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Abstract The most frequent genotype associated with Here-
ditary hemochromatosis is the homozygosity for C282Y, a
common HFE mutation. However, other mutations in HFE,
transferrin receptor 2 (TFR2), hemojuvelin (HJV) and hep-
cidin (HAMP) genes, have also been reported in association
with this pathology. A mutational analysis of these genes
was carried out in 215 Portuguese iron-overloaded individ-
uals previously characterized as non-C282Y or non-H63D
homozygous and non-compound heterozygous. The aim was
to determine the influence of these genes in the development
of iron overload phenotypes in our population. Regarding

HFE, some known mutations were found, as S65C and
E277K. In addition, three novel missense mutations (L46W,
D129N and Y230F) and one nonsense mutation (Y138X)
were identified. In TFR2, besides the I238M polymorphism
and the rare IVS5 −9T→A mutation, a novel missense mu-
tation was detected (F280L). Concerning HAMP, the delete-
rious mutation 5’UTR −25G→Awas found once, associated
with Juvenile Hemochromatosis. In HJV, the A310G poly-
morphism, the novel E275E silent alteration and the novel
putative splicing mutation (IVS2 +395C→G) were identi-
fied. In conclusion, only a few number of mutations which
can be linked to iron overload was found, revealing their
modest contribution for the development of this phenotype in
our population, and suggesting that their screening in routine
diagnosis is not cost-effective.
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Introduction

Hereditary hemochromatosis (HH) is an autosomal recessive
disorder of adult-onset, common among Caucasians of
Northern European ancestry, which leads to iron overload in
several organs, if left untreated.Molecular studies have shown
that HH is prevalently due to a founder missense mutation,
C282Y, in the HFE gene on chromosome 6p21.3 [1].
Although C282Y in the homozygous condition remains the
most frequent patients’ genotype, other HFE mutations such
as H63D and S65C have been described in compound hete-
rozygosity with C282Y [1, 2]. In Southern Europe, a large
percentage of individuals (35–45%) with HH phenotypes are
neither C282Y homozygous nor C282Y/H63D compound
heterozygous. Other very rare or private HFE variants have
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been reported in affected individuals, contributing to the HH
genetic heterogeneity [3–10]. Moreover, an association of
HH with other genes, such as the transferrin receptor 2
(TFR2) [11–16], the hemojuvelin (HJV) [17–25] and the
hepcidin (HAMP) [14, 26–31] genes, has also been docu-
mented. These latter two genes are mainly associated with
the juvenile form of the disease (Juvenile Hemochromatosis,
JH). The purpose of the current study was to search for un-
common HFE, TFR2, HJV, or HAMP mutations liable to
explain the iron overload phenotype in Portuguese individuals
previously characterized as non-C282Y or non-H63D homo-
zygous and non-compound heterozygous. The result of this
study will allow clarifying the importance of these genes in the
routine HH genetic diagnosis in the Portuguese population.

Materials and methods

Selection of participants

The studied population consisted of 215 patients referred to
the Human Genetics Centre of the National Institute of Health
Dr. Ricardo Jorge in Lisbon, Portugal, for HH genetic testing.
The criteria for patient’s inclusion were to be adult, not related
and presenting serum ferritin level >400 ng/ml or transferrin
saturation >50% (unless currently treated by phlebotomy). All
these patients were previously diagnosed as non-C282Y or
non-H63D homozygous and non-compound heterozygous.

Fifty control samples from unrelated healthy individuals
were also studied. Investigations were undertaken with the
written informed consent of all participants.

Molecular studies

Polymerase chain reaction (PCR) amplification ofHFE exons
2, 3 and 4, and of TFR2 exons 2, 4, 5 and 6 (including
intron/exon boundaries) was performed for each patient’s
DNA, as described by Le Gac et al. 2001 [7] and Roetto et
al. 2001 [12]. Screening for mutations in PCR-amplified
DNA was performed by using both single-strand conforma-
tion polymorphism (SSCP) and denaturing high performance
liquid chromatography (dHPLC). Purified PCR products
presenting altered profiles were directly sequenced using the
ABI Prism BigDye Terminator v1.1 Cycle Sequencing Kit in
the ABI Prism 3130xl Genetic Analyzer (Applied Biosys-
tems). Codifying regions of HJV and HAMP genes were
screened by dHPLC as described or were directly sequenced
[18, 19, 27, 29].

In silico studies

Potential splice signals of mutated DNA sequences were
analyzed using the SpliceView software (http://l25.itba.mi.

cnr.it/~webgene/wwwspliceview.html) and multiple se-
quence alignment of HFE protein from mouse, rat, human
and dog was accomplished by using the ClustalW v1.82
software (http://www.ebi.ac.uk/clustalw).

Results and discussion

In this study, the mutational screening of HFE and TFR2 was
performed by using two different methodologies, SSCP and
dHPLC. The analysis of HFE exon 2 revealed five abnormal
profiles. The respective sequencing allowed the identification
of the known S65C in compound heterozygosity with H63D
in two individuals, in compound heterozygosity with C282Y
in other individual, and in another one in the heterozygous
condition. The other abnormal profile was due to a T→G
transversion in heterozygosity at codon 46 (Fig. 1a). Conse-
quently, leucine is replaced by tryptophan originating a novel
mutation, L46W. It was found in a 45-year-old male pre-
senting a transferrin saturation=68% and ferritin=444 ng/ml.

