Glutamine gluconeogenesis in the small intestine of 72 h-fasted adult rats is undetectable
Guy Martin, Bernard Ferrier, Agnès Conjard, Mireille Martin, Rémi Nazaret, Michelle Boghossian, Fadi Saadé, Claire Mancuso, Daniel Durozard, Gabriel Baverel

To cite this version:
Guy Martin, Bernard Ferrier, Agnès Conjard, Mireille Martin, Rémi Nazaret, et al.. Glutamine gluconeogenesis in the small intestine of 72 h-fasted adult rats is undetectable. Biochemical Journal, 2006, 401 (2), pp.465-473. 10.1042/BJ20061148. hal-00478640
Glutamine gluconeogenesis in the small intestine of 72h-fasted adult rats is undetectable

Guy Martin, Bernard Ferrier, Agnès Connard, Mireille Martin, Rémi Nazaret, Michelle Boghossian, Fadi Saadé, Claire Mancuso, Daniel Durozard, Gabriel Baverel.

Institut National de la Santé et de la Recherche Médicale, UMR 499, Faculté de Médecine RTH Laennec, Université Lyon 1, 69372 Lyon Cedex 08, France.

Short title: Undetectability of intestinal gluconeogenesis

Correspondence to: Pr. G. Baverel
INSERM U499
Faculté de Médecine Laennec
Rue G. Paradin
69372 Lyon Cedex 08
Tel.: (33)478778665
Fax: (33)478778739
E-mail: baverel@sante.univ-lyon1.fr
Synopsis

Recent reports have indicated that 48-72h of fasting, type 1 diabetes and high-protein feeding induce gluconeogenesis in the small intestine of adult rats in vivo. Since this would (i) represent a dramatic revision of the prevailing view that only the liver and the kidneys are gluconeogenic, and (ii) have major consequences in the metabolism, nutrition and diabetes fields, we have thoroughly re-examined this question in the situation reported to induce the highest rate of gluconeogenesis. For this, metabolically viable small intestinal segments from 72h-fasted adult rats were incubated with [3-13C]glutamine as substrate. After incubation, substrate utilization and product accumulation were measured by enzymatic and NMR spectroscopic methods. Although the segments utilized 13C-glutamine at high rates and accumulated 13C-labelled products linearly for 30 min in vitro, no substantial glucose synthesis could be detected. This was not due to the re-utilization of 13C-glucose initially synthesized from 13C-glutamine. Arteriovenous metabolite concentration difference measurements across the portal vein-drained viscera of 72h-fasted Wistar and Sprague-Dawley rats clearly indicated that glutamine, the main if not the only gluconeogenic precursor taken up, could not give rise to detectable glucose production in vivo. Therefore, we challenge the view that the small intestine of the adult rat is a gluconeogenic organ.

Keywords: glutamine metabolism, glucose synthesis, ketone bodies
Introduction

The contribution of the liver to glucose production in normal fasted humans and animals is well established; under this situation, the liver produces glucose as a result of both gluconeogenesis mainly from lactate, alanine, glutamine and glycerol, and glycogenolysis when glycogen stores are available [1,2]. Various studies performed in humans and, to a lesser extent, in rats have suggested that, besides the liver, the kidneys may contribute to systemic gluconeogenesis; indeed, it has been reported that renal gluconeogenesis may represent 5 to 45% of systemic gluconeogenesis in post-absorptive or fasted humans (see 3 for a recent review).

Combining isotopic techniques with or without arteriovenous concentration difference measurements or organ vessel ligature, Mithieux and co-workers recently published a series of articles assessing the contribution of the small intestine of adult rats to systemic endogenous glucose production under various experimental conditions [4-7]. In agreement with the findings of Watford et al. [8] and of Baverel and Lund [9] with isolated enterocytes from fed rats, they did not observe any intestinal gluconeogenesis in vivo in control rats fasted for 5-6 or 24 hours [4,5] although they more recently found the reverse in 24h-fasted animals [6,7]. In addition, no intestinal glucose synthesis was observed in post-absorptive or 24h-fasted rats in vivo, especially from 14C-glutamine [4,5]. By contrast, they concluded from their data that the small intestine of the rat accounted for 21%, 35%, 19% and 19 % of systemic gluconeogenesis after 48 h or 72h of fasting, after 3 days of type 1 diabetes and 2-15 days of a high-protein diet, respectively [4-7]. These authors also found that, in the rat small intestine, an increase in the expression and activity of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, two key-gluconeogenic enzymes, was consistent with the in vivo induction of gluconeogenesis [5,10,11]. Furthermore, they claimed that the satiety induced by a high-protein diet was linked to the increase in intestinal gluconeogenesis caused by such a diet [6]. Thus, in the light of the latter studies, intestinal gluconeogenesis would become a central process controlling not only glucose homeostasis but also the whole energy metabolism of the body.
The observations and conclusions of Mithieux and co-workers are intriguing because, unlike the liver and the kidney, the small intestine of the rat has until recently never been considered to be a site of intense gluconeogenic capacity. To our knowledge, only Windmueller and Spaeth previously observed in vivo that the small intestine of the adult rat has a very low capacity to synthesize radioactive glucose from radioactive aspartate, glutamine and lactate [12,13]. In vitro preparations of the small intestine from suckling but not weaned rats have also been reported to synthesize some glucose from lactate [14].

