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Abstract

Factor VII activating protease (FSAP) can inhibit neointima formation and vascular smooth 

muscle (VSMC) proliferation by cleavage of platelet derived growth factor-BB (PDGF-BB). 

Negatively charged polyanions lead to autoactivation of the FSAP but no information is 

available concerning the potential regulation of FSAP activity and its metabolism in the 

vessel wall. We now demonstrate that the enzymatic activity of FSAP can be inhibited by the 

serine protease inhibitor (SERPIN), protease nexin-1 (PN-1), that is found in the vasculature. 

This leads to the loss of the inhibitory effect of FSAP on PDGF-BB-mediated DNA synthesis 

and MAPK phosphorylation in VSMC. The FSAP-PN-1 complexes bind to the low density 

lipoprotein receptor related protein (LRP) and are subsequently internalized. This binding is 

inhibited by receptor associated protein (RAP) an antagonist of LRP as well as heparin.

While PDGF R is internalized by an LRP-dependent mechanism after stimulation of cells by 

PDGF-BB, the FSAP-PN-1 complexes neither influenced PDGF-BB-mediated 

phosphorylation of PDGF R nor its internalization via LRP. Hence, PN-1 inhibits the 

enzymatic activity of FSAP and neutralizes its effect on PDGF-BB-mediated VSMC 

proliferation. The FSAP-inhibitor complexes are internalized via LRP without influencing 

the PDGF-BB signal transduction pathway.
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Introduction 

The factor seven activating protease (FSAP) is a serine protease containing three EGF 

domains a kringle domain and a serine protease domain [1]. We have previously shown that 

FSAP is a potent inhibitor of platelet derived growth factor-BB (PDGF-BB)-dependent 

proliferation and migration of vascular smooth muscle cells (VSMC) [2]. These are important 

processes in the development of atherosclerotic disease and restenosis after angioplasty or 

stenting. Furthermore, the level of active FSAP in the vessel wall is a key determinant of 

neointima formation in a mouse model of injury-induced stenosis [3]. 

FSAP is auto-activated in the presence of negatively charged polyanions such as 

heparin, hyaluronic acid or nucleic acid [4-7]. The Marburg I single nucleotide polymorphism 

leads to a single amino acid exchange (G534E) in the protease domain of the molecule and 

exhibits diminished proteolytic activity compared to wild type FSAP [8]. The inhibitory effect 

of Marburg I FSAP on PDGF-BB dependent cell proliferation and neointima formation was 

diminished compared to wild type FSAP [3]. This indicates that the proteolytic activity of 

FSAP is a key determinant of the VSMC activation status in vivo. The enzymatic activity of 

FSAP is known to be inhibited by plasma serine protease inhibitors (SERPINS) such as C1-

inhibitor, 2-antiplasmin, antithrombin / heparin or aprotinin [9]. The SERPIN, protease 

nexin-1 (PN-1) is produced mainly by vascular smooth muscle cells (VSMC) [10], pericytes 

[11] and fibroblasts [12] and it is not known if it influences FSAP activity.  

The low density lipoprotein receptor-related protein (LRP) is a member of a large 

receptor family responsible for the endocytosis of a variety of ligands [13]. LRP is 

responsible for the internalization of proteases, protease-inhibitor complexes and lipoproteins 

[14]. The ligands, once bound to LRP, are internalized and directed to endosomes and 

undergo degradation whereas LRP is recycled to the cell membrane [15]. Urokinase 

plasminogen activator (uPA) and tissue plasminogen activator (tPA) bind to LRP alone as 

well as in complex with SERPINS [13]. It is not known if FSAP can interact with LRP. 

Recently it has been reported that LRP is a signal transduction receptor that is involved in 

the regulation of the PDGF-BB- PDGF  receptor (PDGF R) signaling pathways [14].

