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Abstract Growth of the invasive algae Caulerpa race-
mosa var. cylindracea in shallow habitats may inXuence the
faunal assemblage composition. We studied its eVects on
caprellid assemblages associated with shallow-water habi-
tats of hard and soft bottoms from the SE Iberian Peninsula
(native rocky-bottom algae, C. racemosa from hard and
soft bottoms, and Caulerpa prolifera, Cymodocea nodosa
and Posidonia oceanica from soft bottoms). Samples were
taken in two diVerent sampling periods (September 2004
and March 2005). A total of seven caprellid species were
identiWed, with important diVerences in their distribution in
diVerent habitats. Total abundance of caprellids was very
high in March on native algae on hard bottoms, and on
C. racemosa on both soft and hard bottoms. On both hard
and soft bottoms, abundances of Caprella hirsuta recorded
from C. racemosa were low. On the other hand, a higher
abundance of other species, namely C. acanthifera, C. sant-
osrosai, Phtisica marina and Pseudoprotella phasma, was
recorded from C. racemosa. The results indicate that
C. racemosa may have a positive inXuence on some caprel-

lid species, while seasonal changes are also evident. It is
concluded that introduced C. racemosa may serve as a new
habitat, promoting and maintaining caprellid populations in
shallow Mediterranean habitats.

Keywords Amphipoda · Caprellidae · 
Caulerpa racemosa var. cylindracea · Southeastern Spain · 
Invasive species

Introduction

Caprellids are marine crustaceans, which inhabit algae,
hydroids, ascidians, anthozoans, bryozoans, sponges and
seagrasses (McCain 1968; Guerra-García 2001). They feed
on suspended materials, prey on other organisms or graze
on epibiotic fauna and Xora (Guerra-García et al. 2002b;
Thiel et al. 2003), and they are important prey for many
coastal Wsh species (Caine 1991). Recently, caprellids have
also been found to be useful bioindicators of marine pollution
and environmental stress (Guerra-García and García-Gómez
2001; Ohji et al. 2002; Takeuchi et al. 2004).

During the last decade, an eVort has been undertaken to
contribute to the knowledge of the Caprellidea from the
Iberian Peninsula and nearby areas, especially in the Strait
of Gibraltar (Guerra-García 2001; Guerra-García and
García-Gómez 2001; Guerra-García and Takeuchi 2002;
Guerra-García et al. 2000, 2001, 2002a, b). A recent contri-
bution has dealt with the community structure of caprellids
on seagrasses from southern Spain (González et al. 2008),
but the ecological distribution of caprellids clinging to
Caulerpa beds has been little studied. The only available
studies, which report caprellids associated with Caulerpa
species in Iberian Peninsula waters, consist of descriptions
of the macrofaunal community associated with Caulerpa
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prolifera from Algeciras Bay, southern Spain (Sánchez-
Moyano et al. 2001, 2007) and the taxonomic description
of the new species Caprella caulerpensis from this bay
(Guerra-García et al. 2002a). Because of the lack of infor-
mation about caprellids inhabiting Caulerpa beds, we
conducted an ecological study to characterise the caprellid
distribution in shallow habitats of southeastern Spain
colonised by the invasive Caulerpa racemosa (Forsskål)
J. Agardh var. cylindracea (Sonder) Verlaque, Huisman et
Boudouresque (Verlaque et al., 2003) (hereafter C. racemosa).

The presence of vegetation allows a greater species diver-
sity and abundance of individuals than those found in
unvegetated habitats (Heck and Orth 1980; Peterson et al.
1984; Irlandi 1994), which is usually correlated with an
increase in habitat complexity (Johnson 1970; Stoner 1980;
Dean and Connell 1987; Edgar 1992; Taylor and Cole 1994;
Ayala and Martín 2003). Therefore, changes in habitat struc-
ture of vegetated substrata resulting from the invasion of
species such as C. racemosa could aVect the associated
fauna, including caprellids. Along the Mediterranean coast,
two seagrass species, Posidonia oceanica and Cymodocea
nodosa, develop meadows on shallow sandy bottoms (Buia
and Mazzella 1991). Like seagrasses, the alga Caulerpa pro-
lifera usually forms dense beds on soft bottoms from 1 to
20 m depth, especially in sheltered areas, with low Xow, lit-
tle water renewal and considerable input of organic matter
(Sánchez-Moyano et al. 2001). A remarkable spread of
C. racemosa throughout the Mediterranean has been recorded
during the last 15 years or so, during which the alga invaded
diVerent habitats and most types of substrata located at
water depths of 0 m to more than 60 m. The recorded rate of
invasion has been much faster than that of other invasive
species such as Caulerpa taxifolia (Verlaque et al. 2003).
Since the Wrst records of C. racemosa spreading along Med-
iterranean coastal areas, several studies concerning the ecol-
ogy of this species have been undertaken (see Ruitton et al.
2005; Cavas et al. 2006). However, information on changes
in the associated fauna brought about by the invasive alga is

