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Abstract Cyclophosphamide, methotrexate and 5-fluoro-

uracile (CMF)-based chemotherapy for adjuvant treatment

of breast cancer reduces the risk of relapse. In this explor-

atory study, we tested the feasibility of identifying

molecular markers of recurrence in CMF-treated patients.

Using Affymetrix U133A GeneChips, RNA samples from

19 patients with primary breast cancer who had been

uniformly treated with adjuvant CMF chemotherapy were

analyzed. Two supervised class prediction approaches were

used to identify gene markers that can best discriminate

between patients who would experience relapse and patients

who would remain disease-free. An additional independent

validation set of 51 patients and 21 genes were analyzed by

quantitative RT-PCR. Applying different algorithms to

evaluate our microarray data, we identified two gene

expression signatures of 21 and 12 genes containing eight

overlapping genes, that predict recurrence in 19 cases with

high accuracy (94%). Quantitative RT-PCR demonstrated

that six genes from the combined signatures (CXCL9,

ITSN2, GNAI2, H2AFX, INDO, and MGC10986) were sig-

nificantly differentially expressed in the recurrence versus

the non-recurrence group of the 19 cases and the indepen-

dent breast cancer patient cohort (n = 51) treated with

CMF. High expression levels of CXCL9, ITSN2, and GNAI2

were associated with prolonged disease-free survival (DFS)

(P = 0.029, 0.018 and 0.032, respectively). When patients

were stratified by combined CXCL9/ITSN2 or CXCL9/

FLJ22028 tumor levels, they exhibited significantly

different disease-free survival curves (P = 0.0073 and

P = 0.005, respectively). Finally, the CXCL9/ITSN2 and

CXCL9/FLJ22028 ratio was an independent prognostic

factor (P = 0.034 and P = 0.003, respectively) for DFS by

multivariate Cox analysis in the 70-patient cohort. Our data

highlight the feasibility of a prognostic assay that is appli-

cable to therapeutic decision-making for breast cancer.

Whether the biomarker profile is chemotherapy-specific or

whether it is a more general indicator of bad prognosis of

breast cancer patients remains to be explored.
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Introduction

Cyclophosphamide, methotrexate and 5-fluorouracil

(CMF)-based chemotherapy is a chemotherapeutic regimen

to treat breast cancer patients [1]. The agents cyclophos-

phamide and 5-fluorouracil are also part of another widely

used polychemotherapy regimen containing anthracyclines

such as epirubicin, FEC (5-fluorouracil, epirubicin, cyclo-

phosphamide). Large metaanalyses have demonstrated to

provide disease-free survival (DFS) as well as overall

survival (OS) benefits in breast cancer patients treated with

adjuvant chemotherapy [2, 3].

CMF as a regimen of six cycles of polychemotherapy

has earlier been one of the most frequently used therapies

in primary breast cancer patients. CMF has been shown to

improve overall survival resulting in a 34% reduction in the

relative risk of relapse and a 26% reduction in the relative

risk of death [4]. In the late 1990s, however this regimen

was shown to be less effective than a more intensive

anthracycline-based regimen [5]. CMF was then consid-

ered to be reserved for patients at minor risk of disease

recurrence, determined by factors such as the absence of

axillary lymph node metastasis. According to the St Gallen

consensus meeting 2005, patients with node-positive dis-

ease should be treated with more intensive regimens

containing anthracyclines and taxanes [6]. However, recent

data on predictive factors for anthracycline response seem

to indicate that there is a substantial proportion of patients

for whom CMF and six cycles of a 3-drug anthracycline

combination yield comparable outcome results [7]. More-

over, CMF remains a recommended treatment option for

patients in whom anthracyclines are contraindicated as

reported in the most recent guidelines of the Breast Com-

mission of the Gynecological Oncology Working Group

(AGO) (www.ago-online.com).

Since CMF is still a valid therapy option in primary

breast cancer patients, understanding of the development of

resistance or failure to this therapy is an important item.

Current clinical and pathological markers such as tumor

size, nuclear grade, estrogen status or single molecular

markers (i.e., p53 mutations) poorly predict the clinical

course of these patients, especially patients that are at a

high risk of tumor recurrence [8, 9]. In those patients, the

use of alternative chemotherapeutic regimens might

improve the clinical outcome. Therefore, the ability to

predict the CMF treatment outcome should facilitate

treatment planning. Moreover, in view of recently reported

findings on other therapies, regimen-characteristic gene

expression signatures are comparable in order to identify

common or therapy-specific drug resistance pathways [10].

To investigate markers that have the potential to dis-

criminate chemotherapy-sensitive, good outcome patients

and chemotherapy-resistant, poor outcome breast cancer

patients, we performed an exploratory microarray analysis

using Affymetrix U133A oligonucleotide arrays from

tumor samples of 19 patients (‘‘training set’’) who after

surgery had been uniformly treated by adjuvant CMF

chemotherapy. QRT-PCR was subsequently used to apply

the identified predictive gene set to 51 tumors from breast

cancer patients (‘‘validation group’’) treated by adjuvant

CMF.

