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Abstract Breast cancer development and progression is

regulated by growth factors and steroid hormones.

Although the majority of human breast cancers expresses

androgen receptor (AR), the role of androgens in breast

tumorigenesis remains largely unexplored. Here we dem-

onstrate that an AR ligand, 5-alpha-dihydrotestosterone

(DHT), inhibits MCF-7 breast cancer cell growth induced

by insulin like growth factor 1 (IGF-I). Our results show

that DHT induces association of AR with IRS-1, the major

IGF-1 receptor signaling molecule. The AR/IRS-1 complex

translocates to the nucleus and is recruited to gene pro-

moters containing androgen responsive elements causing

an increase of AR transcriptional activity. Moreover, IRS-1

knockdown suggests that IRS-1/AR interaction decreases

the ubiquitin/proteasome dependent degradation of AR,

increasing its stability. Taken together, these data indicate

that nuclear IRS-1 is a novel AR regulator required to

sustain AR activity and demonstrate, for the first time in

breast cancer cells, the existence of a functional interplay

between the IGF system and AR. This interplay may rep-

resent the molecular basis of mechanisms through which

androgens exert their inhibitory role on the proliferation of

breast cancer cells.

Keywords Androgen receptor � Breast cancer �
IRS-1 � IGF-I

Introduction

Breast cancer development and progression depend on

complex crosstalk between steroid hormones and growth

factors [1–5]. Emerging evidences indicate that androgens

have inhibitory effects on the growth of breast epithelial

cells and play a protective role in the pathogenesis of breast

cancer [6, 7].

Recent in vivo studies in rhesus monkeys demonstrated

the ability of androgens to counterbalance positive growth

stimuli in breast, with low doses of testosterone completely

inhibiting estrogen-mediated mammary cell proliferation

in ovariectomized animals [8]. In human, androgens

antagonize the effects of estrogens in mammary gland

development, so that they could be considered endogenous

anti-estrogens [9]. Moreover, androgens, via androgen

receptor (AR) activation, inhibit the basal and estradiol-

induced growth of AR-positive breast cancer cell lines [10,

11], through a mechanism involving a decrease of estrogen

receptor alpha (ER) content and transcriptional activity [12].
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Department of Cellular Biology, University of Calabria,

Arcavacata di Rende (CS) 87036, Italy

123

Breast Cancer Res Treat (2009) 115:297–306

DOI 10.1007/s10549-008-0079-1



The majority of human breast cancers express AR [13–

15], and many metastatic breast tumors, which are ER and

progesterone receptor (PR) negative, still express a sig-

nificant amount of AR [16]. Moreover, patients with AR-

negative breast tumors had a significantly poorer response

rate to hormone therapy and shorter overall survival than

those with AR-positive ones [17]. Other events involved in

breast cancer development or progression have been shown

to alter AR expression or function. In BRCA1-mutated

tumors, loss of AR expression, and thus loss of AR sig-

naling, supports neoplastic transformation of mammary

epithelial cells [18]. Moreover, in HER2-positive breast

cancers, generally associated with a worse outcome, a trend

toward a loss of AR signaling has been demonstrated [19].

Taken together, these observations suggest that androgen

signaling in breast may play a protective role in cancer

development and progression.

Members of the insulin-like growth factor (IGF) family

exert a crucial role in the regulation of breast epithelial cell

proliferation. Recently we have demonstrated that Insulin

Receptor Substrate 1 (IRS-1), a major substrate for IGF-I

receptor, interacts with ER and negatively influences ER

function in breast cancer cells [20].

In breast cancer, IRS-1 overexpression has been asso-

ciated with tumor development, hormone independence,

and antiestrogen resistance [21]. These effects have been

attributed to increased tyrosine phosphorylation of cyto-

plasmic IRS-1 and potentiation of its downstream signaling

to Akt [21, 22]. In addition to its conventional role, IRS-1

has been found in the nuclear compartment in several cell

types, including breast cancer cells and breast tumors [20,

23–25]. Experimental data suggest that nuclear IRS-1

might function as transcriptional co-regulator for poly-

merase I and II [20, 26].

The observation that IRS-1 is a crucial factor involved

in breast tumor development and that negatively regulates

ER function, has led us to investigate the existence of a

functional interplay between IRS-1 and AR in breast can-

cer cells. Here we demonstrate that IRS-1 modulates AR

mediated transcription through two different mechanisms:

by participating in AR-recruited transcriptional machinery

and by increasing AR stability.