Given (i) the potential importance of the small intestine as a gluconeogenic organ and as the source of major glucose homeostasis disturbances, (ii) the absence of glucose synthesis from glutamine in isolated enterocytes from fed rats shown by Watford et al. and Baverel and Lund [8,9], (iii) that the conclusions drawn by Mithieux and co-workers should be taken with caution, as pointed out by the authors themselves because of inaccuracies inherent to the numerous experimental steps needed to determine the gluconeogenic rates they reported [15] and (iv) the recent review by Watford casting serious doubt on the existence of intestinal gluconeogenesis [16], we have decided to thoroughly re-examine this question both in vitro and in vivo. For this, we have isolated metabolically viable segments of the small intestine obtained from rats subjected to a 72-h fast, an experimental condition reported so far to be the most potent inducer of intestinal gluconeogenesis [5]. These segments, made of the entire intestinal wall to mimick in vitro the structure of the small intestine in vivo, were incubated with 13C-labelled glutamine. Taking advantage of the 13C NMR spectroscopy and enzymatic approaches that enabled us to unravel the complexity of the renal metabolism of various substrates [17-22], we measured glutamine utilization and product accumulation. Despite high rates of glutamine metabolism, substantial glucose synthesis could not be detected. Furthermore, arteriovenous concentration difference measurements were performed across the intestine not only in 72h-fasted Wistar but also in 72h-fasted Sprague Dawley rats because the latter rat strain was used by Mithieux and co-workers [4-7]. The results obtained revealed that the small percentage of
glutamine taken up by the intact intestine cannot explain the large glucose production reported by Mithieux and co-workers in their rats under the same experimental conditions. A preliminary account of part of the present results has been published as an abstract [23].
Methods

Reagents
Glucosamine and glutaminase (grade V) were from Sigma (St Quentin-Fallavier, France). Other enzymes and coenzymes were purchased from Boehringer Mannheim (Meylan, France). L-[3-\(^{13}\)C]glutamine and D-[2-\(^{13}\)C]glucose were obtained from Eurisolop (Saclay, France) and had a 99% isotopic abundance.

Rats
All experiments were approved by the Institutional Animal Care and Use Committee of the Lyon 1 University. Male Wistar or Sprague-Dawley rats weighing between 250 and 300 g were obtained from Charles River (Saint-Germain-sur-l’Arbresle, France). They were acclimated to our animal house for one week, kept on a 12/12h light-dark cycle, and fed a standard diet (U.A.R., Villemoisson-sur-Orge, France). Then, they were fasted for 72 h before the experiments but had free access to water.

Preparation and incubation of intestinal segments from 72h-fasted Wistar rats
Each rat was anaesthetized with intraperitoneal Nembutal (50 mg.kg body weight\(^{-1}\)). The abdomen was opened and the small intestine was exteriorized, quickly excised and stripped away from the mesentry. The lumen of the small intestine was flushed out with twice 60 ml of ice-cold oxygenated Krebs-Henseleit medium. All the subsequent steps of preparation were performed in cold oxygenated Krebs-Henseleit buffer. Then, rings of 2-4 mm width were cut with scissors from the entire length of the small intestine. The rings were pooled and randomized in a flask and then separated from the buffer on a sieve, gathered on a cold glass surface and divided in 5 equivalent batches of rings that were immediately incubated. Two batches of rings were incubated per incubation time (20 and 30 min) in 250 ml Erlenmeyer flasks containing an atmosphere of O\(_2\)/CO\(_2\) (19:1) and 20 ml of Krebs-Henseleit buffer without or with 5mM L-[3-\(^{13}\)C]glutamine, 1 or 5 mM unlabelled or D-[2-\(^{13}\)C]glutamine and D-[2-13C]glucose were obtained from Eurisolop (Saclay, France) and had a 99% isotopic abundance.
13C]glucose. Glucosamine (40 mM), an inhibitor of hexokinase [24], was also used in certain experiments. The flasks were incubated at 37°C in a shaking water bath. Incubation was terminated by addition of perchloric acid [final concentration 5% (v/v)] and rapid homogeneization of tissue plus medium. A batch of rings was taken to determine the initial amounts of added and endogenous substrates by adding perchloric acid before the rings. After centrifugation (3,000 g for 5 min), the denaturated rings were used for measurement of their protein content; the supernatant was neutralized with a mixture of 20% (w/v) KOH and 1% (v/v) H_3PO_4 and used for metabolite determination and NMR spectroscopy.

Measurement of arteriovenous concentration differences

Anaesthetized, 72h-fasted Wistar and Sprague-Dawley rats (250-300g), were placed on a heated table to maintain their body temperature at 37-38°C. Then, a catheter was inserted into the carotid artery. After laparotomy, the gut was gently moved on the left side and covered with gauze moistened with warm saline. Hepatic portal blood was collected in the following way: a needle (gauge 23) was bent, mounted on a pipette holder, connected to a syringe by a length of polyethylene tubing and introduced into the portal vein by puncture. For blood withdrawing, the position of the needle tip inside the hepatic portal vein was continuously controlled thanks to a binocular lens with a magnification of 8-fold. Blood samples (1.5 ml each) were aspirated slowly (over 60 seconds) and simultaneously from the carotid artery and the hepatic portal vein. This procedure was never accompanied by any bleeding. Immediately after blood collection, 1.3 ml of blood samples was deproteinized with 0.5 ml of 20% (v/v) chilled perchloric acid. After centrifugation, the supernatants were neutralized with a mixture of KOH and phosphoric acid as described above and used for metabolite analysis.

Analytical methods

- ATP and protein content
The intestinal tissue (rings) ATP concentration was quantified by using the method of Lamprecht and Trautschold [25]. Pellets were solubilized in 0.5 M NaOH for protein determination and total protein was determined as described previously [26].

- Metabolite assays
Glutamine, glutamate, alanine, lactate, pyruvate, aspartate, glucose, ammonia, glycerol, D-β-hydroxybutyrate, acetoacetate and glycogen were determined according to Passonneau and Lowry [27].