Materials and methods

Patients

We selected from our tumor bank of the Institute of

Pathology, Technical University Munich fresh-frozen tissue

specimens from patients with primary breast cancer who

were treated during 1989–1998 at the Department of

Obstetrics and Gynecology, Technical University Munich,

Germany. After primary surgery (modified radical mastec-

tomy or breast conserving therapy), patients received

adjuvant chemotherapy, consisting of six cycles of CMF.

CMF was administered intravenously, on days 1 and 8, and

recycled on day 28, at the following doses: cyclophospha-

mide 500 mg/m2, methotrexate 40 mg/m2, and fluorouracil

600 mg/m2. Treatment decision was based on consensus

recommendations at the time and no additional endocrine

treatment was given. Fresh-frozen tumor tissue was avail-

able from 79 consecutive patients that were receiving CMF

adjuvant chemotherapy between 1989 and 1998. Seventy

nine samples were processed and 9 samples had to be

excluded on the basis of poor RNA quality; thus, 70

samples were eligible for further analysis. Patient charac-

teristics are summarized in Table 1. Written informed

consent for research use of tissue was obtained from all

patients. Tumor samples were split into 19 samples where

large quantities of tumor material was available in the

tumor bank. However, this did not necessarily reflect the

size of the original primary tumor, but depended on the

tissue size available in the tumor bank. These samples were

used for the predictive marker discovery (‘‘training set’’).

The remaining tumor samples from 51 patients were

available for an independent validation set (‘‘validation

set’’).

Follow-up data were obtained at regular intervals.

Median follow-up time of all of the patients still alive at the

time of analysis was 96.5 months (range, 32–174 months).

Within the follow-up period, 31 patients (44%) had disease

recurrence and of these, 22 patients (31%) died. Median

follow-up time of the patients that didn’t have disease

recurrence was 99.5 months (range, 39–174 months).

Tumors were classified according to the pTNM (patho-

logical tumor-node-metastasis) system and grading was

46 Breast Cancer Res Treat (2009) 118:45–56
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performed according to Elston and Ellis [11]. Steroid

hormone receptor content was established by immunohis-

tochemical means. A graphical depiction of the selection

process of the cases for the study is shown in Fig. 1.

RNA isolation and amplification

RNA was extracted from frozen tumor samples. To deter-

mine the histological representativeness of the tumors,

frozen sections were cut and H&E stained. Tumor cells

were then manually macrodissected by scraping off the

cells from the slide with the help of a small sterile needle

and pooled from 20 sections of 10 lm thickness to ensure

at least a 70% pure tumor cell population. Total RNA was

isolated with Trizol Reagent (Invitrogen, life technologies,

Karlruhe, Germany) and was subsequently passed over a

Qiagen RNeasy column (Qiagen, Hilden, Germany) to

remove small fragments. RNA quality was assessed on the

Agilent 2100 Bioanalyzer RNA 6000 Nano LabChip

(Agilent Technologies, Palo Alto, CA). Only samples

yielding profiles of intact total RNA (retention of both

ribosomal bands and the broad central peak of mRNA)

were used for the microarray and quantitative RT-PCR

gene expression analyses.

Preparation of in vitro transcription (IVT) products,

oligonucleotide array hybridization and scanning was per-

formed according to Affymetrix (Santa Clara, CA). In

brief, 10–16 lg of total RNA from each breast tumor and

T7-linked oligo-dT primers were used for first-strand

cDNA synthesis. After IVT and biotin-labeling (RiboMax

T7 kit, Promega, Madison, WI), fragmented biotinylated

cRNA (15 lg) was hybridized onto the U133A GeneChip

(Affymetrix) using recommended procedures for prehy-

bridization, washing and staining with streptavidin–

phycoerythrin (SAPE).

Microarray data processing and statistical analysis

Array images were analyzed using the Affymetrix

Microarray Suite 5.0 software. Scaling across all probe sets

of a given array to an average intensity of 1,000 was per-

formed to compensate for variations in the amount and

quality of the cRNA samples and other experimental

variables of non-biological origin. Samples displaying a

signal ratio for the b-actin 30 and 50 probesets of[3.0 were

Table 1 Clinical information and demographics of the patients

included in the study (N = 70)

Training

cases

Validation

cases

All cases

N % N % N %

Sex (female) 19 100 51 100 70 100

Age (years)