In this study we demonstrate that the SERPIN PN-1, found in the vasculature, can 

inhibit FSAP. FSAP-PN-1 complexes, but not FSAP alone, interact with the scavenger 

receptor LRP and are subsequently internalized. PN-1 inhibits FSAP-mediated cleavage and 

inhibition of PDGF-BB but, FSAP-PN-1 complexes do not influence the PDGF-BB-PDGF R

internalization by LRP or signal transduction processes. 
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Material and Methods 

Cell culture: Wild type (WT) and LRP
-/-

 mouse embryo fibroblasts (MEF) were cultivated in 

Dulbecco’s modified Eagle’s medium  (Invitrogen, Karlsruhe, Germany) with 10% fetal calf 

serum (FCS) (HyClone, Logan, U.S.A.), 10 U/ml penicillin, 10 µg/ml streptomycin, 2 mM L-

glutamine and 1 mM sodium-pyruvate (Invitrogen). Mouse vascular smooth muscle cells 

(VSMC) were cultured in Iscov’s modified medium (Invitrogen) with the same supplements 

as above. Cells were growth arrested in serum-free medium for 18 h prior to experiments. 

Immunocytochemistry: Cells in 8-well chamber slides were incubated with the test substances 

for the indicated times and washed and fixed with 3.7% (wt/vol) paraformaldehyde, 

permeabilised with 0.2% (wt/vol) Triton X-100 (Sigma, Munich, Germany) and blocked with 

3% (wt/vol) BSA (Sigma). After incubation with the primary antibody against the FSAP 

(mAb 1189 or mAb 677) (ZLB Behring, Marburg, Germany), LRP (Rabbit polyclonal #2629 

generously provided by Dr. Dudley Strickland, American Red Cross, Rockville, Maryland), 

secondary antibodies labeled with fluoroscene isothiocyanate (FITC) or Rhodamine 

(Dianova, Hamburg, Germany) were used for visualization. Finally, cells were washed and 

preserved in Vecta-shield (Linaris Wehrtheim-Bettingen, Germany), containing 4’, 6-

diamidino-2-phenylindole dehydrate (DAPI) to stain the nuclei. Slides were analyzed 

using a Leica fluorescence microscope and the images were prepared with the Metamorph 

software (Visitron, Puchheim, Germany).  

DNA-synthesis assays: VSMC were stimulated in 0.2% FCS containing medium for 24 h 

with the test substances. For the last 4 h BrdU was added and the cells were processed with a 

BrdU detection kit (Roche Diagnostics, Mannheim, Germany) as described by the 

manufacturer. 

Mitogen activated protein kinase (MAPK)-phosphorylation: Test samples were preincubated 

for 60 min in serum-free medium and the cells were stimulated for 5 to 15 min. Thereafter, 

SDS sample buffer, containing 1 mM orthovanadate was used to lyse the cells. 

PhosphoMAPK antibody (ERK-p42/44) was from Cell Signaling Technology (Danvers, 

Massachusetts) and the total MAPK antibody from Upstate (Charlottesville, Virginia) 

Western blot analysis: After SDS-polyacrylamid gel proteins were transferred to 

polyvinylidene fluoride (PVDF) -membranes. Western blotting was performed using 
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enhanced chemiluminescence (ECL) plus reagent (GE Healthcare, Uppsala, Sweden) as 

described by the manufacturer. For Western blot analysis of FSAP a mixture of antibodies 

directed against the N-terminal end (mAb 1189) and against the C-terminal end (mAb 

677) was used as described before [2] in order to detect degraded forms of FSAP, if 

present.

FSAP activity assay: FSAP was isolated from human plasma as described before [5]. To 

determine activation and enzymatic activity of FSAP, the hydrolysis of the chromogenic 

substrate H-D-Isoleucyl-L-prolyl-L-arginine-p-nitroaniline dihydrochloride (S-2288) 

(Haemochrom, Essen, Germany) at a final concentration of 0.2 mM was measured over a time 

period of 60 min at 37°C in a microplate reader EL808 (BioTek Instruments, Winooski, 

Vermont, U.S.A.). Recombinant PN-1 was produced in Sf9 insect cells and purified in 

Blue Agarose and Sephacryl S-200 as described before [16]. Concentration of active PN-

1 was determined by inhibition of thrombin and determination of the residual thrombin 

activity as described [16]. PN-1 and aprotinin were preincubated with FSAP for 30 min prior 

to the enzymatic activity assay. The assays were performed with a final FSAP-concentration 

of 1µg/ml in buffer containing 10µg/ml heparin. 