- ¹³C NMR techniques
Data were recorded as indicated previously [17,18,22] at 125.75 MHz on a Bruker AM-500 WB spectrometer using a 5 mm broadband probe thermostated at 8 ± 0.5°C, except that the number of scans was 420. Chemical shifts were expressed as parts/million (ppm) relative to tetramethylsilane. Assignments were made by comparing the chemical shifts obtained with those given in the literature [28,29]. Given that glutamine gluconeogenesis from [3-¹³C]glutamine leads to the equal labelling of the C-1, C-2, C-5 and C-6 of glucose [21], and taking a signal/noise ratio equal to 1.5 for the heights of the corresponding β resonances of glucose carbons, our calculations indicate that, under our experimental conditions, approximately 0.7 µmol of the C-3 of [3-¹³C]glutamine had to be converted into glucose to enable us to detect glutamine gluconeogenesis.

Calculations and statistical analysis
Net substrate utilization and product formation were calculated as the difference between the total flask contents (tissue plus medium) at the start (zero-time flasks) and after the period of incubation. The net metabolic rates, reported as means ± S.E.M., are expressed in µmol of substance removed or produced per unit time (20 or 30 min) per g of intestinal tissue protein.
With [3-13C]glutamine as substrate, the transfer of the C-3 of glutamine to a given position in a given metabolite was calculated by using the formula described previously [17,18,22].

The blood metabolite concentrations found in the carotid artery and the hepatic portal vein were compared using the paired Student’s t test. P<0.05 was considered to be statistically significant.
Results

Glutamine metabolism in intestinal segments from 72h-fasted rats

Since the viability of isolated rat enterocytes is limited with time [8], our segments were incubated for 20 and 30 min, but, for accuracy purposes, these short incubation times were compensated by the incubation of large amounts of intestinal tissue in a large volume (20 ml) of incubation medium. At zero-time, the ATP content of intestinal segments was $2.99 \pm 0.71 \mu\text{mol.g protein}^{-1}$ (n = 3). In intestinal segments incubated with glutamine, the ATP content was 2.90 ± 0.49 and $2.90 \pm 0.39 \mu\text{mol.g protein}^{-1}$ after 20 and 30 min of incubation, respectively (n = 3).

Table 1 shows the time-course of glutamine utilization and product formation measured by enzymatic methods when the segments were incubated with 5 mM [3-\(^{13}\text{C}\)]glutamine as substrate. Glutamine utilization occurred at high rates and in a linear fashion with time. The rate of glutamate accumulation was approximately constant whereas that of alanine, lactate and ammonia tended to increase with time. Small amounts of aspartate, urea and pyruvate accumulated and negligible amounts of glucose were synthesized. In the absence of glutamine, substantial amounts of alanine, lactate and ammonia, and very small amounts of glucose accumulated from endogenous substrates (Table 1).

Figure 1 shows a representative \(^{13}\text{C}\) NMR spectrum of perchloric extracts obtained after 30 min of incubation of intestinal segments from a 72h-fasted rat with 5 mM [3-\(^{13}\text{C}\)]glutamine. This spectrum, in which all the most significant resonances could be identified, shows the main non volatile carbon products of glutamine metabolism. Not only glutamate but also alanine and lactate were the most importantly labelled products found. The fact that the C-2 of glutamate became labelled during incubation indicates that glutamate was re-synthesized after passage of the C-3 of glutamine through the tricarboxylic acid cycle. Small amounts of the C-3 of glutamine was also incorporated into aspartate, proline and ornithine. No labelling of glucose carbons was observed as shown in the upper
left part of the figure showing the baseline of the spectrum were the glucose resonances appear (in
the 100-60 ppm region).

From the spectra obtained after 20 and 30 min of incubation of segments from 72h-fasted rats, we
calculated the amounts of [3-13C]glutamine removed and of labelled products accumulated after
correction for the 13C natural abundance. As shown in Table 2, the removal of the labelled glutamine
was also approximately linear with time and this removal was not statistically different with that
measured enzymatically (see Table 1). This means that, in agreement with the very low activity of
 glutamine synthetase in the small intestine [30], there was no substantial glutamine synthesis in our
experiments. The labelling of glutamate, alanine and lactate was lower than the amounts of these
products found to accumulate (see Table 1); this was especially true for alanine and to a lesser extent
for glutamate and lactate. The fact that the labelling of aspartate was higher than the net aspartate
accumulation presented in Table 1 simply reflects the fact that the unlabelled aspartate brought by
the segments at zero-time was metabolized and replaced by newly synthesized labelled aspartate.
Table 2 also shows that the labelled C-2 of aspartate, alanine and lactate was virtually equal to the
labelled C-3 of these compounds; this is in agreement with the view that the C-3 of glutamine
converted into the C-3 of glutamate by glutaminase, and then into the C-3 of 2-oxoglutarate by
alanine, aspartate and ornithine aminotransferases, was further metabolized in the tricarboxylic acid
cycle via succinate and fumarate, two symmetrical molecules. The passage through these
symmetrical molecules is also consistent with the labelling of the C-2 of glutamate which involves
one complete turn of the tricarboxylic acid cycle. The labelling of the C-1 of lactate and alanine is
also consistent with the recycling of the C-3 of glutamine through the tricarboxylic acid cycle to
yield the C-1 of malate and then the C-1 of pyruvate by malic enzyme, or the C-1 of oxaloacetate and
then the C-1 of pyruvate by oxaloacetate decarboxylase or phosphoenolpyruvate carboxykinase plus
pyruvate kinase [8]. In agreement with the results of Windmueller and Spaeth who used 14C-
glutamine as substrate [13,31,32], some 13C-labelled ornithine, citrulline and proline were also
formed from 13C-labelled glutamine. It is noteworthy that the sum of the non-volatile labelled
products of 13C-glutamine metabolism increased linearly with time. Neglecting the possibility that a small fraction of the 13C-glutamine removed was incorporated into tissue materials [13,31,32], we calculated the 13CO$_2$ produced from [3-13C]glutamine to estimate the complete oxidation of glutamine carbon skeletons as explained in a previous publication [21]. Both after 20 and 30 min of incubation, approximately half of the C-3 of glutamine used was converted into CO$_2$ (59.4 ±8.9 and 81.2 ± 11.2 µmol.g protein$^{-1}$. incubation time$^{-1}$, respectively). The corresponding proportions of glutamine carbon converted into CO$_2$ are close to those found in the rat small intestine in vivo [13,31,32] indicating that all steps of the tricarboxylic acid cycle were well functional in our segments in vitro.

