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Abstract In the present study, the efficacy of a new drug,

i.e. the bispecific single-chain antibody MT110 targeting

the epithelial antigen EpCAM and the T-cell antigen CD3

was tested ex vivo in malignant pleural effusions (MPEs).

EpCAM? epithelial cells were found in 78% of the MPEs

(n = 18). Ex vivo treatment of seven MPEs resulted in a

dose-dependent specific lysis of 37 ± 27% (±SD)

EpCAM? cells with 10 ng/ml (P = 0.03) and 57 ± 29.5%

EpCAM? cells with 1,000 ng/ml MT110 (P = 0.016) after

72 h. As a prerequisite for redirected lysis, stimulation of

he autologous CD4? and CD8? cells in MPE by 1,000 ng/ml

MT110 resulted in 21 ± 17% CD4?/CD25? and 29.4 ±

22% CD8?/CD25? cells (P = 0.016, respectively) after

72 h. This was confirmed by a 22-fold release of TNF-a
and 230-fold release of IFN-c (1,000 ng/ml, 48 h,

P = 0.03, respectively). Thus, relapsed breast cancer

patients resistant to standard treatment might benefit from

targeted therapy using MT110.

Keywords Malignant pleural effusion � Breast cancer �
Bispecific antibody � EpCAM � CD3 � MT110 �
Ex vivo therapy

Introduction

Malignant pleural effusion (MPE) is frequent in advanced

cancer, especially in lung, breast, ovarian and gastrointes-

tinal carcinoma [1, 2]. One of the standard therapeutic

strategies to prevent recurrent MPE is chemical pleurodesis

using talcum. However, despite therapeutic intervention,

recurrence rate is high and prognosis remains poor [3–5].

Although, MPEs are well characterized [6–14], the

knowledge gathered by in vitro and in vivo studies, trans-

lated only into a few novel therapeutic strategies for

clinical testing [15–17]. Thus, there is still a significant

need for effective treatment strategies for the management

of MPEs.

Targeted therapies based on monoclonal antibody

technology may provide for such new therapeutic options.

A widely accepted targeted therapy in metastatic breast

cancer is the monoclonal antibody trastuzumab (Hercep-

tin�) for patients that overexpress the target antigen HER-

2/neu [18]. The important mode of action is antibody-

dependent cellular cytotoxicity (ADCC), a reaction by

which the cell-bound antibody recruits immune effector

cells bearing Fcc receptors. Natural killer cells expressing

Fcc receptor III (CD16) play a critical role in ADCC [19].

A different approach of redirecting cytotoxic immune

effector cells are bispecific antibodies. One example is the

class of single-chain bispecific antibodies, which is

designed to recruit and simultaneously activate T cells

against target cells expressing a particular surface antigen

[20–22]. Hallmarks of single-chain bispecific antibodies
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are a high potency of redirected lysis in the femtomolar

range [23, 24], a strictly target cell-dependent activation of

T cells [25], serial lysis by activated T cells [26] and

involvement of proper cytolytic synapses [27]. An Ep-

CAM/CD3-bispecific antibody with specificity for the

murine orthologs of EpCAM and CD3 has shown a sig-

nificant therapeutic window, indicating that T cell-

recruiting antibodies of this class can well distinguish

between EpCAM antigen expressed on normal tissue and

tumor tissue [28].

Several EpCAM (CD326)/CD3-bispecific antibodies

have been shown in various mouse models to eradicate

established tumors, to redirect tumor-resident T cells for

lysis of metastatic human ovarian cancer tissue [24, 29]

and to effectively treat lung metastasis [30–33]. In a phase

I/II study, advanced ovarian cancer patients were treated

with the trifunctional bispecific antibody catumaxomab

(anti-EpCAM 9 anti-CD3) resulting in a significant

reduction of ascites flow rate [34].

In the present study we have investigated the EpCAM/

CD3-bispecific antibody MT110 that is now in a clinical

phase I study [35] for its activity against tumor cells in

pleural effusates of breast cancer patients. Solely autolo-

gous immune cells present in these effusates were used as

cytotoxic effector cells. Extent of target specific lysis and

activation of different T cell subpopulations mediated by

MT110 treatment were studied. Our data support the use of

MT110 for the treatment of metastatic therapy resistant

breast cancer patients.