Median 48 49 48.5

Range 33–63 33–65 33–65

Histology

Invasive ductal 13 68 39 76 52 74

Invasive lobular 3 16 4 8 7 10

Mixed ductal/lobular 2 11 5a 10 7 10

Medullary 1 5 3 6 4 6

pTNM stage

pT1 8 42 14 27 22 31.4

pT2 10 53 28 55 38 54.3

pT3/T4 1 5 9 18 10 14.3

pN0 2 11 18 35 20 28.5

pN1 9 47 21 41 30 43

pN2/N3 8 42 12 24 20 28.5

Nuclear grade

1 0 0 0 0 0 0

2 12 63 22 43 34 48.5

3 7 37 29 57 36 51.5

ER/PR—positive 16 84 34 67 50 71.5

ER/PR—negative 3 16 17 33 20 28.5

Follow-up recurrent patients (n = 31), months

Median 62 44.5 54

Range 23–107 17–123 17–123

Follow-up non-recurrent patients (n = 39), months

Median 107 99 99

Range 40–150 39–174 39–174

Follow-up all patients still alive (n = 48), months

Median 96.5

Range 32–174

N number of patients; pTNM pathological tumor-node-metastasis

staging; ER estrogen receptor; PR progesterone receptor
a One case tubulo-lobular

Breast Cancer Patients Treated during 1989 -1998 at 
the Department of Obstetrics and Gynecology, 
Technical University of Munich, Germany, with Primary  
Surgery and Adjuvant CMF Chemotherapy

N=139

Fresh-Frozen Tumor Tissue Available

N=79

Fresh-Frozen Tumor Tissue Available with Sufficient 
RNA Quality

N=70

Training Cases

N=19

Validation Cases

N=51

Disease 
Recurrence

N=11

Disease Non-
Recurrence

N=8

Disease 
Recurrence

N=20

Disease Non-
Recurrence

N=31

Fig. 1 Graphical depiction of the selection process of the patient’s

tumor RNA for the study
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considered as poor quality targets and excluded from the

data set. The training set of the study contained 19 arrays

(11 samples from patients with recurrence and eight sam-

ples from patients without recurrence). To reduce noise

associated with low expressed transcripts, probesets

receiving equal to or less than 30% present detection calls

in both the recurrence and the non-recurrence group were

eliminated. The signals of the remaining probesets (13,132)

were used to perform prediction analyses employing two

different algorithms. The first approach uses the k-nearest

neighbors (knn) supervised learning method [12, 13].

Predictors consisting of 1–100 features (probesets) were

determined using GeneCluster 2.0 software (http://www-

genome.wi.mit.edu/cancer/software/genecluster2/gc2.html)

and cross-validation of the resulting predictors was done by

the leave-one-out procedure.

The second classification method uses an approach

similar to the successful methods described previously [14,

15]. In short, expression values were transformed by taking

logarithms and performing a z-transformation. We then

calculated the correlation between the prognostic category

(relapse vs. no relapse) and the expression ratio for each

gene of the probesets (13,132) using the Bravais/Pearson

correlation coefficient. The genes were ranked on the basis

of the magnitude of the correlation coefficient. A tumor

was classified as ‘‘relapse-free’’, if the correlation coeffi-

cient of the expression profile with the masterprofile was

positive and if the resulting P-value for the correlation was

B0.1. In a second step, the optimal set of reporter genes

was determined starting with the three top genes using a

leave-one-out cross validation procedure. The predictor

was termed optimal when the number of misclassified

tumors was minimal.

Real-time RT-PCR, data processing and prediction

Real-time RT-PCR was performed using TaqMan 384-well

microfluidic card sets on an ABI PRISM 7900HT Sequence

Detection system (Applied Biosystems). Sample RNA was

extracted and quantified as for the microarray analysis and

cDNA synthesis was carried out with Superscript Reverse

Transcriptase (Invitrogen, life technologies, Karlruhe,

Germany). 5.2 ng cDNA was used for 48 wells of the 384-

well card. Gene-specific primers and probes for each gene

were obtained from Assays-on-Demand Gene Expression

Products (Applied Biosystems, Warrington, UK). Tran-

script levels of 21 genes of interest (Table 2) were

determined in duplicates by the deltaCt method with 18S

ribosomal RNA transcript as an internal reference. For

prediction the PCR data set was split into a training set,

which contained the very same 19 samples previously

analyzed by microarray analysis and a validation set, which

contained the remaining samples. Prediction analysis using

predictors with 1–21 features derived from the training set

were used for cross-validation using the leave-one-out

procedure and used to classify the tumors of the test set as

described for the microarray data analysis.

Heat maps

For heat map representation, expression measures were

normalized to the mean expression value and log trans-

formed (log10). The brightest red corresponds to 4-fold

overexpression, the brightest green to 4-fold underexpres-

sion and black color represents the mean expression. In

some cases, genes and samples were subjected to UPGMA

clustering (Spotfire DecisionSite for Functional Genomics)

using log transformed mean-normalized expression values

and correlation as a similarity measure.

Statistical analysis

Time to first relapse was estimated and graphically pre-

sented according to the method of Kaplan and Meier.

Differences between different subgroups of patients were

assessed by a log-rank test for censured survival data.

Relapse was defined as the first reappearance of breast

cancer at any local or distant site. Significance level was set

to 0.05 two-sided. Multivariate analysis was performed

using the Cox proportional hazards regression model, with

the clinical variables tumor size, grade, lymph node status,

ER and PR content, and the CXCL9/ITSN2 and CXCL9/

FLJ22028 ratios.