lacking (but see Argyrou et al. 1999; Piazzi and Balata
2008; Vázquez-Luis et al. 2008).

The aim of the present study was to compare the
caprellid assemblages among the most important shallow
water environments (rocky and sandy bottoms) in Medi-
terranean coastal areas and to explore the eVect of the
invasive alga C. racemosa on the caprellid community in
comparison with natural habitats (algae, seagrasses and
sand).

Methods

Study area

Fieldwork was carried out along the Cape of Santa Pola
(Alicante, southeastern Spain; Fig. 1a). C. racemosa was
Wrst recorded from Alicante in 2002, at a site located
approximately 10 km north of our study area, where it col-
onised soft sediments and dead matte of Posidonia ocea-
nica. Two months after its appearance in Alicante,
C. racemosa was detected on a rocky platform in our study
area (Pena-Martín et al. 2003). During the study period,
C. racemosa occurred in extensive areas of ecologically
important rocky bottom habitat, on sandy and muddy sub-
strata and on dead matte of Posidonia oceanica. It was also
found mixed patchily with Cymodocea nodosa in meadows
of the seagrass (0.2–1.5 m). Depth in the study area varied
between 0 and 5 m. The seabed present in the shallower
parts (0–0.5 m) of the study area is characterised by a rocky
platform that supports native seaweeds, namely Halopteris
scoparia, Jania rubens, Padina pavonica, Dictyota fasci-
ola, Cystoseira brachicarpa and C. racemosa. The seabed
within the 0.5–5 m depth range comprised a sandy bottom
that is colonised by C. racemosa and native macrophytes,
namely Cymodocea nodosa, C. prolifera and P. oceanica.
The two seabed types (rocky and soft bottom) are separated
by a small rocky step (Fig. 1b).

Fig. 1 Map showing the study area in Santa Pola Cape, southeastern Spain (a) and transverse proWle of biotopes present in the study area (b)
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Sampling design

Seven diVerent shallow habitats were selected for the
present study. Two habitats were studied on hard bottoms
(0.2–0.5 m depth): natural habitats of native seaweeds (A)
and similar habitats invaded by C. racemosa (CrHB). On
soft bottoms, Wve habitats were studied (2–5 m depth): soft
bottoms colonised by C. racemosa (CrSB), Caulerpa
prolifera beds (Cp), Cymodocea nodosa meadows (Cym),
Posidonia oceanica meadows (Po) and unvegetated
substratum (Sand). C. racemosa was distributed across the
study area in patches of around 100 m2.

The two species of Caulerpa distributed in the study
area, C. racemosa and C. prolifera, are algae of tropical
and subtropical aYnity, and both are strongly aVected by
natural seasonal disturbances in the Mediterranean Sea.
Their growth and reproductive cycles are dependent on
water temperature, with considerable decrease in spatial
extension during winter and notable growth when
temperature rises (Meinesz 1980; Piazzi and Cinelli
1999). Therefore, the seven habitats were sampled in
September 2004 (summer conditions with an average
water temperature of 27.5°C), which coincides with the
period of maximum vegetative growth of C. racemosa
(Piazzi and Cinelli 1999), and again in March 2005
(winter conditions with an average water temperature of
13°C), which is the period of minimum growth of
C. racemosa.