Materials and methods

Cell culture and treatments

Breast cancer epithelial cell line MCF-7 and human

embryonic kidney cell line HEK-293 were grown in

DMEM/F12 (Gibco, USA) supplemented with 5% calf

serum (CS, Gibco, USA) and in DMEM plus 10% fetal calf

serum, respectively. 5a-Dihydrotestosterone (DHT, Sigma,

USA) and hydroxyflutamide (OH-Fl, Sigma, USA) were

used at a concentration of 10-7 M and 10-6 M, respec-

tively. Before each experiment, cells were serum starved

for 24 h in phenol red-free DMEM (PRF), and then shifted

to PRF containing 5% charcoal-treated fetal calf serum

(PRF-CT).

Cell proliferation assay

Cell proliferation assay was performed using MCF-7 cells

seeded on six well plates (105 cells/well), serum starved for

48 h and grown for 3 and 6 days in PRF-CT containing

DHT (10-7 M), or IGF-1 (10-9 M), or OH-Fl (10-6 M).

Media were renewed every other day. At the indicated time

points, cells were harvested by trypsin, and counted using

Burker’s chamber.

Immunoprecipitation and Western blotting

Total cell proteins and the cytoplasmic and nuclear frac-

tions were obtained from 70% confluent cell cultures.

Immunoprecipitation (IP) and Western blotting (WB) were

performed as previously described (20). The following

monoclonal (m) and polyclonal (p) antibodies (Ab) were

used: anti-IRS-1 pAb (Upstate, USA); anti p-Akt and anti

p-MAPK (Cell signaling, USA); anti-AR mAb (441), anti-

c-jun mAb (KM-1), anti-GAPDH pAb (FL-335), anti

ubiquitin mAb (P4D1), anti-Akt pAb (H-136), anti-p21

pAb (H-164) (Santa Cruz, USA), and normal mouse

immunoglobulin G (Ig) (Santa Cruz, USA).

Confocal laser scanning microscopy

MCF-7 cells were grown on 12-mm glass coverslips, serum

starved for 24 h and treated in PRF-CT containing DHT

(10-7 M) for additional 24 h. After incubation cells were

fixed with 3% paraformaldehyde, permeabilized with 0.2%

Triton X-100, and non specific sites were blocked by BSA

(3% for 30 min). At the end of each step samples were

washed three times with phosphate buffer saline (PBS,

Gibco, USA). Blocked samples were incubated for 1 h with

anti IRS-1 pAb (2 mg/ml), washed and than incubated with

a mixture of fluorescein-conjugated goat anti-rabbit IgG

(1:1000) (Santa Cruz Biotechnology, USA) and rhoda-

mine-phalloidin (1:1200) (Cytoskeleton, USA) diluted in

PBS containing 0.3% goat serum. Secondary antibody

incubation was for 1 h, followed by five washes in PBS.

The cellular localization of IRS-1 was examined under a

Leica TCS SP2 Confocal Laser Scanning Microscope at

4009 magnification. The optical sections were taken at the

central plane. The fluorophores were imaged separately to

ensure no excitation/emission wavelength overlap.

298 Breast Cancer Res Treat (2009) 115:297–306

123



Plasmids, transfections and luciferase reporter assays

The following plasmids were used: pcDNA3-AR (AR)

encoding full-length AR [27]; pCMV-IRS-1 (IRS-1) encod-

ing IRS-1 [20]; the reporter plasmid pARE2-tk-LUC (2X-

ARE-Luc) that drives the expression of luciferase by two

androgen responsive elements (a gift from Dr O. Janne);

pSilencer-IRS-1 (shIRS1) encoding a specific small interfer-

ence RNA for IRS-1 [28]; WWP-Luc (p21-Luc) that drives

the expression of luciferase by human p21WAF1/CIP1 promoter

and p5.3 PSAp-Luc (PSA-Luc) that drives the expression of

luciferase by PSA promoter (gifts from Dr. W. El-Deiry and

Dr. Kakizuka, respectively). The Renilla reniformis luciferase

expression vector used was pRL-Tk (Promega, USA).