Evidence that gluconeogenesis from glutamine in small intestinal segments from 72h-fasted Wistar rats was not masked by concomitant glucose re-utilization

Given the high capacity of the small intestine to metabolize glucose in vitro [8,33,34], we used two experimental approaches to test the possibility that the 13C-glucose synthesized from part of the [3-13C]glutamine metabolized by our intestinal fragments was re-utilized via the glycolytic pathway. As done in a recent study performed with precision-cut human kidney slices [22], we hypothesized that the [3-13C]glutamine not accounted for by the non-volatile 13C-products found to accumulate might have been initially converted into 13C-glucose and then re-utilized and oxidized into 13CO$_2$ by our intestinal segments. It can be calculated that, if all this synthesized 13C-glucose had accumulated in the incubation medium, its concentration would have been approximately 1 mM.

- Effect of glucosamine on the metabolism of 5 mM [3-13C]glutamine

First, we tested the efficacy of glucosamine, an inhibitor of hexokinase [24], on glucose utilization by small intestinal segments from 72h-fasted Wistar rats. With 1 mM D-[2-13C]glucose as substrate, addition of 40 mM glucosamine induced a mean 34% inhibition of the removal of [2-13C]glucose measured by NMR spectroscopy; the corresponding values were 55.7 ± 1.5 and 36.6 ± 1.8
μmol.g.protein⁻¹.30 min⁻¹ in the absence and the presence of glucosamine, respectively (n = 3; P < 0.05).

Fig. 2 shows a ¹³C NMR spectrum obtained in the presence of 40 mM glucosamine in one representative experiment out of two performed in duplicate in which small intestinal segments from 72h-fasted Wistar rats were incubated for 30 min with 5 mM [³⁻¹³C]glutamine in the absence and the presence of 40 mM glucosamine. This spectrum, which shows the resonances corresponding to the C-3 of glutamine and those of the ¹³C-labelled products of ¹³C-glutamine (as in Fig.1) and the resonances of the glucosamine carbons, clearly demonstrates that there were no glucose carbon resonances. In this respect, it should be pointed out that the resonances of the C-1 of glucose, which are well separated from those of the C-1 of glucosamine, were absent.

- Effect of 5 mM glucose on the metabolism of 5 mM [³⁻¹³C]glutamine in small intestinal segments from 72h-fasted Wistar rats

Then, with the hope that large amounts of glucose added at zero-time would (i) dilute the ¹³C-labelled glucose possibly synthesized from [³⁻¹³C]glutamine and (ii) prevent its complete re-utilization, four additional experiments were performed with small intestinal segments (265.8 ± 8.0 mg protein.flask⁻¹) from 72h-fasted Wistar rats incubated for 30 min with 5 mM [³⁻¹³C]glutamine in the absence and the presence of 5 mM unlabelled D-glucose. Under the latter conditions, glutamine utilization was 136.5 ± 8.9 and 142.4 ± 10.1 μmol.g.protein⁻¹.30 min⁻¹, respectively. In the presence of 5 mM glucose, glucose utilization was 148.8 ± 15 μmol.g.protein⁻¹.30 min⁻¹. Fig. 3 presents a ¹³C NMR spectrum obtained in the presence of 5 mM [³⁻¹³C]glutamine + 5 mM unlabelled D-glucose in one representative experiment. This spectrum, which shows the resonance of the C-3 of glutamine and those of the ¹³C-labelled products of ¹³C-glutamine metabolism (as in Fig.1 and 2), clearly demonstrates the presence of glucose carbon resonances. However, as suggested by the fact that all the carbon resonances (the sums of the anomers α and β) had virtually the same intensities (peak heights) and peak areas, these resonances corresponded exclusively to the natural abundance of the glucose carbons added at zero-time and not metabolized by the intestinal segments after 30 min of
incubation. Therefore, no synthesis of 13C-labelled glucose carbons occurred from $[3-{^{13}}C]$glutamine in these experiments.

Metabolite concentrations in arterial and portal vein blood of 72h-fasted Wistar and Sprague-Dawley rats

Table 3 shows the mean concentrations of all the metabolite measured in the arterial and portal vein blood of 72h-fasted rats. In both strains, there was a net uptake of glucose; this markedly contrasts with the absence of net glucose uptake or release observed by Mithieux and co-workers in their 72h-fasted Sprague-Dawley rats [5]. In agreement with the classical results obtained by numerous authors in fed rats or in rats fasted for up to 48 hours [13,31,35-38], we observed a 30% uptake of arterial glutamine by the intestine in our 72h-fasted Wistar rats whereas the corresponding value was only 18% in our 72h-fasted Sprague-Dawley rats.

A statistically significant release of glutamate occurred only in Sprague-Dawley rats and this release represented 60% of the glutamine taken up in these animals. A release of alanine, which was in the same order of magnitude in Wistar and Sprague-Dawley rats, was observed.