Results

Identification of differentially expressed genes

and development of a gene predictor set

To identify differentially expressed genes between the

recurrence and the non-recurrence group, we first analyzed

primary tumor samples from 19 breast cancer patients who

had been uniformly treated with adjuvant CMF chemo-

therapy after surgery. Within this cohort, 11 women

developed disease recurrence with a median time to

recurrence of 54 months and eight women remained dis-

ease-free with median follow-up of 107 months. While it

would be optimal to study more samples for marker dis-

covery, several studies have shown that successful class

prediction is possible using a limited number of samples

[16–18]. Oligonucleotide microarray-based gene expres-

sion profiling was carried out using Affymetrix U133A

arrays containing 22,283 probe sets representing more than

14,500 well-substantiated human genes. The resulting

48 Breast Cancer Res Treat (2009) 118:45–56
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expression dataset was first filtered to reduce noise asso-

ciated with low expressed transcripts. Probesets receiving

equal to or \30% present detection calls in both the

recurrence and the non-recurrence group were eliminated,

leaving 13,132 probesets for the analysis.

An initial comparison of the gene expression profiles of

recurrent versus non-recurrent breast tumors using a non-

parametric Mann–Whitney-Test identified 464 probe sets

that showed expression levels changes of at least 50% and

were differentially expressed at a significance of P \ 0.05.

This represents 3.53% of the probesets available for the

analysis after filtering. 254 probesets (54.7%) had signifi-

cantly increased signal intensity (1.5–10-fold increases) in

recurrent breast tumors and 210 probesets (45.3%) had

reduced signal intensity (1.5–6.25-fold decreases). The 464

genes classified as most significantly differentially

expressed at P \ 0.05 are listed in the Supplementary

Table 1.

To achieve a higher level of stringency for identifica-

tion of differentially expressed genes, two algorithms for

class prediction were used. First, predictors consisting of

1–100 features (probesets) were determined using the knn

supervised learning method [12, 13] using GeneCluster

2.0 software. Cross-validation of the resulting predictors

by the leave-one-out procedure showed that predictors

consisting of 2–21 features classified 17–18 out of the 19

samples correctly when no confidence threshold was

applied.

Class prediction models were built using 1, 7, 10, 21, 50

or 100 features (genes), and the training error for each

model was calculated using leave-one-out cross validation

(Supplementary Table 2). Although the accuracy of the

models was comparable, the 7- and the 21-feature knn

model were chosen for further study because they predicted

most accurately the class distinctions of the training set (18

of 19 correct calls; 94% accuracy).

In addition, a second analytical approach similar to the

successful methods described previously [14, 15] has been

taken. After filtering and mathematical transformation of

the data (see Materials and methods), a selection of dis-

criminatory genes by their correlation with the clinical

outcome (relapse vs. non-relapse) was performed and the

optimal set of reporter genes was determined by the leave-

one-out cross validation procedure. Using this approach, a

set of 12 genes was found that predicted correctly 18 of 19

cases (94% accuracy) (Table 2). Four of these genes

formed part of the 7-knn-feature model and eight of the 12-

gene classifier were part of the 21-knn feature classifier.

A cluster map generated by using the 21 knn feature

(Fig. 2a) and the 12-gene prognosis set (Fig. 2b) dem-

onstrates the clear differences between the two clinical

groups i.e., between patients who later relapsed and those

who did not.

Confirmation of gene expression measurements

by real-time RT-PCR

Gene expression values derived from Affymetrix micro-

array hybridization were further analyzed by real-time

RT-PCR using the microfluidic card platform. The cards

consisted of 24 primer and probe sets preloaded on the assay

cards in duplicates. Assays for 21 genes included the 7

genes from the 7-feature knn, 10 additional genes derived

from the 21-feature knn (four of the 21 genes were not

available as predesigned primer sets from the company) and

11 out of 12 genes from the second statistical algorithm used

in this study. The 18S ribosomal RNA was used as an

internal reference. cDNA samples generated from the 19

primary tumor RNA samples previously analyzed by

microarrays were subjected to real-time PCR and the

resulting expression values were compared with the Af-

fymetrix data. Pearson and Spearman rank correlations were

positive for 20 genes and significantly positive for 16 and 15

of 21 genes, respectively (Table 3). A cluster analysis of the

training set (n = 19 tumors) with RT-PCR derived values

for 17 genes out of the 21-knn classifier (Fig. 2c) and 11

genes of the 12-gene prognosis set (Fig. 2d) confirms that

18/19 tumor were classified correctly.

Validation of predictor set on independent cases

by real-time RT-PCR

We next analyzed the 21 genes by RT-PCR in an inde-

pendent patient cohort (n = 51 patients) that had received

the same treatment as the training set patients. Of these 51

patients, 20 had suffered a relapse with a median time to

recurrence of 32 months and 31 patients had remained

disease-free with a median follow-up of 99 months. We

used the 17 genes from the 21-feature knn set and the 11

genes from the 12 gene prognosis set and attempted to

predict relapse in the validation set. While the two gene

sets predicted relapse in the training set with high accuracy

both by microarray derived gene expression values as well

as QRT-PCR data, they failed to predict the clinical out-

come in the validation set (clinical outcome was

misclassified in 60% of the cases).