Within each habitat (Ha) and sampling time (Ti), three
sites (Si) were randomly selected. Each site corresponded
to a diVerent patch of habitat with similar conditions that
were separated by hundreds of meters. At each site
(patch), three random samples separated by tens of
meters were taken using a 20 £ 20 cm2 quadrat by scrap-
ing the whole surface using a trowel (Edgar 1990). In soft
bottom areas, samples were taken by SCUBA diving. A
300-�m mesh bag was attached to the quadrat to avoid
loss of the motile fauna. Samples were preserved in a 4%
solution of formaldehyde in seawater. Each replicate was
sieved in sea-water through a 500-�m mesh, retaining the
Wne fraction of detritus. In the laboratory, the caprellids
were separated, identiWed and counted. Algae were
sorted and identiWed to species level, and detritus was
also separated. The macrophytes and the detritus were
dried for 24 h at 80°C and weighed. Habitat structure was
characterised using three attributes: species richness of
macrophytes, biomass of each species (g) and quantity of
detritus (g).

Data analysis

The aYnities among sampling habitats based on vegetal
species biomass, and among caprellids based on their abun-

dance in the diVerent habitats, were established by cluster
analysis using UPGMA method and the Bray Curtis simi-
larity index. Data were fourth root transformed. Multivari-
ate analyses were carried out using the PRIMER package
(Clarke and Gorley 2001).

Total abundance, species richness and abundance of
each caprellid species were analysed using ANOVA. To
test whether the abundance of caprellids was similar across
habitats and times, we used an analysis of variance
(ANOVA), which incorporated the following factors:
‘Time of sampling’, a Wxed factor and orthogonal, with two
treatments: September 2004 and March 2005; ‘habitat’, a
Wxed factor, with seven treatments: native seaweeds on
hard bottoms (A), C. racemosa on hard bottoms (CrHB),
C. racemosa on soft bottoms (CrSB), Caulerpa prolifera
beds (Cp), Cymodocea nodosa meadows (Cym), Posidonia
oceanica meadows (Po) and unvegetated sandy bottoms
(Sand); ‘Site’, a random factor and nested within both main
factors, with three random sampling sites.

Prior to ANOVA, heterogeneity of variance was
tested with Cochran’s C test. Data were qx + 1-trans-
formed if variances were signiWcantly diVerent at
P = 0.05. Where variances remained heterogeneous,
untransformed data were analysed, as ANOVA is a
robust statistical test and is relatively unaVected by
heterogeneity of variances, particularly in a balanced
design (Underwood 1997). In such cases, special care
was taken in the interpretation of results, and to reduce
type I errors, the level of signiWcance was reduced to
<0.01. When ANOVA indicated a signiWcant diVerence
for a given factor, the source of diVerence was identiWed
by applying the Student–Newman–Keul (SNK) test
(Underwood 1981, 1997).

Results

Habitat description

A total of 25 taxa of macroalgae and two seagrass spe-
cies were identiWed (Table 1). Vegetal biomass on natu-
ral hard bottoms was higher in March than in September,
mainly due to the proliferation of Corallina elongata,
Jania rubens, Dyctiota fasciola, Halopteris scoparia
and Cystoseira compressa (these species represented
79% of total biomass). Jania rubens was the dominant
species, together with Corallina elongata, which was
the species with highest biomass in March. During Sep-
tember, hard bottom habitats invaded by C. racemosa
were characterised by a low species richness of associ-
ated algae (Wve species plus C. racemosa), whereas
species richness increased in March (14 species plus
C. racemosa). In the case of soft bottoms, the diVerent
123
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habitats showed less variability between September and
March (see Table 1), except for Caulerpa racemosa,
which decreased in biomass in March, allowing other
algae to colonise the substrata. In general, the amount of
detritus was higher in March than in September, and the
highest amounts were found with signiWcant diVerences
at C. prolifera and C. racemosa patches on hard bottoms
(Ha, P < 0.01). The most diverse habitats in terms of
algal composition were the native hard bottoms and
those invaded by C. racemosa, both on hard and soft
bottoms.