In agreement with the observation of Windmuller and Spaeth [13] in their overnight-fasted Osborne-Mendel rats when arterial lactate was higher than 1.2-1.6 mM, the intestine of our Wistar rats took up a large fraction (37%) of circulating lactate; by contrast, the intestine of our Sprague-Dawley rats neither took up nor released lactate in a statistically significant manner. A very small uptake of glycerol occurred only in Sprague-Dawley rats. D-β-hydroxybutyrate, whose arterial concentration was much higher in Wistar than in Sprague-Dawley rats was taken up only by the intestine of Wistar rats and part of this D-β-hydroxybutyrate was released as acetoacetate which was neither taken up nor released by the intestine of Sprague-Dawley rats.
Discussion

Although we used Wistar rats after 72h of fasting, an experimental condition reported in vivo to induce a large intestinal gluconeogenesis [5], the results of the present study unequivocally demonstrate that, when incubated in vitro, the small intestine of our animals did not synthesize glucose from glutamine, the main if not the exclusive gluconeogenic precursor after 48h [4] and presumably 72h of fasting. In that respect, it resembles the isolated perfused and intact functioning small intestine of overnight-fasted rats [31,32] and the enterocytes isolated from fed rats in which no glutamine gluconeogenesis was reported [8,9]. It should be mentioned here that, within the intestinal wall, the enterocytes are the only site of glutamine metabolism [31]. Moreover, our in vivo results do not corroborate those of Mithieux and co-workers who concluded that the small intestine of 72h-fasted Sprague-Dawley rats is responsible for at least one-third (35%) of systemic gluconeogenesis [5].

Metabolic viability of our small intestinal fragments and absence of glucose synthesis

Several lines of evidence indicate that our intestinal segments, which consisted of the entire small intestinal wall, were metabolically viable. Taking a dry weight/fresh weight ratio equal to 0.23 [31] and assuming that 90% of the dry weight consisted of protein, it can be calculated that the small intestine preparation used by Windmueller and Spaeth [32] metabolized the luminally added glutamine (6 mM) at a rate of 27 µmol.g protein⁻¹.30min⁻¹. Taking the glutamine removed in our experiments after 30 min of incubation (Table 1), it can also be calculated that our small intestinal segments, whose a maximum of 40% consisted of enterocytes [39,40], metabolized 5 mM glutamine at a much higher rate (586 µmol.g protein⁻¹.30 min⁻¹). The enterocytes isolated by Watford et al. [8] and by Baverel and Lund [9] metabolized 5 mM glutamine at a rate of 367 and 300 µmol.g protein⁻¹.30min⁻¹, respectively. Thus, although our measurements and calculations reveal that the ATP level of our segments was only about one half that found in vivo [41], and although the enterocytes represented only about 40% of our intestinal segments, they were metabolically very active and
metabolized glutamine avidly and in a virtually linear manner with time (Tables 1 and 2). It is also important to note that, like the glutamine taken up from the lumen and from the circulating blood in the in vivo preparations used by Windmueller and Spaeth [13,31], about half of our glutamine metabolized was completely oxidized (see the Results section). This means that the mitochondria of our intestinal segments functioned satisfactorily. That the entire tricarboxylic acid cycle was operating in a satisfactory manner is also indicated by the conversion of the C-3 of glutamine not only into the C-2 and C-3 of alanine and lactate but also into the C-2 of glutamate (Fig.1 and Table 2). Thus, the absence of substantial glucose synthesis in these segments was not due to a limitation in the provision of ATP but rather to the intrinsic organization of the glutamine metabolic pathways of rat enterocytes. It should also be mentioned here that Windmueller and Spaeth have concluded from their experiments that the glutamines taken up from the lumen on the one hand and, on the other hand, from blood shared a common metabolic pool [32]. Thus, our results obtained in vitro with luminally added glutamine can be considered relevant to the in vivo situation.

The very small amounts of glucose synthesized, which were not higher in the presence than in the absence of glutamine, presumably originated from the degradation of the very small amount of glycogen present in the intestinal segments of 72h-fasted rats (13 μmol glucosyl equivalents.entire small intestine\(^{-1}\)).

Similarly, the absence of glutamine gluconeogenesis in our intestinal segments was not due to the re-utilization of \(^{13}\)C-glucose initially synthesized from 3-\(^{13}\)C-glutamine as strongly suggested not only by the use of glucosamine, an inhibitor of hexokinase [24], but also by the incubation of \(^{13}\)C-glutamine with a physiological concentration (5 mM) of glucose (see Fig. 2 and 3). Under the latter experimental condition (see the Results section), a strong line of evidence that no synthesis of \(^{13}\)C-glucose from [3-\(^{13}\)C]glutamine occurred is that the resonance intensities and areas (\(\alpha + \beta\) anomers) of the six glucose carbons were equal (see Fig. 3 and the Results section); indeed, as recently shown in rat renal proximal tubules, gluconeogenesis from [3-\(^{13}\)C]glutamine leads to glucose carbons labelled with carbon 13 to different degrees [21]. It should also be mentioned here that enterocytes
prepared from the small intestine adapted to a high-protein diet did not produce glucose from glutamine [42].

Arteriovenous concentration difference measurements

To our knowledge, our study is the first to report arteriovenous concentration difference measurements across portal-drained viscera of 72h-fasted rats. It should be pointed out that, unlike Mithieux and co-workers in their in vivo experiments [5], we did not ligature the inferior mesenteric artery in order to avoid surgical stress. But this is unimportant with respect to glutamine metabolism because it occurs primarily in the small intestine; indeed, 87% of glutaminase is located in the small intestine [43] and therefore, as noted by Windmueller and Spaeth [32], most of the glutamine uptake in our rats occurred in the small intestine.

After 72h of fasting, our observation of a net intestinal uptake of glucose in both Wistar and Sprague-Dawley rats (Table 3) markedly contrasts with the findings of Mithieux and co-workers who reported no net production or uptake of glucose by the small intestine of both 48h- and 72h-fasted Sprague-Dawley rats [4,5]. However, this is in agreement with the observation of Burrin et al. who also found no evidence of gluconeogenesis in the small intestine of 36h-fasted pigs [44]. Since a very small, virtually negligible, glycerol uptake was observed only in Sprague-Dawley rats (Table 3), this means that the small intestine in vivo cannot synthesize substantial amounts of glucose from this substrate.