Expression levels of candidate genes in breast cancer

The mRNA expression levels of the 21 genes measured by

QRT-PCR showed a marked variation in the 70 breast

cancer cases, which included the training set (n = 19

cases) and the validation set (n = 51 cases) of tumors. The

median expression levels were 8.9 (range, 2.2–53) for

A4GALT, 27 (range, 5.9–265) for ANGPTL2, 2 (0.5–14) for

APOM, 125 (19–501) for BGN, 50 (3.9–1498) for CXCL9,

25 (8.1–112) for FLJ20257, 6.4 (1.8–38) for FLJ22028, 56
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(14–377) for GNAI2, 2.5 (0.4–28) for GPR126, 13 (1.6–

124) for H2AFX, 5.3 (0.2–365) for INDO, 5.2 (2.5–36) for

ITSN2, 0.7 (0.07–6) for MGC10986, 16 (4.2–48)

for MGC16824, 8.6 (1.4–36) for PCDH16, 12 (4.6–45) for

PDE4A, 11 (4.1–68) for PEX1, 12 (0.5–59) for PGDS, 58

(8.1–288) for TEM8, 42 (20–225) for TIMM44, and 3.2

(0.9–21) for TOX. To identify genes of predictive value, we

evaluated the prognostic utility of each of these genes by

itself. mRNA levels were categorized according to quartile

distribution for gene expression values and either the lower

(0.25) or the upper quartiles (0.75) were tested against the

rest of the quartiles. Six genes (ITSN2, CXCL9, GNAI2,

H2AFX, INDO, and MGC10986) of the 21 genes tested

were significantly differentially expressed in the recurrence

vs. the non-recurrence group (n = 70 patients; P = 0.01,

0.01. 0.01. 0.04, 0.04, and 0.04, respectively).

Expression levels in relation to DFS

The expression levels of the 21 genes measured by QRT-

PCR were further analyzed in relation to the length of DFS.

For this purpose, mRNA levels were categorized according

to quartile distribution for gene expression values and

either the lower (0.25) or the upper quartiles (0.75) were

tested against the rest of the quartiles. Kaplan–Meier

curves revealed that high expression levels of CXCL9,

ITSN2, and GNAI2 were significantly associated with a

favorable clinical course in terms of length of DFS (log-

rank = 4.74, P = 0.0295; log-rank = 4.61, P = 0.0318;

log-rank = 5.58, P = 0.018, respectively; Table 4 and

Fig. 3a, b). The expression levels of the other genes were

not significantly related with the length of DFS (Table 4).

We then tested the prognostic utility of each of the 21

genes in combination with all the others. As cut-off points,

we used again quartiles (one quartile versus the other three

quartiles) to categorize tumors as high versus low for the

respective factors. When patients had both high CXCL9

and ITSN2 levels in their tumors, they had a longer disease-

free survival time than those exhibiting low levels (log

rank = 7.19, P = 0.0073, Fig. 3c). When the patients were

stratified by CXCL9 levels combined with either low or

high FLJ22028 levels, they showed significantly different

disease-free survival curves: patients whose tumors

exhibited low CXCL9 gene expression levels were found to

Fig. 2 Clustermap of differentially expressed genes in CMF-treated

breast cancer patients who relapsed and those who did not. a and b A

21-feature (a) and a 12 gene-prognosis set (b) accurately classify 18/

19 breast cancer cases using Affymetrix oligonucleotide-derived

values. c and d Clustermap of differentially expressed genes

generated with QRT-PCR-derived values using 17 genes from the

21-feature classifier (c) and 11 genes from the 12-gene prognosis set

(d) correctly classify 18/19 tumors into the two categories. The red

and blue dots below each dendrogramm indicate recurrences and non-

recurrences, respectively. Bottom, color scale bar

Breast Cancer Res Treat (2009) 118:45–56 51
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be significantly associated with a shortened disease-free

survival when compared to the patients with high CXCL9

tumor levels. When, in addition to low CXCL9 levels,

patients had high levels of FLJ22028, they had a worse

clinical course than those with low FLJ22028 levels (log-

rank = 15.3, P = 0.002, Fig. 3d). Finally, a multivariate

analysis of the risk of developing disease recurrence shows

that the combined CXCL9/ITSN2 or CXCL9/FLJ22028

ratios were the only independent predictive factor of DFS

(P = 0.034 and P = 0.003, respectively) (n = 70 tumors),

when compared with traditional histological or clinical

factors such as tumor size, nodal status, grading or hormone

receptor status. A significant correlation between the level of

mRNA expression and the length of overall survival was not

found for any of the investigated genes (data not shown).