The classiWcation analysis showed segregation of sam-
pling sites according to the habitat, regardless of the season
(Fig. 2). Bottoms dominated by Caulerpa prolifera and
Posidonia oceanica clustered together with the sand habi-
tat. These three ecosystems were the poorest in terms of
macrophyte species richness. Natural hard bottoms and
invaded habitats of C. racemosa formed a second group,
characterised by high species richness of associated algae
(the highest species richness was found on soft bottoms
with C. racemosa; 17 species in March). A third group
including the habitats of Cymodocea nodosa could be
observed, with an intermediate number of vegetal species
associated (Wve species in September and six in March plus
C. nodosa).

Caprellid assemblages

The native algae on hard bottoms and C. racemosa on both
soft and hard bottoms had the highest abundance and spe-
cies richness of caprellids, with a peak in March, reaching a
maximum value of 3,747 § 1,022 individuals/m2 in native
seaweeds. These diVerences were signiWcant (Ti £ Ha,
P < 0.01; Table 2, Fig. 3). In C. prolifera, C. nodosa,
P. oceanica and on sand, abundances were very low at both
sampling times (Fig. 3). Although abundances were very
high on hard bottoms, the number of caprellid species was
low in all habitats. Natural hard bottoms and habitats
invaded by C. racemosa had signiWcantly more caprellid
species than the rest of the habitats in March but not in
September (Ti £ Ha, P < 0.05, Table 2, Fig. 3).

Seven caprellid species were found during the present
study: Caprella acanthifera (Leach, 1814), Caprella gran-
dimana (Mayer, 1882), Caprella hirsuta Mayer, 1890,
Caprella santosrosai Sanchez-Moyano, Jimenez Martín
and García-Gómez, 1995, Deutella schieckei Cavedini,
1982, Phtisica marina Slabber, 1769 and Pseudoprotella
phasma (Montagu, 1804) (Fig. 4). C. grandimana and
C. hirsuta were the dominant species in terms of
abundance. The abundance of C. hirsuta on algae was
signiWcantly higher in March (Ti £ Ha, P < 0.01, Table 2,

Fig. 2 Cluster analysis con-
ducted using the mean values of 
macrophyte biomass within each 
habitat and sampling time. A, 
native algae; CrHB, Caulerpa 
racemosa hard bottoms; CrSB, 
Caulerpa racemosa soft bot-
toms; Cp, Caulerpa prolifera; 
Cym, Cymodocea nodosa; Po, 
Posidonia oceanica; Sand, un-
vegetated substrate; M, March; 
S, September
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Fig. 3 Total caprellid abun-
dance (number of individuals/
m2 § SE) and species richness 
(number of species per 
replicates § SE) recorded from 
the seven habitats and the two 
sampling times
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Fig. 4). The abundance of C. grandimana was higher in
March on hard bottoms (both habitat types) and C. race-
mosa on soft bottoms, although no statistical diVerences
were found (Table 2, Fig. 4). Caprella grandimana,
C. hirsuta and C. acanthifera were mainly associated to hard
bottoms, whereas the remaining species were only found in
soft bottom habitats. Deutella schieckei were exclusively
found associated with Posidonia beds, while C. santosrosai
(Ha, P < 0.01, Table 2, Fig. 4), P. marina and P. phasma
were associated to Caulerpa beds, as shown by the cluster
analysis based on the caprellid assemblage (Fig. 5).

Discussion

This study shows that caprellid assemblages diVer mark-
edly among habitats, with considerable seasonal variation.

The presence of Caulerpa racemosa inXuences the spatial
distribution of caprellid assemblages on both hard and soft
bottoms, probably due to changes in the composition of
vegetation and the increase in detritus levels. C. racemosa
held reduced abundances of Caprella hirsuta, but other spe-
cies such as C. acanthifera, C. santosrosai, P. marina and
P. phasma were more abundant in this alga. The ‘positive
eVect’ of C. racemosa on the caprellid community has also
been found in habitats of the Balearic Islands, where the
presence of C. racemosa signiWcantly favoured C. acanthif-
era and also enabled other caprellid species to colonise
(Box et al. 2006).