- **Wistar rats:** Considering that two glutamine molecules are needed to synthesize one glucose molecule, and neglecting the fact that about half the circulating glutamine taken up by the intestine was oxidized to CO₂, one may calculate from our data that the arterial glucose entering the intestine would have been diluted by only 1.2% (0.174:2:7.51) by the glutamine-derived glucose; the corresponding value would have been only 0.6% if one considers that half the glutamine taken up was oxidized to CO₂. Unfortunately, Mithieux and co-workers did not report the intestinal substrate uptake in their experiments [5]. In agreement with observations of Windmueller and Spaeth when the
blood lactate was elevated [13], substantial amounts of lactate were taken up by the intestine of our 72h-fasted Wistar rats, but this potential gluconeogenic substrate could not have been converted into glucose because of the extremely low pyruvate carboxylase activity measured in the small intestine of the adult rat [45,46]. In addition, Mithieux and co-workers did not observe any conversion of 14C-lactate into 14C-glucose in the small intestine of 48h-fasted rats in vivo [4]. Furthermore, our preliminary results in vitro indicate that 5 mM 13C-lactate is not converted into 13C-glucose in intestinal segments prepared from 72h-fasted Wistar rats (results not shown).

- Sprague-Dawley rats: It should be pointed out that, in our 72h-fasted Sprague-Dawley rats, glutamine was the sole potential gluconeogenic precursor taken up in substantial amounts by the intestine (Table 3). Doing the same calculations as above, and neglecting the fact that some if not all of the glutamate released originated from glutamine (Table 3), it can be calculated that, if all the glutamine taken up were converted into glucose, this would have diluted the arterial glucose entering the intestinal circulation by 0.53% (0.085:2:8.00); taking into account that about half of this glutamine was converted into CO$_2$, the corresponding value would have been only 0.27%. These values are different from that (7.9%) published by Mithieux and co-workers in 72h-fasted Sprague-Dawley rats [5]. Therefore our results clearly indicate that both in 72h-fasted Wistar rats and in 72h-fasted Sprague-Dawley rats, glutamine gluconeogenesis cannot be detected in a reliable manner in the intestine in vivo. Since our data (Table 3) together with those of Windmueller and Spaeth [31] indicate that there were no other potential gluconeogenic precursors taken up by the intestine, this means that intestinal gluconeogenesis cannot be detected in vivo. In this context, the reasons why Windmueller and Spaeth [12,13] observed that small percentages of U-14C-glutamine (4.7%), U-14C-lactate (0.1-0.2%) and U-14C-aspartate (10%) were found in 14C-glucose in the small intestine of their animals deserve careful examination. Since these authors had to chromatographically separate the various products resulting from the intestinal metabolism of their 14C-labelled substrates, their 14C-glucose fractions might have been contaminated by some other neutral 14C-labelled compounds. In this respect, we used 13C NMR spectroscopy which avoids metabolite separations. In agreement
with this view, Windmueller and Spaeth [13] found that 6.2% of 14C-D-β-hydroxybutyrate was also converted into 14C-glucose; since ketone bodies cannot be gluconeogenic [47] their observation must have been due to some methodological artifact if one accepts that the small intestine does not synthesize glucose at all.

Reasons for the discrepancy between our in vivo results and those of Mithieux and co-workers

First, it should be pointed out that the arteriovenous difference approach has many limitations. Indeed, numerous experimental steps are necessary to get the final values [blood sampling, centrifugation to get the plasma, possible heterogeneity between the plasma and whole blood often neglected, deproteinization and neutralization of the sample, errors inherent to the enzymatic measurements of metabolites, imperfect chromatographic separation of radioactive metabolites, high blood concentration of glucose, radioactive measurements (radioactive disintegration is a random process), small arteriovenous differences multiplied by high blood flow sometimes measured in separate experiments]. Since each step has its own margin of error, the final values may suffer from substantial errors. Bearing this in mind, we believe that the gluconeogenic rates reported by Mithieux and co-workers in their 72h-fasted Sprague-Dawley rats [5] are not compatible with the possible uptake of gluconeogenic substrates. Indeed, they calculated an intestinal gluconeogenesis of 16.9 µmol.kg body wt$^{-1}$.min$^{-1}$. Taking a mean body weight of 270g and an intestinal blood flow of 5.2 ml.min$^{-1}$ [5], this would mean that 0.885 (4.6: 5.2) µmole of glucose was added to each ml of blood passing through the intestine. Since two molecules of glutamine are needed to synthesize one molecule of glucose, their results would imply that 1.77 µmol of glutamine (or of other gluconeogenic precursor) was taken up from each ml of arterial blood only for the synthesis of glucose and without any complete oxidation of glutamine into CO$_2$. Our data, presented in Table 3, indicate that in fact only 0.085 µmol of glutamine was taken up from each ml of arterial blood in 72h-fasted Sprague-Dawley rats (Table 3). Therefore, compelling evidence is experimentally provided that the gluconeogenic rates reported by Mithieux and co-workers are compatible neither
with the uptake and availability of glutamine nor with the availability and uptake of other circulating
gluconeogenic precursors.

Moreover, taking into account that for each glucose synthesized two glutamine carbon skeletons
should pass through phosphoenolpyruvate carboxykinase, a mandatory enzyme in glutamine
gluconeogenesis, it is important to note that the Vmax of phosphoenolpyruvate carboxykinase
measured by Mithieux et al. was severalfold lower than the rates of gluconeogenesis they calculated
[5]. This represents another compelling piece of evidence that the high gluconeogenic rates reported
by the latter authors are not compatible with the biochemical characteristics of the intestine of their
72h-fasted Sprague-Dawley rats.

Glycogen stores and glucose release in vivo

Our measurements indicate that the glycogen stores in the entire small intestine of 72h-fasted Wistar
rats were 13 µmoles (in glucosyl equivalents). The complete release of this glycogen as glucose via
glycogenolysis would have to occur within 3 minutes to account for the rate of release of newly
synthesized glucose reported by Mithieux and co-workers [5]. Thus, glycogen cannot be the source
of the glucose calculated to be released in vivo by these authors.