Discussion

The aim of this exploratory study was to identify genes that

are useful in prediction of relapse of breast cancer patients

that were uniformly treated with surgery and CMF, a

standard combination chemotherapy. Using microarray and

quantitative RT-PCR technologies, we identified six genes

(CXCL9, ITSN2, GNAI2, H2AFX, INDO, and MGC10986)

that were significantly differentially expressed in the

recurrence versus the non-recurrence group of 70 breast

cancer patients. We have found that high expression levels

of CXCL9, ITSN2, and GNAI2 were associated with pro-

longed disease-free survival (DFS) (P = 0.029, 0.018, and

0.032, respectively) and that patients stratified by com-

bined CXCL9/ITSN2 or CXCL9/FLJ22028 tumor levels

exhibited significantly different disease-free survival

curves (P = 0.0073 and P = 0.005, respectively). Finally,

the CXCL9/ITSN2 and CXCL9/FLJ22028 ratio was an

independent prognostic factor (P = 0.034 and P = 0.003,

respectively) for DFS by multivariate Cox analysis in the

70-patient cohort.

Our study group was carefully selected: patients had

received no additional endocrine treatment, reflecting the

Table 3 Correlation of Affymetrix expression data with real-time

RT-PCR generated expression values

Pearson correlation Spearman rank

r P r P

A4GALT 0.339 0.156 0.363 0.126

ANGPTL2 0.16 0.514 0.389 0.099

APOM 0.471a 0.042 0.465a 0.045

BGN 0.645b 0.003 0.574a 0.01

CXCL9 0.683b 0.001 0.795b 0.001

FLJ20257 0.611b 0.005 0.542a 0.016

FLJ22028 0.77b B0.0001 0.754b B0.0001

GNAI2 0.115 0.638 -0.137 0.576

GPR126 0.89b B0.0001 0.805b B0.0001

H2AFX 0.762b B0.0001 0.604b B0.006

INDO 0.746b B0.0001 0.839b B0.0001

ITSN2 -0.085 0.729 0.13 0.596

MGC10986 0.711b 0.001 0.609b 0.006

MGC16824 0.587b 0.008 0.46a 0.048

PCDH16 0.774b B0.0001 0.746b B0.0001

PDE4A 0.549a 0.015 0.512a 0.025

PEX1 0.597b 0.007 0.242 0.318

PGDS 0.574a 0.01 0.6b 0.007

TEM8 0.343 0.151 0.551a 0.015

TIMM44 0.591b 0.008 0.17 0.486

TOX 0.839b B0.0001 0.714b B0.001

Correlations are significantly positive for 16 of 21 genes by the

Pearson correlation and significantly positive for 15 of 21 genes by

Spearman rank correlation
a Correlation is significant at the 0.05 level (2-tailed)
b Correlation is significant at the 0.01 level (2-tailed)

Table 4 Probablity of survival after 120 months (%)

High expression

levela (N = 17)

Low expression

levelsb (N = 53)

P-value

(log rank)

A4GALT 56.3 51.3 0.789

ANGPTL2 60.3 50.5 0.363

APOM 45.8 55.2 0.961

BGN 44.5 54.8 0.828

CXCL9 80.9 44.6 0.029

FLJ20257 59.6 50.4 0.346

FLJ22028 43.7 55.7 0.368

GNAI2 80.7 45.0 0.032

GPR126 62.8 49.6 0.484

H2AFX 64.7 49.0 0.098

INDO 74.5 46.3 0.088

ITSN2 79.6 44.4 0.018

MGC10986 74.1 46.8 0.107

MGC16824 58.6 52.8 0.638

PCDH16 47.0 54.1 0.734

PDE4A 62.7 49.7 0.243

PEX1 52.4 53.1 0.659

PGDS 52.3 53.5 0.881

TEM8 67.9 48.1 0.180

TIMM44 50.3 52.9 0.878

TOX 32.9 58.7 0.450

a, b mRNA levels of the 21 genes measured by QRT-PCR were

categorized according to quartile distribution for gene expression

values and either the lower or the upper quartiles were tested against

the rest of the quartiles. Expression levels were then analyzed in

relation to the length of disease-free survival (DFS) of the 70 patients

Expression levels of three genes (CXCL9, ITSN2 and GNAI2) were

significantly correlated with a favorable clinical course in terms of

length of DFS
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therapeutic consensus recommendation of the time, so the

assessment of relapse was not subject to potentially con-

founding contributions of additional systemic treatment.

Moreover, a long follow-up (median: 96.5 months) of the

patients had been obtained. Tumor RNA was of high

quality and gained by manual macrodissection to ensure at

least a 70% pure tumor cell population.

We started our exploratory study by generating gene

expression profiles from patient specimens using Affyme-

trix HG-U133A microarrays. Among various published

multivariate statistical methods and clustering algorithms

to analyze microarray expression data [19, 20], we decided

to use approaches similar to successful studies on tumors

from breast cancer patients described previously [12–15].