Patients and methods

Patients and sample processing

MPE samples were collected from 18 patients with

advanced breast cancer by chest drainage (Clinic of Sur-

gery, Großhadern, Munich, Germany, ethics proposal

number 278/04). Malignancy was confirmed by cytological

analysis at the Institute for Pathology, University of

Munich, Germany. Cellular fraction was isolated by two

step centrifugation. Cell number and vitality were deter-

mined with the trypane blue exclusion test. Cytospins were

prepared from the freshly isolated pleural effusion cells

[36]. Briefly, 5 9 104 isolated pleural effusion cells were

spinned on glass slides with an adhesive surface (Super-

Frost plus, Menzel, Germany) using a cytospin centrifuge

(Cytospin 2, Shandon, Frankfurt, Germany).

Immunoperoxidase staining and antibodies

For target identification cytospins were stained using

Avidin-Biotin Complex (ABC) immunoperoxidase staining

[37, 38]. Epithelial cells in the pleural effusion cells

were identified with a mouse monoclonal antibody (mab)

against human pan cytokeratin (clone KL-1, Immunotech,

Marseille, France). The target antigen EpCAM was dem-

onstrated using mouse mab against human EpCAM (clone

BerEp4, Dako, Hamburg, Germany). Leukocytes and

effector T cells were detected with a monoclonal mouse

antibody against CD45 (clone 2B11 ? PD7/26) and a

polyclonal rabbit antibody anti CD3 (A0452), both pur-

chased from Dako, Hamburg, Germany. Isotype controls

were used in the corresponding concentrations. The per-

centage of positive cells was evaluated semi-quantitatively.

Ex vivo therapy of pleural effusion samples

Because of sample limitation MPEs obtained from seven

patients were analyzable for ex vivo treatment using

MT110. The MPEs were plated in duplicate in 96-well flat

bottomed cell culture plates (BD Falcon, Heidelberg,

Germany) with a density of 1 9 105/100 ll/well. After

recovery overnight (37�C, 5% CO2) the pleural effusion

cells were treated with the bispecific antibody MT110

(Micromet AG, Munich, Germany) at the concentrations

0.1, 1, 10, 1,000 ng/ml for 48 and 72 h, respectively. As

controls, the growth medium (RPMI 1640 medium con-

taining L-glutamine, 7.5% FCS and 1% NEAA and 1%

sodium pyruvate), the non-specific antibody muS110 (anti-

mouse EpCAM/anti-mouse CD3), the semi-specific anti-

bodies Mec (anti-mouse EpCAM/anti-human CD3) and

aEpCAM (anti-human EpCAM/anti-mouse CD3) were

used at the highest antibody concentration (1,000 ng/ml),

respectively. The effect of MT110 on the malignant pleural

effusion cells was measured using four different read out

systems, namely: induction of morphologic changes, extent

of specific cytotoxicity, T cell stimulation and induction of

cytokine release.

FACS analysis and cytotoxicity assay

Characterization of the MPE cells before treatment was

done by FACS analysis [39]. For the detection of EpCAM?

pleural cells a mouse anti-human EpCAM-APC antibody

was used (clone EBA-1). The detection of the immune cell

fractions was done by using an anti-CD4-FITC (clone

RPA-T4) and anti-CD8-PERCP (clone SK1) antibody.

Activation of immune cells was detected by anti-CD25-

APC (clone M-A251) and anti-granzyme B-PE antibody

(clone GB11). The E:T cell ratio (E: effector CD3? cells;

T: target EpCAM? cells) in each MPE sample was deter-

mined as the ratio of CD3? to EpCAM? cells. Therefore,

the anti-EpCAM-APC antibody was used in combination

with an anti-CD3-PE antibody (clone UCHT-1). All anti-

bodies were obtained by BD Pharmingen, Heidelberg,
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Germany, except anti-granzyme-B (Invitrogen, Karlsruhe,

Germany). As IgG1 isotype control for every antibody the

clone MOPC-21 was used with the corresponding working

concentration and labeling (BD Pharmingen, Heidelberg,

Germany).

