 1 (22)



Then, the expressionGi
rf − W i

f can be rewritten in the
following form:

Gi
rf − W i

f =









(T1Ai + KiC) 0
0 Aif

∣

∣

∣

∣

∣

∣

MC − Cif

∣

∣

∣

∣

∣

∣

Υi

Bif

MH − Dif









(23)

The residual generator (7) problem design is solved by the
following theorem.

Theorem 1: [7] For a ∈ [0 1] a real positive parameter
andW i

f ∈ ℑ a weighing function, the residual generator (7)
exists, if there exist two definite positive matricesQ1 = QT

1

andQ2 = QT
2 , gain matricesKi, M and positive reals scalars

γf andγd solution of the following optimization problem

min
M, Ki, Q1, Q2,γf , γd

aγf + (1 − a)γd (24)

subject to:








Πi 0 Ψi (MC)T

0 AT
if

Q2 + Q2Aif Q2Bif −CT
if

ΨT
i

BT
if

Q2 −γ2

f
I D̄T

i

MC −Cif D̄i −I









< 0 (25a)

(25b)




Πi Q1T1Ri (MC)T

(T1Ri)
T Q1 −γ2

d
I 0

MC 0 −I



 < 0

where

Πi = (T1Ai)
T Q1 + Q1(T1Ai) + ΩiC

+(ΩiC)T (26a)

Ψi = (Q1T1(Fi − AiT2H)
−Ωi(CT2H − H))

(26b)

D̄i = MH − Dif (26c)

Ωi = Q1Ki (26d)

�

Proof:
Let define a positive and symmetric bloc diagonal matrix:

Q =

(

Q1|

0 |

0

Q2

)

Using the bounded-real lemma [9], the condition (20a) is
formulated as follows:







ĀT
i Q1 + Q1Āi 0 Q1B̄i (MC)T

0 AT

if
Q2 + Q2Aif Q2Bif −CT

if

B̄T
i

Q1 BT

if
Q2 −γ2

f
I D̄T

i

MC −Cif D̄i −I






< 0

where:

Ā
i
= (T1A + KiC)

B̄i = (T1(Fi − AiT2H) − Ki(CT2H − H))

To resolve these LMIs, fori = 1, ..., h, one poses:
Ωi = Q1Ki, then the LMIs (25a) are satisfied.
In the same manner, the application of the bounded real
lemma to constraint (20b) by using the relation (18b), makes

it possible to obtain LMIs (25b). The condition (20c) is
ensured by the stability of the matrixΠi in (25a).

To design robust residuals for multi-model descriptor sys-
tems, a multi-objective optimization problem needs was
solved. This paper uses the method of inequalities to solve
this multi-objective optimization problem. All objectives are
reformulated into a set of inequality constraints on perfor-
mance indices. This method is an extension of the FDI
methodology proposed in [7], for ordinary multi-model to
descriptor multi-model systems.

IV. I LLUSTRATIVE EXAMPLE

In order to illustrate the efficiency of the presented method,
let consider the nonlinear descriptor system (1) defined by











































ẋ1(t) = −1.5x2

1(t) + 0.2x3(t)x4(t) + d(t)
ẋ2(t) = −u1(t)x

2

1
(t) − x4(t)x

2

3(t) − 0.5x2(t)
0 = 0.5x2(t) − x3(t) + 0.2x4(t)
0 = −x2

2(t) + x2

3(t) − 2x4(t) + u2(t)

y(t) =





1 1 0 1
1 0 0 1
0 0 1 0



 x(t)

(28)

whereu1(t) andu2(t) are constant signal of magnitude10
and7 respectively.d(t) is gaussian noise of mean zeros and
variance0.1 applied for8 ≤ t ≤ 11.

A. Multi-Model Representation

The above nonlinear descriptor system is approximated by
a multi-model representation as follows:







Eẋ(t) =
3

∑

i=1

hi(x3(t))(Aix(t) + Biu(t) + Rid(t) + ∆xi)

y(t) = Cx(t)
(29)

The numerical values of those parameters are as follows:

E =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






, A1 =







−0.8775 0 0.526 −0.0274
−5.85 −0.5 0.1481 0.0026

0 0.5 −1 0.2
0 2.6522 −0.274 −2







A2 =







−0.6375 0 0.6166 0.0307
−4.2500 −0.5 0.2176 −0.0036

0 0.5 −1. 0.2
0 1.8526 0.3068 −2






, B1 =







0 0
−0.0856 0

0 0
0 1







A3 =







−0.6357 0 0.6047 0.0226
−4.2380 −0.5 0.1162 −0.0015

0 0.5 −1. 0.2
0 1.966 0.2264 −2






, B2 =







0 0
−0.0452 0

0 0
0 1







B3 =







0 0
−0.0449 0

0 0
0 1






, Ri = R =







1
0
0
0






, C =

[

1 1 0 1
1 0 0 1
0 0 1 0

]