MCF-7 cells were transfected using Fugene 6 (Roche,

CH) according to the manufacturer’s instructions. pRL-Tk

was used to assess transfection efficiency. Luciferase

activity was measured using dual luciferase assay System

(Promega, USA), normalized to renilla luciferase activity

and expressed as relative luciferase units.

For reverse transcription of total RNA, and WB assays,

MCF-7 cells were plated on 60 mm dishes and transfected

with an appropriate amount of various plasmids, as indi-

cated in figure legends. Upon transfection, cells were

shifted to PRF for 24 h and then treated with 10-7 M DHT

or left untreated in PRF-CT for 24 h.

Chromatin immunoprecipitation (ChIP)

MCF-7 cells were grown in 10 cm plates. Confluent cul-

tures (90%) were shifted to PRF for 24 h and then treated

with 10-7 M DHT or left untreated in PRF-CT. Following

treatment, ChIP assay was performed as described previ-

ously (20). The immuno-cleared chromatin was

precipitated with anti-AR mAb for AR, anti-IRS-1 pAb for

IRS-1 and anti-polymerase II pAb (Santa Cruz, USA) for

Pol II. A 4 ll volume of each sample was used as template

for PCR with specific primers.

The following pairs of specific primers were used to

amplify 296 bp of the ARE-containing p21 promoter

50-CAGCGCACCAACGCAGGCG-30 (forward); 50-CAGC

TCCGGCTCCACAAGGA-30 (reverse), and 233 bp of the

PSA proximal promoter containing ARE-sequence 50-GAT

CTAGGCACGTGAGGCTTTGTA-30 (forward) and 50-CA

TGCTGCTGGAGGCTGGAC-30 (reverse).

For reverse ChIP, the pellets obtained by IP of soluble

chromatin with IRS-1 and AR were eluted with 500 ll of

Re-ChIP buffer. Next the eluate from AR IP was precipi-

tated with anti-IRS-1 pAb and the eluate from IRS-1

IP ?tul?> was precipitated with anti-AR mAb. The pres-

ence of the PSA and p21 promoter sequences in the

resulting Re-ChIP pellets was examined as described above

for one-step ChIP [20].

RT-PCR

MCF-7 cells were transfected with non specific shRNA

(scrambled) and shIRS1 plasmid for 24 h, as previously

described, then treated with 10-7 M DHT or left untreated

in PRF-CT for 24 h. Total RNA was isolated using TRIzol

reagent (Invitrogen, USA) according to the manufacturer’s

instructions. 2 lg of total RNA were reverse transcribed

using M-MLV reverse transcriptase (Promega, USA) and

2 ll of RT products were then amplified. The following

specific primers were used: IRS-1 (762 bp): 50-TCCACTG

TGACACCAGAATAAT-30 (forward), 50-CGCCAACATT

GTTCATTCCAA-30 (reverse); PSA (754 bp): 50-TGCGC

AAGTTCACCCTCA-30 (forward), 50-CCCTCTCCTTAC

TTCATCC-30 (reverse); AR: (416 bp): 50-CACAGGCA

CCTGGTCCTGG-30, 50-CTGCCTTACACAACTCCTTG

GC-30 (reverse); p21 (270 bp): 50-GCTTCATGCCAGCT

ACTTCC-30 (forward), 50-CTGTGCTCACTTCAGGGT

CA-30 (reverse). 36B4 was amplified as internal control

gene (408 bp): 50-CTCAACATCTCCCCCTTCTC-30 (for-

ward), 50-CAAATCCCATATCCTCGTCC-30 (reverse).

Statistical analysis

All data were expressed as the mean ± SD (standard

deviation) of at least three independent experiments. Sta-

tistical significances were tested using Student’s t-test.

Results

DHT inhibits breast cancer cell growth induced by IGF-I

It is well established that IGF-I and estradiol (E2) are

important positive modulators of mammary gland devel-

opment as well as breast cancer progression [22]. We

previously demonstrated that androgens antagonize E2

dependent cell proliferation [12], but the effect of DHT on

IGF-I induced proliferation [21, 29] was not evaluated.

To investigate whether DHT influences breast cancer

cell growth in response to IGF-I, MCF-7 cells were syn-

chronized in serum free medium (PRF) for 24 h and treated

with DHT and IGF-I in PRF-CT. DHT concentration was

chosen based on previous studies demonstrating dose-

dependent inhibitory effects of DHT on MCF-7 cells pro-

liferation [10, 30]. As expected, the addition of 10-7 M

DHT inhibited MCF-7 cell proliferation by 30% (3 days)

and 60% (6 days) with respect to controls (Fig. 1a).