After ex vivo treatment, antibody induced redirected

lysis was measured by FACS analysis. Double staining of

lysed EpCAM? pleural effusion cells was performed using

the anti-EpCAM-APC antibody and 7-amino actinomycin

(7-AAD; BD Pharmingen, Heidelberg, Germany). Unla-

beled standard calibration beads (BD Pharmingen,

Heidelberg, Germany) in a volume of 50 ll were added to

every patient sample. In this way an equal number of cells

was acquired in every sample. The MT110 mediated cell

lysis was calculated according to the following equation:

Percent of specific lysis

¼ 100�
��

% of EpCAMþ live cells in MT110

treated sample=% of EpCAMþ live cells in control�Þ
� 100

�

*control = mean of the growth medium and muS110

control value

T cell stimulation assay

MT110 induced T cell activation was measured detecting

CD25 protein surface expression and intracellular gran-

zyme B expression of CD4? and CD8? T cells by FACS

[24]. Granzyme B levels were determined using the

Cytofix/Cytoperm Fixation and Permeabilization Kit

according to the manufacture’s protocol (BD Biosciences

Pharmingen, Heidelberg). Calibration beads were added as

described above. MT110 mediated stimulation of T cells

was calculated according to the following exemplary

equation:

Percentage of CD4þ=CD25þ expression

¼
�
number of CD4þ=CD25þ cells=

total number of CD4þ cells
�
� 100

Similar, using the same equation the number of CD4?/

granzyme B?, CD8?/CD25? and CD8?/granzyme B? cells

was calculated.

Cytokine analysis

The concentrations of the cytokines Interleukin-2 (IL-2),

IL-4, IL-6, IL-10, Tumor necrosis factor alpha (TNF-a) and

Interferon-c (IFN-c) were analyzed in duplets using the

medium supernatant after MT110 treatment for 48 h.

Cytokine analysis of the supernatants was performed by

FACS analysis using the Human Th1/Th2 Cytokine

Cytometric Bead Array (CBA, BD Biosciences Heidelberg,

Germany) kit following the manufacturer’s instructions

[24]. Quality control samples containing the relevant

cytokines with a concentration of 200 and 500 pg/ml were

measured in triplets as positive control for each cytokine. A

cytokine concentration lower than 20 pg/ml was below the

sensitivity of the CBA kit. If this was the case, 20 pg/ml

was assessed for these values. The level of the MT110

dependent cytokine induction was calculated in relation to

the mean value of the bispecific antibody controls Mec and

aEpCAM.

Statistics

Dose and time dependency of the MT110 mediated specific

lysis, T cell stimulation and the MT110 induced increase of

cytokine release was analyzed with the Wilcoxon matched-

pairs signed-ranks test. The Spearman Rank Correlation

Coefficient (R) was used to correlate the E:T ratio and the

proportion of CD25 and granzyme B expressing CD4? and

CD8? cells with the amount of specific tumor cell lysis and

MT110 dependent cytokine detection.

A value of P \ 0.05 was indicated as statistically

significant.

Results

Characterization of pleural effusion samples

Malignant pleural effusion samples were obtained from 18

patients with advanced breast cancer. The pleural effusion

volume ranged from 40 to 800 ml (mean: 350 ml). The

number of effusion cells after cell isolation varied from

3 9 104 to 1.5 9 106 cells/ml (mean: 4 9 105 cell/ml).

Immunohistochemical biomarker analysis revealed Ep-

CAM? epithelial cells in 78% (14 out of 18) of pleural

effusion samples. Most of the samples contained a high

fraction of EpCAM? epithelial cells (mean 75%, range

from 20% to 100%). A similar heterogeneity was observed

for the CD3? cells, although most samples contained a

high fraction of CD3? leukocytes (mean 75%, range 45–

93%). Subgroup analysis of the T cells revealed a mean

population of 53% CD4? and 21% CD8? cells (CD4:CD8

ratio: mean 2.5:1, range 10.6:1–1.4:1).

Redirected lysis of EpCAM? pleural cells by MT110

Seven out of 14 pleural effusions containing EpCAM?

epithelial cells (mean 78%, range from 30% to 100%) were

amenable for ex vivo treatment with MT110. In this subset

of samples, the fraction of CD3? leukocytes ranged from
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60% to 93% (mean 80%). The immune cell composition of

this subset of MPEs was analyzed before MT110 treatment

and is described in detail in Table 1. The E:T ratio (E:

effector CD3? cells; T: target EpCAM? cells) varied

between the patient samples from 1:4 to 620:1 (Table 2).