∆x1 =









0.2004
1.6753

0
1.7397









,∆x2 =







−0.0268
0.8083

0
0.8346






,∆x3 =







−0.0011
0.8505

0
0.9535









The weighting functions are:

hi(x3(t)) =
µi(x3(t))

3
∑

i=1

µi(x3(t))

whereµi(x3(t)) are defined by:

µ1(x3(t)) = exp(−1/2(x3+5

2
)2)

µ2(x3(t)) = exp(−1/2(x3

2
)2)

µ3(x3(t)) = exp(−1/2(x3−5

2
)2)

In order to show the effectiveness of the used modeling
method, the nonlinear state and here approximation by the
multi-model approach are given in the following figures:

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35
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t(s)

 

 
x1mul
x1 NL

Fig. 1. x1(t) of nonlinear model andx1mu(t) of the multi-model
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Fig. 2. x2(t) of nonlinear model andx2mu(t) of the multi-model
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Fig. 3. x3(t) of nonlinear model andx3mu(t) of the multi-model
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x4 mul
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Fig. 4. x4(t) of nonlinear model andx4mu(t) of the multi-model

These figures illustrate the superposition of the nonlinear
states with the states coming from of the multi-model repre-
sentation. We can see that the Multi-Models well represent
the nonlinear dynamic behavior.

B. Residual generation

Firstly, based on (5), the multi-model (29) becames:






Eẋ(t) =
3

∑

i=1

hi(x3(t))(Aix(t) + Biu(t) + Rid(t) + Ff(t) + ∆xi)

y(t) = Cx(t) + Hf(t)
(30)

whereFi = F andH are the actuator and sensor faults dis-
tribution matrices respectively. The decision variablex3(t) is
considered free of faults. The first component of the vector
f(t) is a sensor fault and the second component is an actuator
fault on the second input. These failures are given as:

f1(t) =

{

1.5 if 15 ≤ t ≤ 20s
0 elsewhere

f2(t) =

{

0.3u2(t) if 25 ≤ t ≤ 30s
0 elsewhere

,

F =







0 0
0 0
0 0
0 1






,H =

[

0 0
1 0
0 0

]

Then, to design the multi-model residual generation, for
i = 1, . . . , h, the constraints (6) are verified , the necessary
assumptions to the diagnosis are thus satisfied.Wf is chosen
to be a diagonal of first order low-pass filters as follows.

Wf =

(

Af

Cf

∣

∣

∣

∣

Bf

Df

)

= 0.17





1 0
0 1

∣

∣

∣

∣

1 0
0 1

0 0
∣

∣

∣
1 1





For each fault, a dedicated residual generator is designed with
the following parameters which are obtained by resolving
the minimization of the multi-objective problem given in
Theorem (1). It results that for a chosen parametera = 0.9
with positive reals scalarsγf = 2.1396 and γd = 1.9071,
the gains matricesKi given as follows:

K1 =







−0.8473 −2.3216 0.1307
−1.6730 0.7307 0.0039
0.2612 0.2710 −2.5090
−1.9139 −1.1541 0.1335









K2 =







−0.7355 −2.1091 0.0345
−1.6764 0.8449 −0.0341
0.1542 0.1850 −2.4650
−1.7240 −1.1420 0.1522







K3 =







−0.7390 −2.1054 0.0373
−1.6836 0.8443 −0.0283
0.1563 0.1821 −2.4648
−1.7181 −1.1435 0.1460







and a matrixM = [−0.1765 0.4162 0.0180]. The ob-
tained residuals under a gaussian noise of variance1, are
displayed on figures (5) and (6). The residualr1(t) is
sensitive only to the first fault (sensor fault) and the second
residualr2(t) is only sensitive to the second fault (actuator
fault).
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Fig. 5. Sensor fault and corresponding residual signalr1(t)
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Fig. 6. Actuator fault and corresponding residual signalr2(t)

From figure (5) and (6), it can be seen that the residual is
almost zero throughout the time simulation run for fault-free
residuals. The residuals of the respective unknown inputs
observers increase in magnitude considerably, when actuator
fault occur at t= 25s and sensor fault at t=15s. The faults
can be easily isolated using the information provided by
residuals.

V. CONCLUSION

The design of a robust multi-model residual generation
based on unknown inputs multi-observer for descriptor sys-
tems has been studied. The existence condition and an
LMI-based computation have been established. The residuals
generation are optimally robust since they are designed in

order to minimize the sensitivity of the residual. So, a multi-
objective optimization problem is resolved. The introduction
of weighting function ensures the performance of the de-
tection in a prescribed frequency range. The given example
illustrates the effectiveness of this approach.
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