Gene expression was analyzed using standard statistical

methods (Mann–Whitney-Test and fold change) and, in

addition, data were analyzed by clustering and iterative

processes to identify gene sets predictive of relapse. A

training set consisting of 19 specimens was used to obtain

two gene sets of 12 and 21 genes (together 25 distinct

genes) that correctly clustered 18 of 19 cases into recurrent

or non-recurrent categories. Importantly, reproducible

detection of the differential expression levels for discrim-

inating genes was demonstrated by an independent method,

quantitative RT-PCR. Quantitative RT-PCR validated gene

expression changes for 21 of these 25 genes, 16 of which

were significantly correlated with the microarray-derived

values, and thus confirmed the predictive power of the gene

set in the training set cases. A number of recent studies

have shown that gene expression patterns can be used for

prognostication and chemotherapy response prediction of

breast cancer [14, 15, 18, 21, 22]. Van’t Veer et al. [14]

reported a 70-gene classifier that outperformed standard

clinical or histological criteria in disease outcome predic-

tion of 78 node negative breast cancer patients. The same

investigators validated this 70-gene classifier in a cohort of

217 node-positive and node-negative patients. However,

treatment of the patients group was not homogenous: either

no additional treatment was given after surgery or patients

were treated nonuniformly with hormonal or chemothera-

peutic agents. Using this published gene classifier in our

uniformly CMF-treated patient cohort for prediction of

relapse, we did not observe a significant correlation with

clinical outcome, however, only 36 probe sets covering 36

genes of the 70 genes were present on the oligonucleotide

arrays used in our study (data not shown).While it would be

optimal to study as many samples as possible for the initial

marker discovery, several studies have shown that suc-

cessful class prediction is possible using a limited number

of samples [16–18]. Due to the limited number of tumor

samples with appropriate characteristics, uniform treatment

and clinical follow-up available, we started our exploratory

microarray analysis with 19 samples and used the 51

samples of our study as validation set. The two gene sets of

Fig. 3 DFS according to gene

expression values categorized

into quartiles in CMF-treated

breast cancer patients.

a CXCL9 (log-rank = 4.74,

P = 0.0295) in 70 patients.

b ITSN2 (log-rank = 4.74,

P = 0.0295) in 70 patients.

c CXCL9/ITSN2 (log-

rank = 7.19, P = 0.0073)

in 70 patients. d CXCL9/

FLJ22028 (log-rank = 15.3

P = 0.0005) in 70 patients
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12 and 21 genes (together 25 distinct genes) that we

identified, correctly clustered 18 of 19 cases into recurrent

or non-recurrent categories. However, when 21 of the 25

genes where applied to an independent test group consist-

ing of 51 cases to test their accuracy to predict clinical

outcome, the gene set failed to correctly classify the cate-

gories. There are a number of possible explanations for

this: we used QRT-PCR technique to measure transcript

levels and while we demonstrated that the RT-PCR-derived

values significantly correlated with the microarray-derived

values in the test set (n = 19 cases) in 16 of 21 genes, the

different techniques employed for quantification of gene

expression still might account for the failure of accurate

outcome prediction in the validation set. Secondly, primer

and probe set for QRT-PCR were only available for 21 of

the 25 genes and it could be conceived that the missing

genes would have given additional information. Our data

stress the need to study large patient cohorts with micro-

arrays when aiming at the identification of biomarkers for

clinical use in solid tumors, representing a genetically far

more heterogeneous group than for example hematological

malignancies.

Among the 21 genes that were tested with QRT-PCR,

six genes, ITSN2, CXCL9, GNAI2, H2AFX, INDO, and

MGC10986, proved to be of significance when relapsed

versus non-relapsed patients of an independent patient

cohort (n = 51 patients) uniformly treated with CMF were

tested. Interestingly, CXCL9 ranked among the top pre-

dictor genes using the different algorithms. Furthermore,

ITSN2, CXCL9, and GNAI2 and combined CXCL9/ITSN2

were significantly associated with a favorable clinical

course (P = 0.018, 0.029, 0.032, and 0.0073, respectively)

as measured by the time to disease recurrence. For some of

these genes, an association with breast cancer had already

been demonstrated. CXCL9 is a chemotactic factor for

activated T cells and NK cells and has been reported to be a

suppressor of angiogenesis [23]. Furthermore, CXCL9, as a

single agent, has been shown to exhibit tumor-inhibitory-

activity in a model of breast cancer [24] and high CXCL9

expression has been recently linked to a favorable clinical

outcome of renal cell carcinoma [25]. Interestingly, in our

patient cohort, high CXCL9 expression is also associated

with a prolonged time to disease progression. Whether

CXCL9 is secreted by the tumor cells or is derived from

tumor infiltrating lymphocytes is currently not known-

although we manually macrodissected the tumor tissue we

cannot rule out the possibility that some ‘‘contaminating’’

inflammatory cells might have contributed to high intra-

tumoral CXCL9 levels. Gi alpha 2 (GNAI2) belongs to the

family of Gi alpha proteins that includes 3 polypeptides: Gi

alpha 1 (GNAI1), Gi alpha 2 (GNAI2), and Gi alpha 3

(GNAI3). It was recently reported that the alpha-subunit of

G(i) can activate the Ras-ERK/MAPK mitogenic pathway

by membrane recruitment of rap1GAPII and reduction of

GTP-bound Rap1 [26]. Little is known about the relevance

of intersectin 2 (ITSN2) in breast cancer. Intersectin 2

encodes an adapter protein which is part of the endocytotic

machinery of the cell [27]. It binds N-WASp, a potent

activator of actin assembly via the Arp2/3 complex and

thus coordinates actin assembly and trafficking events [28].