Moreover, DHT treatment of MCF-7 cultures impeded

IGF-I induced proliferation observed over 6 days of

culture.

The counteractive effect of DHT on IGF-I induced

breast cancer cell proliferation was mediated by AR as the
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addition of the androgen antagonist hydroxyflutamide (OH-

Fl) reversed cell growth. Interestingly, a 24 h pre-treatment

with DHT did not interfere with cell behavior, since

downstream proteins of the IGF-I pathway such as Erk1/2

and Akt were normally phosphorylated in response to IGF-

I stimulation (Fig. 1b). In contrast, cytosolic IRS-1 was

reduced by DHT pre-treatment (Fig. 1c).

DHT regulates cellular localization of IRS-1 in breast

cancer cells

The effect of DHT on IGF-I-induced MCF-7 cell prolif-

eration and the changes in IRS-1 cytosolic levels led us to

investigate the molecular mechanisms by which DHT

interfered with the IGF-I pathway. First, IRS-1 abundance

was analyzed in cytoplasmic and nuclear protein fractions

obtained from MCF-7 cells stimulated or not with 10-7 M

DHT. In absence of DHT, IRS-1 was mainly present in the

cytoplasmic compartment, while upon DHT treatment, the

nuclear abundance of IRS-1 significantly increased as

demonstrated by WB (Fig. 2a) and confocal microscopy

(Fig. 2b). Moreover, the increased localization of IRS-1 in

the nuclear fraction appeared to be specifically mediated by

AR, since it was inhibited by the addition of the androgen

antagonist OH-Fl (Fig. 2a).

To assess whether the DHT-regulated intracellular

localization of IRS-1 could involve a physical interaction

between AR and IRS-1, a co-immunoprecipitation assay

was carried out on nuclear and cytoplasmic protein frac-

tions from MCF-7 cells. Under basal conditions, a

constitutive association between AR and IRS-1 was

observed in the cytoplasm, but not in the nuclear fraction.

DHT treatment induced the translocation of AR/IRS-1

complex into the nucleus with a consequent decrease of its

abundance in the cytoplasm (Fig. 2c). The fraction of AR

and IRS-1 precipitated was about 1/20 of the relative

amount of each protein in the nuclear compartment

(Fig. 2a). These observations suggest that cytosolic AR

associates with IRS-1 and that DHT induces the nuclear

translocation of the AR/IRS-1 complex.

IRS-1 is a transcriptional regulator of AR

The existence of the nuclear AR/IRS-1 complex led us to

investigate the role of nuclear IRS-1 on the transcriptional

activity of AR. We evaluated the effects of ectopic IRS-1

expression on the transcriptional activity of AR using the

androgen-response reporter plasmid 2X-ARE-Luc. HEK-293

cells, which are negative for IRS-1 and AR, were co-trans-

fected with an AR expression vector and increasing amounts

of an IRS-1-encoding plasmid. The increasing levels of IRS-1

did not exert any effect on reporter plasmid expression in the

absence of DHT stimulation. On the contrary, the ectopic

expression of IRS-1 increased the transcriptional response to

DHT stimulation in a dose-dependent manner, with a maximal

twofold enhancement above the level observed in the absence

of IRS-1 (Fig. 3a). The positive effect of IRS-1 expression on

DHT induced AR transcriptional activity, was no longer

detected following treatment of MCF-7 cells with the AR

antagonist, OH-Fl, (data not shown), suggesting a direct

involvement of AR in this process.

Fig. 1 DHT interferes with IGF-I induced MCF-7 cells proliferation.

(a) MCF-7 cells synchronized in PRF were treated with 10-9 M

IGF-I, 10-7 M DHT, and 10-6 M OH-Fl in PRF-CT for 3 and 6 days.