Phase contrast light microscopy demonstrated, that

tumor cells formed rosettes with leukocytes in the presence

of MT110 (Fig. 1b). This opsonization was seen in five out

of seven treated samples (71%). The cytotoxic effect of

MT110 was measured by FACS analysis, detecting non-

viable EpCAM? cells. The mean specific lysis is shown in

Fig. 1c after 48 and 72 h treatment with the concentrations

of MT110 0.1, 1, 10, 1,000 ng/ml. One patient (3917) had

pleural effusion cells sufficient for testing the 72 h time

point and three doses of MT110 (0.1, 1, 1,000 ng/ml), only.

Compared to the control antibodies Mec and aEpCAM,

MT110 induced a significant specific lysis of target cells

depending on the doses of MT110. Ex vivo treatment with

10 ng/ml MT110 for 48 h resulted in 21% cell lysis

(*P = 0.03) and 1,000 ng/ml in 42% cell lysis

(*P = 0.03). Similar, treatment with MT110 for 72 h

resulted in a specific lysis of 37% with 10 ng/ml MT110

(P = 0.03), and of 57% with 1,000 ng/ml MT110

(P = 0.016). Contrary, the length of treatment (48 h vs.

72 h) had no significant impact (Fig. 1c).

The high standard deviations seen in Fig. 1c suggested

strong differences between individual pleural effusion

samples (Fig. 2). Specific lysis differed among the patients

from 13.5% to 79% after 48 h for the highest concentration

of MT110 (1,000 ng/ml). After 72 h with 1,000 ng/ml

MT110, the extent of the specific lysis varied from 24% to

100%. High responders such as samples 3823 (Fig. 2a and

b), 3917 (Fig. 2b) and 3924 (Fig. 2a and b) responded to

1 ng/ml MT110 and revealed a high fraction of dead cells

after 72 h MT110 treatment (1,000 ng/ml). Other patient

samples, such as 3888, 3874 and 3892 were less susceptible

and required higher concentrations of MT110.

Activation of T cells by MT110

A significant increase of the CD25? fraction of CD4? and

CD8? cells for the seven MPE samples was seen after

treatment with 1,000 ng/ml MT110 for 48 h (* P = 0.03)

and 72 h (* P = 0.016), respectively (Fig. 3a and b,

Table 3). At this MT110 concentration, the percentage of

CD4?/CD25? T cells reached 18% and 21% and that of

CD8?/CD25? T cells 33% and 29% after both 48 h and

72 h. Contrary, there was no significant increase detected

for granzyme B expression in CD4? and CD8? cells after

MT110 treatment (Fig. 3c and d, Table 3). The proportion

Table 1 The composition of MPE samples in % of CD45? cells before ex vivo therapy concerning the T-lymphocytes (CD3?), T-helper cells

(CD4?), cytotoxic T-cells (CD8?), activated T-cells (CD3?/CD25?) and natural killer cells (CD3-/CD56/CD16?)

Patient no. Immune cell composition of MPE in %

CD3? CD4? CD8? CD3?/CD25? CD3-/CD56/CD16?

3745 60 32 23 4.8 26

3892 76 50 27 1.6 8.4

3823 78 59 15 3.7 13

3874 91 65 26 7.2 3.7

3888 93 85 8.3 1.4 2

3917 85 69 17 n.d. n.d

3924 78 50 27 2.7 0.4

Mean ± SD 80 ± 10 58.5 ± 16 20.5 ± 7 3.6 ± 2 8.9 ± 8.7

Table 2 Evaluation of the E:T ratio of the malignant pleural effusions

Absolute cell numbers in % The E:T ratio of the malignant pleural effusion samples

Patient samples

3745 3892 3823 3874 3888 3917 3924

E: CD3? 4 18 28 24 70 69 62

T: EpCAM? 17.5 40 20 2.2 1.3 0.3 0.1

E:T ratio (CD3?/EpCAM?) 1:4 1:2 1:1 11:1 54:1 230:1 620:1

The effector (E: CD3? cells) to target (T: EpCAM? cells) cell ratio of the malignant pleural effusion samples was calculated with the absolute

numbers of both cell populations present in the MPE

474 Breast Cancer Res Treat (2009) 117:471–481
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of CD4?/granzyme B? T cells maximally increased 5-fold

(23%) after 72 h in the presence of 1,000 ng/ml MT110

(Fig. 3c). Under the same condition, the maximum increase

of CD8?/granzyme B? T cells was 1.7 (44%, Fig. 3d).