FSAP binding to LRP: LRP was isolated from human placenta as described before [17]. LRP 

and the respective control buffer containing 2 µg/ml BSA were immobilized, in Tris (50 mM, 

pH 7.4) containing NaCl (150 mM) in a Maxisorp plate (Nunc, Wiesbaden, Germany). 

Thereafter the plate was blocked with 3% (wt/vol) BSA. Test substances or mixtures were 

preincubated for 30 min prior to their application to the coated wells for 60 min. FSAP was 

detected by a monoclonal anti FSAP antibody (mAb 677) (ZLB Behring) followed by a horse 

reddish peroxidase (HRP) conjugated secondary antibody (Dako, Glosptrup, Denmark). The 

binding to control buffer containing 2 µg/ml BSA coated wells was used as a blank in all 

experiments and was subtracted to obtain specific binding. 

Expression and purification of receptor associated protein (RAP): The constructed plasmid 

with His-tag, ampicillin (Amp)-resistance and human RAP cDNA was a kind gift from Dr. 

Willnow (MDC, Berlin, Germany). Extracts were purified over a ProBond
TM 

column 

(Promega, Mannheim, Germany) and fractions containing the protein were dialyzed against 

TBS pH 8.0 containing 5 mM reduced glutathione (GSH) and 1mM oxidized glutathione 

(GSSG) for refolding and finally dialyzed against TBS pH 8.0. 
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Results

Inhibition of FSAP by PN-1 and the binding of the FSAP-PN-1 complex to LRP: PN-1 is a 

SERPIN produced locally in the vessel wall and it neutralized the enzymatic activity of FSAP 

as measured by the direct chromogenic substrate S-2288 (Fig. 1A). The presence of heparin 

did not influence the FSAP inhibition characteristics (Fig. 1A). The formation of 

complexes between FSAP and PN-1 could be observed in a dose dependent manner with 

Western blotting (Fig. 1B). Several protease protease-inhibitor complexes like uPA and tPA 

in complex with PN-1 or plasminogen activator inhibitor (PAI)-1 are known to bind to LRP 

hence the binding of FSAP-inhibitor complexes to the immobilized LRP was investigated. 

FSAP-PN-1 complex showed a strong specific binding whereas FSAP by itself, or in complex 

with aprotinin (data not shown), exhibited no binding at all to LRP (Fig. 2A). The binding 

of FSAP-PN-1 complex was inhibited by heparin (Fig. 2A). Concentration-dependent 

analysis confirmed that FSAP-PN-1 complex binding showed saturation (Fig. 2B). The 

binding of FSAP-PN-1 complex could be inhibited with receptor associated protein (RAP) 

(Fig. 2C), a 39 kDa LRP antagonist, known to inhibit ligand binding to LRP [18]. Maximal 

inhibition (  70%) was observed with 10 g/ml RAP.  

Binding of FSAP-PN-1 complex to LRP on cells: The binding of FSAP and FSAP-PN-1 

complexes to cells was analyzed with immunofluorescence microscopy. Application of FSAP 

alone to VSMC did not lead to an accumulation of cellular FSAP (Fig. 3b), whereas FSAP-

PN-1 complexes were internalized by VSMC (Fig. 3d). Co-staining of FSAP (Fig. 3d; green) 

and LRP (Fig. 3d; red) on VSMC shows a co-localization of the ligand and the receptor in the 

intracellular compartment (Fig. 3d). Preincubation of VSMC with RAP prior to application of 

FSAP-PN-1 complex completely inhibited the internalization of the complex and the co-

localization of FSAP and LRP (Fig. 3h). Time course analysis showed that FSAP-PN-1 

complexes were internalized within minutes (Online supplemental data 1) and that heparin 

inhibited this internalization (Online supplemental data 2). FSAP-PN-1 complex but not 

FSAP alone was internalized by wild type-mouse embryo fibroblasts (MEF) but not by LRP
-/-

MEF (Online supplemental data 3). FSAP-PN-1 complex binds to LRP, undergoes

internalized via the scavenger receptor and is directed to lysosomes. 