Then cells were detached, stained with trypan blue and counted using

Burker Chamber. Data, representing a mean ± sd of three indepen-

dent experiments, each in duplicate, were statistically analysed by

T student test, *P \ 0.05 (b and c) Synchronized MCF-7 cells were

pre-treated with 10-7 M DHT for 24 h, or left untreated, and

then stimulated with 10-9 M IGF-I for the indicated times. The

expression of AR, phospho-Akt, phospho-MAPK (b) and IRS-1 (c)

was determined by western blotting (WB) using 30 lg of protein

lysates. The expression of GAPDH was assessed as control of protein

loading of lysate fractions. The results were obtained after repetitive

stripping and reprobing of the same filters. IRS-1 expression level (c)

were quantified and reported as optical density (OD)
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To determine whether the involvement of IRS-1 in AR-

mediated transcription was related to IRS-1 recruitment on

ARE-containing regions of androgen target gene promoters,

ChIP assay was performed. We focused on the regulatory

region of two genes such as PSA (prostatic specific antigen)

[31, 32] and p21WAF1/CIP1 (p21) that are known to be mod-

ulated by androgens in breast cancer cells. Particularly, p21

plays a crucial role on cell cycle regulation and it is up

Fig. 2 DHT induces the translocation of AR/IRS-1 complex into

the nucleus. (a) MCF-7 cells synchronized in PRF were treated with

10-7 M DHT and/or 10-6 M OH-Fl in PRF-CT for 24 h. The

expression of IRS-1 and AR was determined by western blotting

(WB) using 50 lg of cytoplasmic and 100 lg of nuclear protein

lysates. The expression of GAPDH and c-jun was assessed as control

of protein loading and purity of lysate fractions. The results were

obtained after repetitive stripping and reprobing of the same filters.

(b) MCF-7 cells synchronized in PRF for 24 h were treated with

10-7 M DHT for 24 h (DHT) or left untreated (c). Subcellular

localization of IRS-1 was evaluated by immunostaining and confocal

microscopy as detailed in Materials and methods. The captured

images of IRS-1, organization of actin into stress fibers (actin),

merged IRS-1 and phalloidin (Merge), and normal rabbit IgG

(Negative) are shown. Scale bar equals 30 lm. (c) Nuclear and

cytoplasmic lysates from MCF-7 cells (500 lg) were immunoprecip-

itated (IP) with anti-AR mAb (2 lg/sample) or normal mouse IgG

(2 lg/sample) and immunoblotted (WB) to detect IRS-1 and AR

protein levels. Input lysates are reported in A. Results are represen-

tative of three independent experiments

Fig. 3 IRS-1 is required to sustain AR transcriptional activity. (a)

HEK 293 cells, that are AR and IRS-1 negative, were co-transfected

with 0.5 lg pARE2-tk-LUC plus increasing quantities (lg) of pCMV-

IRS-1 (IRS-1) together with 0.1 lg pcDNA3-AR (AR). Upon

transfection, cells were treated with 10-7 M DHT, or left untreated

in PRF-CT for 18 h. Firefly luciferase activity was detected and

expressed as Relative Luciferase Activity with respect to the

untreated samples. Linear relation between transfected IRS-1 plasmid

and expressed IRS-1 protein quantity, as well as AR expression,

was evaluated by WB. Results represent the mean ± sd from five

independent experiments. Data were statistically analysed by T
student test, *P \ 0.05. (b) ChIPs were carried out in MCF-7 cells

over a 4 h time-course after stimulation with 10-7 M DHT using AR,

IRS-1 and Pol II antibodies (2 lg/sample each). The PSA and p21

promoter regions containing ARE sequence were detected by PCR

with specific primers listed in Materials and Methods. 3 ll of initial

preparations of soluble chromatin were amplified to control input

DNA. In control samples (N), normal mouse or rabbit IgG (2 lg/

sample) was used instead of the primary Abs as control of Ab

specificity. (c) AR/IRS-1 direct and reverse Re-ChIPs, were carried

out as described in Materials and methods, in MCF-7 cells after 2 h of

stimulation with 10-7 M DHT. ChIP with normal mouse or rabbit

IgG (2 lg/sample) was used as a negative control (N)
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regulated by DHT in breast cancer cells [33]. As illustrated in

Fig. 3b, basal occupancy of AR and RNA Pol II on PSA and

p21 promoters occurs in untreated cells. The recruitment of

AR and RNA Pol II to both promoters is increased in

response to DHT reaching the maximum at 2 h treatment.

Concomitantly, in response to DHT treatment, IRS-1 is

recruited to the same promoter regions (Fig. 3b) in associ-

ation with AR (Fig. 3c), reaching the maximal promoter

occupancy after 2 h of hormonal stimulation.