However, the initial percentage of granzyme B?/CD8?

cells was significantly higher compared to the CD4? cells

after 48 h (P = 0.03) and 72 h (P = 0.016) (Fig. 3d).

There was no significant difference between 48 and 72 h,

regarding the MT110 depending activation of both CD4?

and CD8? cells.

Although MT110 treatment resulted in a dose-dependent

stimulation of the T cell response in all MPE samples,

interindividual differences were observed (Fig. 4). With

respect to the CD4?/CD25? subpopulation, the highest

fraction of CD4?/CD25? cells was obtained in patient

sample 3823, while no increase was observed in effusion

sample 3745 (Fig. 4a). Concerning the proportion of

CD8?/CD25? cells, all seven pleural samples showed a

dose-dependent increase after MT110 treatment (Fig. 4b).

The malignant pleural effusions 3745, 3823 and 3892

reached much higher levels of CD8? T cells expressing

CD25 in comparison to the other samples (Fig. 4b). The

proportion of granzyme B-expressing CD4? T cells was

highest in sample 3823 reaching almost 100% in a MT110

dose-dependent fashion (Fig. 4c), while it remained below

20% for five out of seven samples. The initial proportion of

CD8?/granzyme B? cells was high ([20%) for the three

pleural effusion samples 3745, 3823 and 3917 (Fig. 4d).

The patient samples 3823 and 3745 showed a strong

increase in the number of CD8?/granzyme B? cells stim-

ulated by MT110 treatment (Fig. 4d).

Impact of the immune system on the specific lysis

induced by MT110

The extent of redirected specific lysis of EpCAM? cells

varied from 24% (3892) to 100% (3924) after MT110

therapy using 1,000 ng/ml for 72 h (Figs. 2b, 5). The E:T
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Fig. 1 Treatment of malignant pleural effusion cells with the

bispecific antibody MT110. (a, b) Ex vivo antibody treatment of

malignant pleural effusion cells obtained from patient 3888 for 72 h

in 96-well cell culture plate. (a) The bispecific control antibodies

Mecoprop Mec (left panel) and aEpCAM (right panel) in a

concentration of 1,000 ng/ml respectively had no impact on the

pleural effusion cells (magnification 2009, Olympus IX 50; Olympus

Camera SC 35). (b) The bispecific antibody MT110 (1,000 ng/ml)

induced the opsonization of the tumor cells by the immune cells (left

panel, magnification 2009; right panel, magnification 4009). (c)

Mean specific lysis of malignant pleural effusions treated ex vivo

with MT110 at different doses (0.1, 1, 10 and 1,000 ng/ml) and time

points (bright columns, 48 h, n = 6 patients; dark columns, 72 h,

n = 7 patients). Significant specific lysis of EpCAM? pleural

effusion cells ex vivo treated with MT110 are pointed out

(* P \ 0.05)
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ratio (E: effector CD3? cells; T: target EpCAM? cells),

which individually differed from 1:4 (3745) to 620:1

(3924) did not significantly correlate with the amount of

specific cell lysis (P = 0.1; R = 0.67). Moreover, con-

cerning the fraction of the CD3? effusion cells, ranging

from 4% (3745) to 70% (3888) no correlation was observed

with the extent of the MT110 induced specific lysis

(P = 0.35; R = 0.4). Similar, the activation status of both

CD4? and CD8? cells had no significant impact on the

extent of the MT110 dependent specific lysis (CD4?/

CD25?: P = 0.3, R = -0.5; CD8?/CD25?: P = 0.6,

R = -0.3; CD4?/granzyme B?: P = 0.9, R = -0.045;

CD8?/granzyme B?: P = 0.39, R = 0.4). Nevertheless,

highest efficacy of MT110 was seen for the patient samples

3917 (lysis: 90%) and 3924 (lysis: 100%), which had a

230- and 620-fold excess of CD3? over EpCAM? cells,

respectively. Samples with E:T ratios as low as 1:4 (3745)

and 1:1 (3823) also showed high efficacy of lysis (3745:

46%; 3823: 79%) and in addition revealed a high propor-

tion of CD8?/CD25? (3745: 69%; 3823: 49%; Fig. 5a) and

CD8?/granzyme B? (3745: 81%; 3823: 99%; Fig. 5b)

cells. Moreover, the patient sample 3823 had a strong

MT110 dependent activation of CD4? cells showing both a

high fraction of CD4?/CD25? (60%; Figs. 4a, 5a) and

CD4?/granzyme B? (96%; Figs. 4c, 5b) cells. Samples

with much higher E:T ratios of 11:1 (3874) and 54:1 (3888)

were not more responsive (3874: 28%; 3888: 33%)

but additionally had a much lower fraction of granzyme

B/CD8? cells (3874: 11%; 3888: 24%; Fig. 5b).