Effect of FSAP-PN-1 complex on PDGF-BB-induced internalization of PDGF R: Since 

FSAP is a strong inhibitor of the PDGF-BB signaling pathway and LRP is also involved in 

modulating the same pathway we investigated the interactions between FSAP, LRP and 
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PDGF R. In unstimulated cells PDGF R is diffusely distributed over the whole cell 

membrane and upon stimulation with PDGF-BB internalization of PDGF R into lysosomes is 

observed (Fig. 3i; red) as has been described before [19, 20]. This PDGF-BB-induced 

internalization of PDGF R was not influenced by the presence of FSAP-PN-1 complex (Fig. 

3l; red). Hence, FSAP-PN-1 complex is internalized via LRP but this does not influence the 

internalization of PDGF-BB-PDGF R by LRP even though there was co-localization of 

FSAP-PN-1 complex (Fig. 3m; green) with internalized PDGF R (Fig. 3m; red). No

PDGF R staining was observed in the presence of PDGF-BB and FSAP due to cleavage 

and inactivation of PDGF-BB so that the diffuse distribution of PDGF R remained 

unchanged (Fig. 3j). Although FSAP-PN-1 complexes as well as the PDGF-BB-PDGF R

complexes bind to LRP, their internalization was completely independent of each other. 

Effect of FSAP-PN-1 complex on PDGF BB-dependent cell activation: Finally, we have 

investigated if FSAP-PN-1 complex can influence PDGF-BB-mediated signal transduction. 

Preincubation of PDGF-BB with FSAP diminished 42/44-MAPK phosphorylation in VSMC 

(Fig. 4a) because of cleavage and inactivation of PDGF-BB (Online supplemental data 4). 

Preincubation with FSAP-PN-1 did not alter PDGF-BB-mediated phosphorylation of 42/44 

MAPK in VSMC (Fig. 4A). Inhibition of the proteolytic activity of FSAP by PN-1 led to 

neutralization of its ability to inhibit PDGF-BB-mediated DNA synthesis (Fig. 4B). Neither 

RAP nor FSAP-PN-1 complex had any significant influence on PDGF-BB-mediated DNA-

synthesis indicating that LRP is not regulatory under these conditions on these cells. 

Generally, more PDGF R was present in LRP
-/-

 MEF than in wild type MEF and 

higher levels of tyrosine phosphorylation were observed in LRPP

-/-
 MEF than in WT MEF after 

PDGF-BB stimulation (Online supplemental data 5). These results confirm the known role of 

LRP in regulating PDGF-BB activity. No effect of FSAP-PN-1 complex was observed on this 

pattern of expression or phosphorylation of PDGF R (Online supplemental data 4).  

Discussion

Inhibition of PDGF-BB-mediated VSMC proliferation by FSAP was observed in vitro 

[2] and in vivo in a mouse model of neointima formation [3]. The naturally occurring Marburg 

I form of FSAP has diminished proteolytic activity and is a weaker inhibitor of VSMC 

proliferation [3]. This could explain why this form of FSAP is a strong risk factor for 

cardiovascular diseases in general [21, 22]. Hence, the proteolytic activity of FSAP is a key 
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determinant in this scheme of atherothrombosis. PN-1 is a prominent SERPIN in the vessel 

wall produced by vascular smooth muscle cells and it is capable of inhibiting the enzymatic 

activity of FSAP. There are numerous studies indicating that PN-1 is up-regulated in 

hypertension [10] and atherosclerosis [23]. Hence, through inhibition of FSAP, PN-1 can 

regulate the activity of FSAP towards PDGF-BB. 