IRS-1 knockdown decreases AR transcriptional activity

To determine whether modulation of the AR/IRS-1 inter-

action could influence AR function in response to DHT,

RNA silencing was used to knockdown the expression of

IRS-1 in MCF-7 cells. A 50% decrease of IRS-1 mRNA

levels, achieved with anti-IRS-1 shRNA expression in

MCF-7 cells (Fig. 4a), correlated with a 70% reduction of

IRS-1 protein levels (Fig. 4b). Down-regulation of IRS-1

resulted in a dramatic reduction of AR protein levels

leading to a decrease in PSA and p21 expression (Fig. 4a

and b). Interestingly, the reduced AR protein content was

not paralleled by a decrease in mRNA expression under

DHT treatment, which reflected physiological regulation of

active AR on its own expression [34, 35].

Luciferase assay demonstrated that IRS-1 knockdown

by shRNA resulted in a 40% decrease in transcriptional

activation of ARE-containing promoter in both wild-type

and in AR overexpressing MCF-7 cells. Similarly, down-

regulation of IRS-1 impeded activation of the PSA and p21

promoters by 50% (Fig. 4c).

These results were confirmed by ChIP analysis demon-

strating that IRS-1 knockdown resulted in diminished

recruitment of AR and Pol II on the p21 and PSA pro-

moters (Fig. 4d). These observations suggest a role for

IRS-1 in modulating AR expression, as well as AR func-

tional activity.

IRS-1 knockdown induces ubiquitination of AR

Ubiquitin-dependent proteolysis represents an important

mechanism for controlling protein turnover and it is per-

tinent to the regulation of numerous transcription factors,

including AR [36, 37]. Given that polyubiquitination, in

Fig. 4 IRS-1 knockdown reduces AR regulated transcription

decreasing the expression of AR regulated genes. Total cellular

RNA (a) and cytoplasmic proteins (b) were isolated from MCF-7

cells transfected with 0.5 lg shIRS-1 or 0.5 lg scrambled control

shRNA and treated for 24 h with 10-7 M DHT or left untreated in

PRF-CT. The expression of AR, IRS-1, PSA, and p21 mRNAs was

evaluated by RT-PCR as described in Materials and Methods. 36B4

was amplified as control. MCF-7 RNA sample without the addition of

reverse transcriptase was amplified as negative control (N). A 50 lg

of protein lysates were analyzed by WB to evaluate the expression of

IRS-1, AR, p21, and GAPDH. Results, representative of three

independent experiments, were quantified and reported as optical

density (OD). (c) MCF-7 cells were co-transfected with 0.5 lg shIRS-

1 or 0.5 lg scrambled control shRNA (Scrambled) and AR or 0.1 lg

of the empty vector together with the following specific reporter

constructs: 0.5 lg 2X-ARE-Luc; 0.25 lg p21-Luc; 0.5 lg PSA-Luc.

Upon transfection, cells were serum starved, then stimulated with

10-7 M DHT, or left untreated in PRF-CT for 24 h. Luciferase

activities were determined and expressed as Relative Luciferase

Activity with respect to the untreated samples. Results represent the

mean ± sd of five independent experiments. Data were statistically

analyzed by T student test, *P\0.05. (d) ChIP was carried out on MCF-7

cells transfected with 3 lg shIRS-1 or 3 lg scrambled control shRNA

(Scrambled). Cells were treated with 10-7 M DHT for 2 h and DNA-

associated proteins were precipitated using AR, and Pol II antibodies

(2 lg/sample each). The PSA and p21 promoter sequences containing

ARE were detected by PCR with specific primers listed in Materials and

Methods. 3 ll of initial preparations of soluble chromatin were

amplified to control input DNA. In control samples (N) normal mouse

or rabbit IgG (2 lg/sample) was used instead of the primary Abs

b
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general, constitutes a destructive signal that is recognized

by the proteasome, and that the cellular abundance of both

IRS-1 and AR is regulated through the 26S proteasome

[38, 39], we investigated the ubiquitination status of AR

following downregulation of IRS-1 with shRNA.