Cytokine levels in culture supernatants after ex vivo

therapy with MT110

The cytokine release induced by MT110 treatment

(1,000 ng/ml; 48 h) into the culture supernatant was ana-

lyzed by FACS analysis (Table 4). MT110 induced a

significant release of TNF-a (P = 0.03) and IFN-c
(P = 0.03) with a mean of a 22-fold (426 pg/ml) and 230-

fold (4,634 pg/ml) increase in comparison to the control

antibodies Mec and aEpCAM. The induced level of IFN-c
release correlated positively with the proportion of CD4?/

granzyme B? cells after 48 h (P = 0.03; R = 0.88).

IL-10 showed a mean increase of 13-fold (485 pg/ml)

and IL-2 a mean increase of 7-fold (141 pg/ml) after

MT110 treatment (1,000 ng/ml; 48 h) which was however

not significant. The concentration for IL-4 was below the

sensitivity level of the kit, i.e., less than 20 pg/ml for all

but one patient sample (3823). IL-6 showed a high initial

concentration with a mean level of 5,738 pg/ml (range

2,400–10,757 pg/ml) in four out of seven patient samples

(3924, 3823, 3892 and 3745) which did not increase during

MT110 treatment.

Discussion

Advanced breast cancer metastasized to the pleural cavity

is associated with poor prognosis [2, 4, 40, 41]. In the

present study, all but one patient developed recurrent

malignant pleural effusions despite multimodal therapy and

died within a mean time of 3 months (range, 3 weeks to

9 months). This grave situation indicates the urgent need of

more efficient treatment strategies for MPE, such as tar-

geted therapies.

The present study shows that breast cancer cells in

pleural exudates frequently express the tumor-associated

antigen EpCAM (CD326) providing a rationale for treat-

ment of metastatic breast cancer with EpCAM-directed

antibody-based therapeutic approaches [42, 43]. As one

example, a bispecific single-chain antibody called MT110
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Fig. 2 Specific lysis of individual MPE patient samples treated

ex vivo with the bispecific antibody MT110 at different doses for

48 h (a) and 72 h (b). (a) Redirected lysis of EpCAM? pleural

effusion cells induced by MT110 after 48 h treatment (n = 6, because

of sample limitation of patient 3917). (b) Redirected lysis of

EpCAM? pleural effusion cells induced by MT110 after 72 h

treatment (n = 7)
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with the capacity of recruiting and activating T cells

against EpCAM-expressing cancer cells [24] is here shown

to redirect autologous T cells—as are found in the cellular

milieu of malignant pleural effusions—for efficient lysis of

carcinoma cells. This lysis was highly specific, dependent

on the dose of MT110, similar as shown for the anti-Ep-

CAM treatment of primary ovarian cells [44]. In addition,

specific lysis appeared to be highest in the presence of

either a favourable E:T ratio or granzyme B-expressing

CD8? cells but needs to be confirmed in a higher number

of patient samples.

MT110 was found to potently activate previously

unstimulated T cells in pleural effusates. However, unlike

with T cells from the peripheral blood of healthy donors

[24], not all samples reached a high proportion of CD25

expressing T cells. It is likely that not all T cells in exu-

dates can be activated by MT110 because they are anergic

due to escape mechanisms of the pleural tumor cells, due to
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Fig. 3 Mean stimulation of the CD4? and CD8? T cells present in

the MPE effusions after ex vivo treatment with MT110 after 48 h

(bright columns, n = 6 patients,) and 72 h (dark columns, n = 7

patients). (a, b) Stimulation of the T cells was demonstrated by CD25

expression using FACS analysis. In both, CD4? (a) and CD8? (b) cell

populations, the fraction of CD25? cells significantly correlated with

increased doses of MT110 (* P \ 0.05). (c, d) The cytoplasmic

expression of granzyme B was analyzed in the CD4? and CD8?