Some caprellid species found in the present study, such
as P. marina, P. phasma or C. acanthifera, have been
reported as common species on many diVerent substrata
(see Guerra-García 2001) and can tolerate stressed habi-
tats of low Xow and high rates of sedimentation and

Table 2 Results of ANOVA (three-factor) for caprellid total abundance, species richness and abundance of the seven species

MS mean square, F F value, P level of probability, df degrees of freedom, ns non-signiWcant

* SigniWcant at P < 0.05; ** signiWcant at P < 0.01

Source of variation df Total abundance Species richness Caprella acanthifera F versus

MS F P MS F P MS F P

Sampling time = Ti 1 29384.64 10.93 0.0026** 1.2419 15.05 0.0006** 16.79 1.00 0.3259 Si(Ti £ Ha)

Habitat = Ha 6 14525.08 5.41 0.0008** 0.3064 3.71 0.0077** 16.79 1.00 0.4448 Si(Ti £ Ha)

Ti £ Ha 6 13038.35 4.86 0.0016** 0.2338 2.83 0.0277* 16.79 1.00 0.4448 Si(Ti £ Ha)

Si (Ti £ Ha) 28 2683.97 2.54 0.0006 0.0825 3.84 0.0000 16.79 1.00 0.4794 Res

Residual 84 1058.45 0.0215 16.79

Cochran’s C test C = 0.3806 (P < 0.01) C = 0.1493 (ns) C = 1.0000 (P < 0.01)

Transformation None Sqrt(x + 1) None

Source of variation df Caprella grandimana Caprella hirsuta Caprella santosrosai F versus

MS F P MS F P MS F P

Sampling time = Ti 1 1843.84 5.30 0.0290 15533.34 15.31 0.0005** 0.0079 0.50 0.4853 Si(Ti £ Ha)

Habitat = Ha 6 437.59 1.26 0.3081 11476.53 11.31 0.0000** 0.0714 4.50 0.0026** Si(Ti £ Ha)

Ti £ Ha 6 398.43 1.15 0.3628 9979.60 9.84 0.0000** 0.0079 0.50 0.8029 Si(Ti £ Ha)

Si (Ti £ Ha) 28 347.88 1.17 0.2897 1014.31 1.60 0.0521 0.0159 0.67 0.8869 Res

Residual 84 298.23 633.50 0.0238

Cochran’s C test C = 0.7873 (P < 0.01) C = 0.5620 (P < 0.01) C = 0.3333 (P < 0.01)

Transformation None None None

Source of variation df Deutella schieckei Phtisica marina Pseudoprotella phasma F versus

MS F P MS F P MS F P

Sampling time = Ti 1 0.6429 1.53 0.2266 0.1270 2.00 0.1683 0.0317 1.00 0.3259 Si(Ti £ Ha)

Habitat = Ha 6 1.3413 3.19 0.0164 0.0529 0.83 0.5545 0.0317 1.00 0.4448 Si(Ti £ Ha)

Ti £ Ha 6 0.6429 1.53 0.2055 0.0529 0.83 0.5545 0.0317 1.00 0.4448 Si(Ti £ Ha)

Si (Ti £ Ha) 28 0.4206 2.04 0.0068** 0.0635 4.00 0.0000** 0.0317 1.00 0.4749 Res

Residual 84 0.2063 0.0159 0.0317

Cochran’s C test C = 0.5000 (P < 0.01) C = 0.5000 (P < 0.01) C = 1.0000 (P < 0.01)

Transformation None None None
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organic matter (Guerra-García and García-Gómez 2001).
Deutella schieckei is a Mediterranean endemic described
as interstitial (Krapp-Schickel 1993), and along the Span-
ish coast, this species has been only reported from algae
in shallow waters (Jimeno and Turón 1995; Box et al.
2006). Caprella santosrosai was described from bryozoans

at Algeciras Bay, Cádiz (Sánchez-Moyano et al. 1995),
and later it was collected from hydroids, anthozoans
and sponges in North Africa (Guerra-García 2001;
Guerra-García and Takeuchi 2002) and the present study
represents the third locality in which this species has been
found, after Algeciras Bay and Ceuta, enlarging its

Fig. 4 Mean abundance (num-
ber of individuals per square 
meter § SE) of the seven caprel-
lid species found during the 
study. A, native algae; Cr, Caul-
erpa racemosa; Cp, Caulerpa 
prolifera; Cym, Cymodocea no-
dosa; Po, Posidonia oceanica; 
Sand, unvegetated substrate. 
Vertical scale diVers among spe-
cies. Figures are redrawn from 
Krapp-Schickel (1993) and 
Guerra-García (2001)
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distribution from the Strait of Gibraltar to the Mediterra-
nean side of the Iberian Peninsula.