Ketone body metabolism

Another interesting observation made in the present study is that, in the 72h-fasted rat, there were
major strain differences that, to our knowledge, have never been reported so far. Indeed, the intestine
of 72h-fasted Sprague-Dawley rats did not remove circulating ketone bodies at all. By contrast, the
intestine of 72h-fasted Wistar rats removed circulating D-β-hydroxybutyrate but released about 60%
of it as acetoacetate. Thus, these two strains of rats differ from the Mendel-Osborne rats used by
Windmueller and Spaeth who found that, after an overnight fast, the intestine took up both D-β-
hydroxybutyrate and acetoacetate [13]. Therefore, the traditional view that ketone bodies are
important energy substrates of the intestine in the fasting state does not necessarily apply to all
strains of rats.
In summary, our in vitro data clearly demonstrate that metabolically viable segments from the small intestine of 72h-fasted rats did not synthesize glucose at all despite a high rate of glutamine utilization and metabolism. Our in vivo data not only in Wistar but also in Sprague-Dawley rats after 72h of fasting indicate that the rate of intestinal gluconeogenesis reported by Mithieux et al. [5] in their 72h-fasted Sprague-Dawley rats can be accounted for neither by the uptake of the gluconeogenic precursors available in the arterial blood, nor by the Vmax of phosphoenolpyruvate carboxykinase they measured. Moreover, our results demonstrate that glutamine gluconeogenesis would not be detectable by the currently available methods because the dilution of circulating glucose by newly synthesized glucose would be much smaller than the margin of errors of the methods employed. Therefore, the view that the intestine of the rat is an important site of gluconeogenesis, at least in 72h-fasted rats, is not tenable anymore.
Acknowledgements

We thank Claire Morel for secretarial assistance.
References

gene expression in insulinopenia in rat small intestine. Diabetes. 49, 1165-1168

32 Windmueller, H. G. and Spaeth, A. E. (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 171, 662-672

Table 1. Metabolism of 5 mM L-[3-13C]glutamine in small intestinal segments from 72h-fasted rats.

<table>
<thead>
<tr>
<th>Incubation time</th>
<th>Added substrate</th>
<th>Metabolite removal (-) or production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glutamine</td>
<td>Glutamate</td>
</tr>
<tr>
<td>20 min</td>
<td>5 mM Glutamine</td>
<td>-105.8</td>
</tr>
<tr>
<td></td>
<td>±7.7 ±2.9</td>
<td>±7.4</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td>±1.3 ±0.2</td>
<td>±2.6</td>
</tr>
<tr>
<td>30 min</td>
<td>5 mM Glutamine</td>
<td>-156.6</td>
</tr>
<tr>
<td></td>
<td>±12.1 ±4.8</td>
<td>±33.1</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td>±2.0 ±1.4</td>
<td>±3.1</td>
</tr>
</tbody>
</table>

Intestinal segments (267 ± 14 mg protein per flask) were incubated for 20 and 30 min as described in the Methods section. Results for metabolite removal (-) or production (measured enzymatically and given in µmol.g protein⁻¹.incubation time⁻¹) are reported as means ± S.E.M. for four experiments. The ¹³C NMR data corresponding to these experiments are reported in Table 2.
Table 2. Metabolism of 5 mM L-[3-13C]glutamine in small intestinal segments from 72h-fasted rats.

<table>
<thead>
<tr>
<th>Incubation time</th>
<th>Glutamine C-3</th>
<th>Glutamate C-3</th>
<th>Ornithine C-2</th>
<th>Proline C-3</th>
<th>Citrulline C-3</th>
<th>Aspartate C-2</th>
<th>Aspartate C-3</th>
<th>Alanine C-1</th>
<th>Alanine C-2</th>
<th>Alanine C-3</th>
<th>Lactate C-1</th>
<th>Lactate C-2</th>
<th>Lactate C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 min</td>
<td>-104.7 ± 15.5</td>
<td>18.8 ± 2.5</td>
<td>1.3 ± 1.0</td>
<td>0.6 ± 0.1</td>
<td>0.5 ± 0.2</td>
<td>1.5 ± 0.2</td>
<td>1.5 ± 0.1</td>
<td>0.5 ± 0.2</td>
<td>6.3 ± 0.6</td>
<td>6.0 ± 0.7</td>
<td>0.4 ± 0.1</td>
<td>3.7 ± 0.6</td>
<td>3.6 ± 0.5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>30 min</td>
<td>-162.4 ± 17.9</td>
<td>25.8 ± 4.6</td>
<td>1.8 ± 1.1</td>
<td>0.2 ± 0.1</td>
<td>1.0 ± 0.3</td>
<td>1.8 ± 0.6</td>
<td>2.7 ± 0.1</td>
<td>2.4 ± 0.1</td>
<td>1.1 ± 0.4</td>
<td>14.2 ± 1.2</td>
<td>13.7 ± 1.3</td>
<td>0.8 ± 0.1</td>
<td>8.1 ± 0.6</td>
</tr>
</tbody>
</table>

Intestinal segments (267 ± 14 mg protein per flask) were incubated for 20 and 30 min as described in the Methods section. Results for 13C-labelled metabolite removed (-) or accumulated (given in µmol.g protein⁻¹.incubation time⁻¹) are reported as means ± S.E.M. for four experiments. [3-13C]glutamine removal was calculated as the difference between the values found in zero-time flasks and those in incubated flasks. Substrate utilization and product formation measured enzymatically are reported in Table 1.
Table 3. Arterial and portal vein blood concentrations of metabolites in 72h-fasted Wistar and Sprague-Dawley rats.