populations by FACS analysis. The initial expression of granzyme B

in CD4? cells was significantly lower compared to CD8? cells after

48 h and 72 h (* P \ 0.05) and did not significantly change under

treatment with MT110

Table 3 Changes of the CD25 and granzyme B expression of CD4? and CD8? T-cells during MT110 ex vivo therapy (48 h, 72 h) with

1,000 ng/ml MT110

Phenotype Phenotypic changes of the effector cells induced by MT110 treatment in % (n = 7)

48 h 72 h

-MT110a ?MT110b P-value -MT110a ?MT110b P-value

CD4?/CD25? 2.7 ± 1.6 18 ± 11 0.03 2.5 ± 1.9 21 ± 17 0.016

CD8?/CD25? 1.6 ± 1.3 33 ± 23 0.03 1.8 ± 1.9 29 ± 22 0.016

CD4?/granzyme B? 6 ± 4.3 24 ± 27 n.s. 4 ± 3.6 23 ± 31 n.s.

CD8?/granzyme B? 28 ± 22 46 ± 32 n.s. 25 ± 19 44 ± 32 n.s.

Mean values ± standard deviation (SD) and P-values are given (n.s. = not significant)
a -MT110 = control, as described in ‘‘Patients and methods’’
b ?MT110 = 1,000 ng/ml
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exposure to tumor cell-derived TGF-b, or expression of PD

receptor ligands B7-H1 or B7-H4, or the tryptophan

degrading enzyme indole 2,3-dioxygenase (IDO) by cancer

cells [45, 46]. Because T cell activation by MT110 is

dependent on the presence of target cells [25], it is also

conceivable that low numbers of EpCAM-expressing cells

have limited the polyclonal T cell activation by MT110.

Our finding that the extent of redirected target cell lysis in

some patients was associated with a high percentage of

granzyme B?/CD8? cells, as reached after a 72 h reaction

with MT110, is well consistent with the recruitment of

lysis-competent, cytotoxic CD8? T cells by MT110.

In vitro experiments have shown that MT110-mediated

lysis of tumor cell lines is most effective with CD8? T cells

[24]. This predominant role of CD8? cells was also

observed with the anti-EpCAM/CD3 trifunctional antibody

catumaxomab [47]. However, isolated CD4? T cells may

also significantly contribute to lysis as seen for patient

sample 3823. CD4? cells were reported to require a lag

phase during which granzyme B and perforin expression is

induced before they can engage in MT110-mediated redi-

rected target cell lysis [24].

Various parameters were identified as candidates to

predict efficacy of MT110, but need to be tested in an

enlarged patient cohort. One is a high CD3? to EpCAM?

cell (E:T) ratio in effusions, which was found associated

with a high redirected specific tumor cell lysis. Another

one is a high fraction of granzyme B expressing CD8?

cells, which also correlated with a high degree of specific

tumor cell lysis. Lastly, the combination of both may be

important to predict the therapeutic effect of MT110.

It is conceivable that samples with a high proportion of

T cells also contain a higher number of regulatory T cells

that can potentially impede the activity of BiTE-activated

cytotoxic T cells. Future studies need to further analyze

pleural effusion samples for factors potentially modulating

the activity of MT110, including the percentage of regu-

latory FoxP3? T cells. We however assume that the

cellular composition of pleural effusates in patients with

respect to immune cells is a highly dynamic one. Indeed, in

patient 3888 the extent of immune cells changed in

recurrent effusions (data not shown). In patients, new T

cells may be recruited after an initial lytic reaction.

Moreover, differences among samples in the extent of

redirected lysis seen here after 72 h of MT110 incubation

may vanish in patients where the bispecific antibody is

present for several weeks. This exposure is currently real-

ized for another bispecific antibody, called MT103/MEDI-

538, which is targeting the CD19 antigen on non-Hodgkin

lymphoma cells [48]. MT103/MEDI-538 induced con-

firmed partial and complete responses in lymphoma

patients, which required continuous infusion for 4–8 weeks

using a portable minipump. A similar duration may be

necessary for treatment of metastatic breast cancer with

MT110 and may equalize differences seen in the present

ex vivo experiment lasting up to 72 h.