MCF-7 and IRS-1-shRNA MCF-7 cells were either left

untreated or treated with 10-7 M DHT for 6 h. Ubiquiti-

nated AR (Ub-AR) was detected by IP and WB. Three

forms of AR were detected: the regular form of 110 kDa, a

form of an apparent molecular weight of 120–130 kDa

consistent with the mono-ubiquitinated receptor, and the

poly-ubiquitinated form ranging from 140–170 kDa, as

elsewhere described [40, 41] (Fig. 5a, upper panel). In

MCF-7 cells, ubiquitination of AR was ligand dependent

since in the absence of DHT only marginal Ub-AR was

observed (Fig. 5a, lower panel).

In IRS-1-shRNA MCF-7 cells, mono-ubiquitinated AR

was still present but, it is worth noting that, in these experi-

mental conditions a dramatic increase in the poly-

ubiquitination status of AR was observed in both DHT

treated and untreated samples (Fig. 5a, lower panel). Thus,

in the shIRS-1 MCF-7 cells the reduction of AR protein

content (Fig. 5b) might be explained by the increase of poly-

ubiquitination of AR (Fig. 5a). Since AR ubiquitination and

degradation has been shown to be dependent on active Akt

[42], we evaluated Akt phosphorylation in response to IRS-1

knockdown. As shown in Fig. 5b, phosphorylated Akt was

significantly reduced in shIRS-1 MCF-7 cells.

Interestingly, IRS-1 knockdown appears to enhance the

general proteasomal activity in MCF-7 cells, as indicated by

the increased levels of the DNA binding subunit of NF-jB,

that is produced from a precursor via ubiquitin-proteasomal

processing [43] (Fig.5b). These data suggest that IRS-1

interferes with proteasomal pathways of various proteins.

Particularly, the presence of IRS-1 seems to protect AR from

ubiquitin-mediated degradation, probably by desegregating

proteins involved in common proteolytic processes.

Discussion

Several studies demonstrated the interplay between the

IGFs and the ER or PR [5, 41] pathways in breast cancer

cells. Here we investigated the existence of a functional

crosstalk between IGF system and AR signaling. We report

that DHT interferes with IGF-I induced proliferation in

MCF-7 cells. The molecular mechanism underlying such

functional interference seems to involve nuclear fraction of

IRS-1 [5, 21]. Indeed, in MCF-7 cells, DHT stimulation

promotes the binding of IRS-1 with AR in the cytoplasm

and increases the translocation of IRS-1 into the nucleus.

DHT-dependent nuclear translocation of IRS-1 seems to be

strictly mediated by AR, since the addition of an androgen

antagonist (OH-Fl) inhibits this process. Our results are

consistent with previous reports demonstrating that IRS-1

is chaperoned to the nucleus by other proteins [20, 23].

Fig. 5 IRS-1 modulates AR ubiquitination. MCF-7 cells, transfected

with 3 lg shIRS-1 or 3 lg scrambled control shRNA (Scrambled)

were treated for 6 h with 10-7 M DHT or left untreated in PRF-CT.

(a) Total protein lysates were immunoprecipitated (IP) with an anti-

AR mAb (2 lg/sample) and then probed (WB) for AR [upper panel].

AR mAb recognized three forms of AR protein, ranging from 110 to

170 kDa. The large band at *60 kD represents the heavy chain of

anti-AR mAb (H). The filter was stripped and re-probed (WB) with

anti-Ub mAb [lower panel]. (b) The expression of AR, NF-kB, p-Akt,

Akt and GAPDH was assessed by WB on 50 lg of protein lysates.

The results are representative of three independent experiments
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Future experiments will be required to delineate the stoi-

chiometry, nature, and strength of the interaction between

IRS-1 and AR.

Nuclear localization of IRS-1 has already been docu-

mented in breast cancer cells [20], and many other cellular

systems [23, 25], suggesting that IRS-1 can function not

only as a signal transducer but also as a transcriptional

regulator [20, 26]. Despite the evidence that IRS-1 sig-

naling may have a critical role in tumorigenesis [44], some

studies, examining the clinical significance of IRS-1 in

human breast cancer specimens, evidenced that IRS-1

marks a more differentiated phenotype and a better prog-

nosis [24, 45]. In particular, in breast ductal cancer and

benign tumors, nuclear IRS-1 is positively correlated with

ER expression and both are negatively correlated with

tumor grade, size, mitotic index and lymph node involve-

ment [24]. Moreover, we have previously demonstrated

that nuclear IRS-1 negatively modulates the transcriptional

activity of ER [20].