<table>
<thead>
<tr>
<th>Rat strain</th>
<th>Blood vessel</th>
<th>Blood metabolite concentration</th>
<th>Glucose (mM)</th>
<th>Glutamine (mM)</th>
<th>Glutamate (mM)</th>
<th>Alanine (mM)</th>
<th>Lactate (mM)</th>
<th>Glycerol (µM)</th>
<th>D-β-hydroxybutyrate (mM)</th>
<th>Acetoacetate (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wistar (n=6)</td>
<td>Artery</td>
<td></td>
<td>7.51 ± 0.11</td>
<td>0.567 ± 0.058</td>
<td>0.173 ± 0.015</td>
<td>0.328 ± 0.010</td>
<td>1.67 ± 0.21</td>
<td>84 ± 10</td>
<td>1.630 ± 0.23</td>
<td>0.263 ± 0.025</td>
</tr>
<tr>
<td></td>
<td>Portal vein</td>
<td></td>
<td>6.25 ± 0.14*</td>
<td>0.393 ± 0.029*</td>
<td>0.184 ± 0.021</td>
<td>0.366 ± 0.012*</td>
<td>1.05 ± 0.04*</td>
<td>75 ± 2</td>
<td>1.160 ± 0.15*</td>
<td>0.543 ± 0.058*</td>
</tr>
<tr>
<td></td>
<td>Arteriovenous difference</td>
<td></td>
<td>1.26 ± 0.17</td>
<td>0.174 ± 0.074</td>
<td>-0.011 ± 0.013</td>
<td>-0.038 ± 0.011</td>
<td>0.62 ± 0.19</td>
<td>9 ± 11</td>
<td>0.471 ± 0.189</td>
<td>-0.281 ± 0.046</td>
</tr>
<tr>
<td>Sprague-Dawley (n=7)</td>
<td>Artery</td>
<td></td>
<td>8.00 ± 0.36</td>
<td>0.478 ± 0.038</td>
<td>0.258 ± 0.018</td>
<td>0.284 ± 0.030</td>
<td>1.16 ± 0.22</td>
<td>85 ± 11</td>
<td>0.555 ± 0.155</td>
<td>0.289 ± 0.085</td>
</tr>
<tr>
<td></td>
<td>Portal vein</td>
<td></td>
<td>6.81 ± 0.34*</td>
<td>0.393 ± 0.041*</td>
<td>0.310 ± 0.015*</td>
<td>0.330 ± 0.030*</td>
<td>0.91 ± 0.12</td>
<td>71 ± 13*</td>
<td>0.541 ± 0.149</td>
<td>0.310 ± 0.064</td>
</tr>
<tr>
<td></td>
<td>Arteriovenous difference</td>
<td></td>
<td>1.19 ± 0.38</td>
<td>0.085 ± 0.044</td>
<td>-0.052 ± 0.017</td>
<td>-0.046 ± 0.010</td>
<td>0.25 ± 0.15</td>
<td>14 ± 6</td>
<td>0.014 ± 0.022</td>
<td>-0.021 ± 0.045</td>
</tr>
</tbody>
</table>

n = number of rats. The metabolites were measured as described in the Methods section. Values are means ± S.E.M. Statistical difference was measured by the paired Student’s t test for paired data between the arterial and portal vein blood: * P<0.05.

Copyright 2006 Biochemical Society
Legends to figures

Figs. 1 and 2. 13C NMR spectra (125.17 MHz) of neutralized perchloric acid extracts obtained from small intestinal segments (from 72h-fasted Wistar rats) incubated during 30 min with [3-13C]glutamine in the absence (Fig. 1) and the presence (Fig. 2) of glucosamine.

1, alanine C-3 (17.42); 2, lactate C-3 (21.45); 3, unidentified and unmetabolized glutamine C-3 contaminant (26.41); 4, glutamine C-3 (27.06 & 27.20 & 27.33); 5 glutamate C-3 (28.01 & 27.88 & 27.74); 6, ornithine C-3 (28.41); 7, citrulline C-3 (28.77); 8, proline C-3 (30.07); 9, glutamine C-4 (31.88 & 32.16); 10, glutamate C-4 (34.88); 11, aspartate C-3 (37.57); 12, unidentified (38.57); 13, glycine C-2 (42.48 & 42.70 & 42.91) added as internal standard; 14, unidentified (48.52); 15, artifact generated by the spectrometer in the presence of Krebs-Henseleit buffer and/or biological samples (50.18); 16, alanine C-2 (51.64); 17, aspartate C-2 (53.09); 18, glutamine C-2 (55.10 & 55.38); 19, glutamate C-2 (55.62); 20, lactate C-2 (69.51); 21, glycine C-1 (173.49 & 173.70 & 173.91); 22, glutamine C-1 (175.23); 23, glutamate C-1 (175.71); 24, alanine C-1 (177.03); 25, glutamine C-5 (178.62); 26, glutamate C-5 (182.48); 27, lactate C-1 (183.70).

Glucosamine resonances are indicated by the uppercase letter “G”. The chemical shifts are: 55.28; 57.80; 61.43; 61.56; 63.45; 63.96; 70.54; 70.67; 72.03; 72.06; 72.61; 72.88; 74.39; 75.31; 77.05; 90.11; 93.63; 143.07; 143.20; 145.36; 154.22; 154.75; 155.88.

Fig. 3. 13C NMR spectrum (125.17 MHz) of neutralized perchloric acid extracts obtained from small intestinal segments (from 72h-fasted Wistar rats) incubated with [3-13C]glutamine in the presence of unlabeled glucose.

Glucose resonances: $I\alpha$, glucose C-6α (61.8); $I\beta$, glucose C-6β (61.8); II, glucose C-4($\alpha+\beta$) (70.7); III, glucose C-2α (72.5); IV, glucose C-5α (72.6); V, glucose C-3α (73.9); VI, glucose C-2β (75.3); VII, glucose C-3β (76.8); $VIII$, glucose C-5β (76.9); IX, glucose C-1α (93.2); X, glucose C-1β (97.0).

Other resonances are indicated as in Figs 1 and 2.
Figure 2