EpCAM appears as an attractive target for treatment of

breast cancer. Firstly, a negative prognostic impact has
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Fig. 4 Stimulation of CD4?

and CD8? T cell populations in

the individual pleural effusion

samples (n = 7) ex vivo treated

with the bispecific antibody

MT110 after 72 h. (a, b)

MT110 dependent T cell

activation was reflected by the

expression of the activation

marker CD25. The low fraction

of CD25 expressing T cells in

the control samples indicates

that the CD4? cells were

unstimulated before MT110

treatment. (c, d) Cytotoxic

potential of the T cells was

reflected by the expression of

the apoptosis inducing protease

granzyme B in CD4? (c) and

CD8? (d) cells. A high initial

extent of granzyme B was found

in CD8? cells of patient

samples 3823, 3745 and 3917,

but was completely missing in

CD4? cells
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been shown for the level EpCAM expression on node-

positive primary breast cancer tissue [49]. Secondly, up to

42% of breast cancer patients express high levels of Ep-

CAM and another 40% of patients express intermediate to

low levels of the antigen [50]. An increase in high level

EpCAM expression to 55% has been reported to occur in

metastatic tissue [51]. Thirdly, EpCAM is expressed on so-

called cancer stem cells in breast cancer and only those

stem cells expressing EpCAM are highly tumorigenic in

immunodeficient mice [52]. Fourthly, knockdown of Ep-

CAM expression by a specific small inhibitory RNA in

breast cancer cell lines inhibited proliferation, migration

and invasiveness of cancer cells [53], and overexpression

of EpCAM in quiescent cells increased these oncogenic

parameters [54]. Based on the present data and the

emerging biology of EpCAM in breast cancer, MT110

appears as an attractive therapeutic option for treatment of

metastatic and therapeutic resistant stages of the disease.
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Fig. 5 Impact of the E:T ratio and the activation of the immune cell

subpopulations CD4? and CD8? on the amount of specific lysis of

EpCAM? effusion cells after 72 h MT110 treatment (1,000 ng/ml). (a)

Expression of the activation marker CD25 is shown for CD4? (bright

columns) and CD8? (dark columns) cells. In addition, the E:T ratio of

every patient sample (x-axis) and the specific lysis of EpCAM? cells is

pictured (dark dots). (b) Expression of the apoptotic protease granzyme

B is shown for CD4? (bright columns) and CD8? (dark columns) cells.

As in a, the E:T ratio of every patient sample (x-axis) and the specific

lysis of the EpCAM? cells is pictured (dark dots)

Table 4 Cytokine measurement in the medium supernatant after treatment with MT110 (1,000 ng/ml) for 48 h (n = 6 patient samples)

Patient samples Cytokine release in medium supernatant of MPE samples after MT110 ex vivo therapy

IL-2 IL-4 IL-6 IL-10 TNF a IFN c

pg/ml Fold pg/ml Fold pg/ml Fold pg/ml Fold pg/ml Fold pg/ml Fold

3745 565 ± 34 28 \20a 1 14,043 ± 1,689 1.3 137 ± 7 6 344 ± 15 17 2,985 ± 115 149

3892 124 ± 4 6 \20 1 5,371 ± 267 1 95 ± 19 5 34 ± 3 2 359 ± 19 18

3823 23 ± 2 1 185 ± 6 9 3,345 ± 71 1.4 2,458 ± 76 55 1,170 ± 45 59 23,711 ± 912 1,186

3874 74 ± 7 4 \20 1 151 ± 5 1.4 \20 1 153 ± 3 8 228 ± 10 11

3888 \20 1 \20 1 642 ± 8 2 74 ± 12 4 510 ± 1 26 208 ± 42 10

3924 42 ± 4 2 \20 1 2,412 ± 90 1 127 ± 8 6 342 ± 2 17 311 ± 2 4

Median ± SD 141 ± 193 48 ± 61 4,327 ± 4,675 485 ± 883 426 ± 366 4,634 ± 8,589

P-values 0.06 1 0.5 0.06 0.03 0.03

Sample 3917 was excluded because only the 72 h time point was available. The data show the concentration ± standard deviation (SD) of the

cytokines Interleukin-2 (IL-2), IL-4, IL-6, IL-10, Tumor necrosis factor a (TNFa) and Interferon c (IFN c) in pg/ml after MT110 treatment.
a Cytokine concentration lower than 20 pg/ml was below the sensitivity of the Cytokine Bead Array (CBA) kit. In addition, the fold increase of

every cytokine is displayed
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