When patients of our study were stratified by CXCL9 levels

and then combined with either low or high FLJ22028

levels, they showed significantly different disease-free

survival curves when considering the 70 patients

(P = 0.0005) (Fig. 3d). Patients with high CXCL9 levels in

their tumors were found to be significantly associated with

a prolonged disease-free survival; conversely, patients with

low CXCL9 tumor levels combined with high FLJ22028

levels had the worst prognosis. A multivariate analysis of

the risk of developing disease recurrence shows that the

combined CXCL9/FLJ22028 ratios was the only indepen-

dent predictive factor of DFS (P = 0.003, respectively)

(n = 70 tumors), when compared with traditional histo-

logical or clinical factors such as tumor size, nodal status,

grading or hormone receptor status. FLJ22028 codes for a

hypothetical protein with predicted pyridine nucleotide-

disulphide oxidoreductase activity. No association with

breast cancer or chemotherapy response prediction has

been associated so far with this gene.

There are only a few studies describing gene expression

profiling of CMF-treated breast cancer patients. Nimeus

et al. [29] reported on a comparison of gene expression

profiling and conventional clinical markers to predict distant

recurrences for premenopausal breast cancer patients after

adjuvant CMF chemotherapy. Interestingly, the authors

concluded that classifiers using cDNA microarray-based

gene lists did not outperform corresponding classifiers based

on clinical variables. Paik et al. [30] used a commercially

available 21-gene recurrence score assay which includes

genes involved in tumor cell proliferation and hormonal

response to quantify the likelihood of breast cancer recur-

rence in women with node-negative, estrogen receptor-

positive breast cancer and to predict the magnitude of CMF

or methotrexate and fluorouracil chemotherapy benefit.

CMF was the chemotherapeutic agent of choice at the time

our patient cohort was treated for advanced breast cancer

(between 1989 and 1996). Later on, anthracyclines such as

doxorubicin and its analogue epirubicin have been gradually

included in chemotherapeutic regimens [3]. Today,

5-fluorouracil and cyclophosphamide, two of the CMF

components in the treatment of breast cancer are commonly

used in combination with anthracyclines (FEC/FAC) [31,

32]. It would be therefore interesting to test whether the

markers identified in the present study can predict the clin-

ical outcome of patients who received FAC or FEC

treatment. Moreover, as CMF is currently also being used in
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a neoadjuvant setting before surgery, it would be interesting

to see whether the two gene ratios have the potential to

predict chemotherapy response in preoperatively treated

patients. To our knowledge, gene expression analysis of

tumors from patients undergoing primary neoadjuvant CMF

chemotherapy has not been performed so far, however, there

are several studies reporting on gene expression profiling for

response prediction of breast cancer patients treated with

neoadjuvant taxanes and anthracyclines. Chang et al. [33]

identified a 92-gene set that predicted response to docetaxel

in primary breast tumors of 24 patients, with positive and

negative predictive values of 92 and 83%, respectively.

Another study [34] analyzed gene expression in diagnostic

core biopsy tissue samples from breast cancer patients

treated with gemcitabine, epirubicine and docetaxel. A gene

expression signature consisting of 512 genes was identified,

that predicted pathologic tumor response with a sensitivity

of 78%, a specificity of 90%, and an overall accuracy of

88%. Rody et al. [35, 36] performed gene expression anal-

ysis on pretherapeutic core biopsies from patients treated

with docetaxel, adriamycin and cyclophosphamide neoad-

juvant combination chemotherapy. Based on the Sorlie

classification, they demonstrated that the erbB2-positive

cluster of the intrinsic gene set predicted tumor response.

Generally, while it is impossible with this kind of investi-

gations to foresee whether the outcome associations are

related to the actual sensitivity of the tumors to the agents or

to the biology of the tumor itself, they might provide markers

for the personalized choice of alternative treatment

regimens.

In summary, our findings demonstrate the utility of a

small set of biomarkers in identifying breast cancer patients

still at high risk of relapse after CMF chemotherapy treat-

ment. Whether the biomarker profile is regimen-specific or a

more general indicator of chemotherapy resistance or whe-

ther it reflects the aggressiveness of the tumor merits further

research. Moreover, a more thorough investigation of one of

the key markers found in our study, CXCL9, may reveal

important insights into the understanding of basic mecha-

nisms underlying chemotherapy- and immune response.
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