Several studies include data related to caprellids associ-
ated to diVerent species of Caulerpa, demonstrating that
some species seem to be associated to the habitat. In a study
on the eVect of wave exposure on the amphipod fauna of
Caulerpa brownie in New Zealand, Fenwick (1976)
reported the caprellid Caprellina longicollis as one of the
dominant amphipod species. In Cyprus, Argyrou et al.
(1999) concluded that the expansion of C. racemosa
imposed successional changes on macrofaunal communi-
ties: gastropods and crustaceans decreased while polychae-
tes increased and became the dominant group. However, no
caprellids were reported in their study and gammarids had
surprisingly low abundances. Most studies dealing with the
eVect of Caulerpa on macrofaunal communities from the
Iberian Peninsula have dealt with C. prolifera beds.
Sánchez-Moyano et al. (2001, 2007) studied the invertebrate
macrofauna from a C. prolifera bed in Algeciras Bay and
reported the presence of the caprellids Phtisica marina and
Pariambus typicus in low abundances. These authors con-
cluded that C. prolifera allowed establishment of important
crustacean assemblages and, in some cases, showed richer
communities than more structured habitats, such as sea-
grass beds. However, Bellan-Santini (1995) found a
decrease in the amphipod community in a Caulerpa taxifo-
lia bed located on the Mediterranean French coast com-
pared with a reference station. These observations suggest
that changes in the epifaunal community due to the expan-
sion of Caulerpa species diVer greatly from one location to
another.

Caprellids showed considerable seasonal variation in
abundance, with a peak during the cold season, reaching
maximum values of thousands of individuals per square
meter in native seaweeds. The high abundances of caprel-
lids in the shallow habitats on the rocky terrace is possibly
due to limited access of Wsh predators to these habitats,
compared to the habitats on the deeper sandy substrata.
Seasonal variation of invertebrate abundance is common in
many vegetated systems (Edgar 1990) and the inXuence of
biomass (Ansari et al. 1991), surface area (Lewis 1984) and

epiphyte biomass (Schneider and Mann 1991) on epifauna
have been demonstrated. This reduction of abundance dur-
ing summer is related to the increase of Wsh abundance due
to the recruitment of juvenile Wsh and movement of adults
into P. oceanica meadows, which increases the predation
pressure on epifauna (Bell and Harmelin-Vivien 1982,
1983). It is necessary to consider the eVects of predators on
epifaunal abundance to explain changes in the assemblage
composition of fauna between habitats. The abundance of
potential prey results from a balance between refuge
against predation and the availability of favourable space
for living (Orth 1992). Our results showed diVerent abun-
dances of caprellids between the two sampling periods,
which could be explained by natural population dynamics
or by the diVerent feeding intensities of predators over a
1-year period (Page et al. 2007). At low temperatures, Wsh
may cease to feed, but as the temperature increases, the rate
of consumption also increases up to a maximum. Wootton
(1990) detected an immediate disappearance of epibenthic
caprellid amphipods in Weld surveys as a result of the
appearance of demersal Wsh species (Caine 1991). How-
ever, Edgar and Robertson (1992) reported that while pre-
dators should not be the main cause for reduction of the
epifauna in substrata with vegetation, they might play an
important role in determining the spatial distribution of epi-
fauna.

In conclusion, our study shows that C. racemosa stands
promote changes in caprellid assemblages, namely by play-
ing an important role as a new benthic habitat. The
observed abundances of caprellids were relatively high, but
the species richness was generally low. This may have
resulted from the close relationship of certain caprellid spe-
cies with particular habitats. For example, C. hirsuta and
C. grandimana were present in high densities, while P. marina
and P. phasma had low abundances. The results of the pres-
ent study also detected an important eVect of the time of
sampling, probably due the synergistic eVect of seasonal
changes in algal composition and predation pressure. Fur-
ther studies should be conducted to determine top–down
and bottom–up ecological regulations of caprellid popula-
tions in habitats invaded by C. racemosa.

Fig. 5 Cluster analysis based on 
caprellid abundances estimated 
within each habitat and sampling 
time
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