FSAP is homologous to factors from the coagulation and the fibrinolysis system 

and LRP plays a critical role in the regulation of their activity and metabolism. Through 

internalization of the active factor IXa [24] and VIIIa [25] LRP also indirectly regulates 

the activity of the coagulation system. Complexes of plasminogen activator inhibitor-1 

(PAI-1) with proteases are internalized by LRP and this process is heparin-dependent 

[26]. The binding of PN-1-thrombin but not PN-1-uPA complex was also heparin-

dependent [27]. With some exceptions such as PN-1 [28] or factor VIII [29] the binding 

of individual factors to LRP is weak.  

FSAP-PN-1 complexes bound to LRP and were internalized by cells as are other 

protease-inhibitor complexes [30]. Internalization was not observed in LRPP

-/-
 MEF cells or in 

the presence of the specific LRP inhibitor, RAP. Neither FSAP alone nor the FSAP-aprotinin 

complex binds to LRP indicating that the recognition by LRP is only possible when FSAP is 

in complex with PN-1. Hence PN-1 contributes binding elements necessary for the 

binding of FSAP-PN-1 complex to LRP. The binding of FSAP-PN-1 complex was 

inhibited by heparin, the likely reason is that PN-1 is a strong heparin binding protein 

[31] analogous to FSAP. Our preliminary data shows that another SERPIN, 

plasminogen activator inhibitor-1 (PAI-1) also inhibits FSAP (Wygrecka et al. 

unpublished results) and the FSAP-PAI-1 complex binds to LRP and is internalized. 

LRP also plays an important role in regulating the signal transduction pathway at 

many levels. LRP seems to bind to PDGF-BB directly [32], but not bFGF, thereby increasing 

the local concentration of PDGF-BB. LRP is phosphorylated upon stimulation of cells with 

PDGF-BB and there is a crosstalk between PDGF R and LRP. Phosphorylation of LRP 

generates a Shc docking site propagating the signal [32-34]. In its unphosphorylated state 

LRP functions as an endocytic receptor and inhibits PDGF-BB-mediated signal transduction.

In the absence of LRP, PDGF-BB dependent signal transduction is increased in vivo and leads 

to atherosclerosis [35, 36]. 

Since FSAP-inhibitor complexes also bind to LRP we have hypothesized that PDGF-

BB signal transduction might be altered since this is partially dependent on LRP. The binding 

of FSAP-PN-1 complex to LRP does not influence the function of LRP with respect to the 
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PDGF-BB-PDGF R axis. The possible reasons are that FSAP-PN-1 complexes bind to a 

different region of LRP than the PDGF-BB-PDGF R complex and no competition ensues. 

Alternatively, LRP that is involved in internalization of the FSAP-inhibitor complex is 

localized in a different cellular compartment compared to LRP involved in PDGF-BB / 

PDGF R signal transduction. Another reason could be that the LRP system is high a capacity 

system that is not easily saturated, hence the lack of competition between the different LRP 

ligands.

We have recently shown that a naturally occurring variant of FSAP, the Marburg I 

variant, has reduced proteolytic activity and cannot inhibit neointima formation in vivo in a 

mouse injury model. Hence, the inhibition of FSAP activity by a locally produced SERPIN 

such as PN-1 is a likely regulatory element in this pathway [3]. The FSAP-inhibitor 

complexes are internalized via LRP without influencing the signal transduction-related

functions of LRP with respect to PDGF-BB and PDGF R. In human atherosclerotic plaques 

high intracellular FSAP staining has been observed in VSMC and macrophages indicating 

that this mechanism is likely to function in vivo [2].
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Figure legends 

Figure 1: Inhibition of FSAP by PN-1 and complex formation. (A) FSAP (1 µg/ml) was 

preincubated with PN-1 in the absence (closed circles) or presence of heparin (10 µg/ml) (open 

circles) in the concentration range 0.5 – 2.0 µg/ml for 30 min. FSAP-activity was measured with the 

conversion of 0.2 mM specific chromogenic substrate S-2288; mean ± SD (n=3). (B) FSAP (30 

ng/lane) was preincubated with PN-1, in the concentration range 10 – 80 ng/lane in the presence of 

heparin (10 µg/ml). Western blot analysis was performed using two monoclonal antibodies against 

FSAP. These experiments were repeated 3 times with similar results. 