Here we have extended the functional role of nuclear

IRS-1, demonstrating that it is important to sustain AR

transcriptional activity. Indeed in MCF-7 cells, upon DHT

treatment, IRS-1 is recruited with AR on ARE-containing

promoter regions increasing the transcription of classically

androgen regulated gene, such as PSA that is considered a

favorable prognostic marker in breast cancer [32]. More-

over, DHT stimulation induces the recruitment of AR and

IRS-1 on the promoter of p21WAF1/CIP1, increasing its

transcription and expression. These observations support

the inhibitory role of DHT on MCF-7 cells proliferation,

since p21WAF1/CIP1 is a crucial regulator of the normal

progression of cells through G1 phase of the cell cycle [46],

representing the major cyclin-dependent kinase inhibitor in

MCF-7 breast cancer cells [47].

Thus, it is reasonable to suggest that the nuclear trans-

location of IRS-1 in response to DHT stimulation

participates in reducing the sensitivity of breast cancer cells

to the proliferative effect of IGF-I. This effect appears to be

associated to the increased expression of factors that neg-

atively control cell growth, such as the cell cycle inhibitor

p21, and not associated to the decrease in IRS-1 cyto-

plasmic availability since the phosphorylation of

downstream proteins of the IGF-I system is unaffected by

DHT treatment.

Our results are consistent with the notion that in breast

cancer nuclear IRS-1 appears to exert a negative role on the

development of neoplastic phenotype [20, 22, 24, 48].

Moreover, in JC Virus T-antigen positive medulloblastoma

cells, IRS-1 nuclear translocation and co-localization with

Rad51, sensitize cells to genotoxic agents such as cisplatin

and gamma-irradiation [49].

Surprisingly, IRS-1 also appears to modulate AR

expression levels, since IRS-1 silencing markedly

decreases AR protein content, altering both AR mRNA and

AR protein levels. AR, like many nuclear receptors, is a

target for several post-translational modifications. Of these,

ubiquitination has been demonstrated to signal receptor

destruction providing a mechanism for AR inactivation

[42]. While AR mono-ubiquitination correlates with

enhanced transactivating capacity [40, 41, 50, 51], poly-

ubiquitination of AR is widely viewed as signal for the

destruction by the proteasome. In keeping with this notion,

in MCF-7 cells, IRS-1 knockdown causes the formation of

higher molecular weight AR species that are indicative of

poly-ubiquitination and coincides with a reduction of the

receptor protein. This reduction results in a decrease of

p21WAF1/CIP1 and PSA expression, suggesting that IRS-1 is

required for maximal AR-dependent transcription.

Lin et al. have previously demonstrated that activated

Akt, through Mdm2, induces the ubiquitination and

proteosomal degradation of AR [42]. However, this

mechanism does not seem to be involved in the increased

AR degradation following IRS-1 silencing. Indeed, in

our experimental condition, IRS-1 knockdown reduces

phosphorylated Akt without affecting Akt expression,

consistent with previous study by Cesarone et al. [28]. It is

likely that other mechanisms might participate in the

ubiquitin-dependent proteolysis of AR. For instance, it has

been proposed that recruitment of Mdm2 results in modi-

fication of various members of the AR trascriptosome, such

as histone deacetylase 1, predisposing AR for ubiquitina-

tion and proteosomal degradation [41]. Therefore, further

studies are required to better understand the mechanisms

by which IRS-1 prevents AR proteosomal degradation thus

sustaining its expression.

In summary, we provide evidence that in MCF-7 cells,

the activation of AR by its ligand interferes with breast

cancer cell proliferation in response to IGF-I, suggesting a

negative interplay between the two systems. Specifically,

our data provide novel insights into the role of IRS-1 as

nuclear regulator of AR action in breast cancer cells

(Fig. 6). IRS-1 directly acts to modulate AR-mediated

transcription by participating in the transcriptional

machinery on AR-regulated promoters. Moreover, IRS-1

modulates AR mRNA levels and stabilizes AR protein.

This latter event appears to be effected by reducing the

ubiquitin-dependent proteolysis of AR.

In conclusion, the results reported in this work have

identified mechanisms by which androgens inhibit the pro-

liferation of breast cancer cells and demonstrate the critical

role of IRS-1 as a modulator of the functional response to

different steroid hormones stimulation in breast cancer cells.
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