Figure 2: FSAP-PN-1 complex binding to LRP. (A) FSAP (1 µg/ml) was preincubated for 30 min 

with PN-1, (2 µg/ml) to allow complex formation and the binding to immobilized LRP (1 µg/ml) was 

measured in absence (dark bars) or presence of heparin (10 µg/ml) (open bars) using a monoclonal 

antibody against FSAP; mean ± SD (n=3). (B) FSAP (1µg/ml) was preincubated with PN-1 in the 

concentration range of 0.05 – 2 µg/ml for 30min to allow complex formation and binding of the 

FSAP-inhibitor complexes to immobilized LRP (1 µg/ml) and BSA was measured by specific 

monoclonal antibody against FSAP, mean ± SD (n=3). (C) FSAP (1 µg/ml) was preincubated with 2 

µg/ml PN-1 for 30 min to allow complex formation. Binding of the FSAP-inhibitor complexes to 

immobilized LRP (1 µg/ml), without (dark columns) or with 10 µg/ml RAP (striped columns), and 

control buffer, containing BSA (2 µg/ml) was measured by specific monoclonal antibody against 

FSAP; mean ± SD (n=3). These experiments were repeated 3 times with similar results. 

Figure 3: Binding of FSAP-PN-1 complex to LRP and the influence of this complex on PDGF R

distribution in VSMC. (Top panel) Buffer control (a, e), FSAP (1 µg/ml) alone (b, f) and PN-1 

(2µg/ml) alone (c, g) or together (d, h) were preincubated for 30 min to allow complex formation and 

added to VSMC without (upper panel, a, b, c, d) or with RAP (10 µg/ml) (lower panel, e, f, g, h) for 

45 min. FSAP was stained with FITC-labeled secondary antibody indicated in green, LRP with 

Rhodamine red-X-labeled secondary antibody indicated in red and nuclei with DAPI indicated in blue 

(a-h). Yellow color indicates co-localization of FSAP and LRP and is highlighted by white arrows. 

(Bottom panel) PDGF-BB (20 ng/ml) was preincubated with buffer (i), FSAP (1 µg/ml) (j), PN-1 (2 

µg/ml) (k) or FSAP-PN-1 complex (l) for 60 min on 37°C. VSMC were incubated with these mixtures 

for 30 min on 37°C. PDGF R was stained with Rhodamine red-X-labeled secondary antibody 

indicated in red and nuclei with DAPI indicated in blue (i-l). White arrows highlight examples of 

intracellularly accumulated PDGF R. To examine the co-localization of FSAP and PDGF R cells 

were prepared as in (l) and FSAP was stained with FITC-labelled secondary antibody indicated in 

green, PDGF R with Rhodamine red-X-labeled secondary antibody indicated in red and nuclei with 
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DAPI indicated in blue. Yellow colour and white arrows highlight examples of intracellular co-

localization of FSAP-PN-1 complex with PDGF R (m). Calibration bar = 20 µm. This staining pattern 

was observed in 80% of cells on a slide and this experiment was repeated 2 times.

Figure 4: Influence of LRP on the inhibitory effect of FSAP on PDGF-BB-dependent VSMC 

activation. (A) In serum-free medium containing heparin (10 µg/ml) VSMC were stimulated with 

PDGF-BB (20 ng/ml), PDGF-BB preincubated with FSAP ( 1 µg/ml) or PDGF-BB preincubated with 

FSAP-PN-1 complex in the absence or presence of RAP (10 µg/ml) for 15 min. Western blot analysis 

was performed using a monoclonal antibody against phospho 42/44 MAPK. As a loading control a 

polyclonal antibody against total MAPK was used on the stripped membrane. (B) As in the above 

experiment VSMC were stimulated in the absence (gray column) or presence of RAP (10 µg/ml) 

(open column). DNA-synthesis was measured (mean + SD, n=3) using a kit to measure BrdU 

incorporation into newly synthesized DNA. Similar results were obtained in 3 independent replicates 

of these experiments. 
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