Although three abnormal dHPLC profiles of HFE exon 3
were observed, only two of them were detected by SSCP. One
was due to a G→A transition at codon 129 (Fig. 1b), resulting
in an aspartic acid to asparagine alteration and, consequently
to the novel D129N mutation. It was detected in a 35-year-old
man in compound heterozygosity with H63D. The patient pre-
sented transferrin saturation=79.6% and ferritin=135 ng/ml.

Both L46W and D129N patients’ families were not avail-
able to be studied, so it was not possible to observe a familiar
segregation associated to the iron overload phenotype. The
L46Wmutation is localized near the flexible HFE α1 domain
loop Q40–S45, which interacts with helix 1 of the transferrin
receptor 1 (TfR1) helical domain [32, 33]. On the other hand,
the D129N mutation modifies a residue located in HFE α2
domain which interacts with helix 2 of TfR1. Therefore,
these two novel mutations could affect HFE affinity for TfR1
and consequently might interfere with its proper functioning.
Moreover, it was observed that both L46 and D129 are
highly conserved residues (Fig. 2a and b), so they should be
important for protein function. Splicing analysis suggested
that both mutations do not affect splicing.

As L46W was found only in heterozygosity, it is unlikely
that this mutation, by itself, justifies the patient iron overload.
In addition, this individual has alcoholic habits that probably
also contribute to his iron burden. Concerning the D129N/
H63D patient, attending to the novel mutation putative func-
tional effects and to the absence of known external contributor
factors, it might be a pathologic genotype.

Sequencing of the other twoHFE exon 3 abnormal profiles
revealed two novel alterations at tyrosine 138: C→T and
C→G, giving rise to Y138Y (only detected by dHPLC) and
Y138X, respectively. The former alteration that does not
change the amino acid, was detected in heterozygosity in a
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69-year-old man who presents transferrin saturation=45%
and ferritin=1466 ng/ml. This mutation causes a minor
alteration of the consensus value of a potential donor site
(from 82 to 79). However, because this site is not commonly
used, it is unlikely that this mutation affects splicing. So it
may be an alteration without any pathologic significance and
does not justify the patient’s iron overload.

On the opposite, the nonsense mutation (Y138X) (Fig. 1c)
was detected in compound heterozygosity with C282Y in a
63-year-old man presenting transferrin saturation = 90% and
ferritin=1,000 ng/ml. This novel mutation originates a
premature stop codon and consequently the correspondent
mRNA will be committed to the nonsense-mediated mRNA
decay mechanism. Therefore, this patient genotype (Y138X/
C282Y) entirely justifies his HH phenotype.

Two altered HFE exon 4 profiles were found. Sequencing
revealed in one case a novel heterozygous A→T transversion
at codon 230 (Fig. 1d), substituting a tyrosine for a pheny-
lalanine (Y230F). The patient’s family study revealed that

Fig. 2 Multiple sequence alignment of HFE and TFR2 protein from
mouse, rat, human and dog using the ClustalW v1.82 software.
Considered residues are indicated by a rectangle; identical residues by
an asterisk (*); conserved substitutions by a colon (:) and semi-
conserved substitutions by a dot (.)

Fig. 1 Sequencing results
showing the mutations found
in the HFE, TFR2 and HJV
genes
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although his father is a compound heterozygous for Y230F
and H63D, he presents normal iron parameters (Table 1).
Y230F alters a residue positioned on a β-strand of the α3
domain which binds to β2-microglobulin [32, 33]. However,
the Y230 position is originally occupied by a phenylalanine
in some species (Fig. 2c), suggesting that tyrosine at position
230 may not be essential. Also, this mutation induces a small
alteration of a potential acceptor site consensus value (from
81 to 85) but probably without consequences. Taking into
consideration all these facts, it is unlikely that this mutation
is contributing for the iron overload in this patient.

The other abnormal profile found in HFE exon 4 was due
to the known E277K [34, 35] mutation, found in compound
heterozygosity with H63D in a patient. His family study
showed that his brother presents the same genotype and also
a high serum ferritin level (Table 2). The mutation does not
alter splicing signals and E277 is highly conserved between
species (Fig. 2d). Although the E277K has been previously
described as a neutral polymorphism [34], in this study, it
was detected in compound heterozygosity with H63D in two
brothers both presenting altered iron parameters. Due to its
HFE α3 domain localization, this amino acid alteration
might perturb the binding to β2-microglobulin, affecting
HFE correct processing. Altogether these facts suggest some
deleterious effect of this mutation, but only functional studies
could determine its real significance.

The screening of TFR2 revealed that three out of the 215
patients had altered dHPLC profiles. The direct sequencing
identified one heterozygous transversion C→G at codon
238, which causes an amino acid substitution from isoleucine
to methionine, I238M. This alteration was already reported
as a polymorphism by Lee et al, 2001 [13].

Another TFR2 variant corresponds to a novel C→G
mutation at codon 280 (Fig. 1e) which originates a pheny-
lalanine to leucine substitution (F280L). It was found in
double heterozygosity with H63D in a 29-year-old man pre-
senting a transferrin saturation=80% and ferritin=111 ng/ml.
This mutation does not alter splicing signals and F280 is a
highly conserved residue (Fig. 2e). It is located in the apical

region of TFR2, so the amino acid change might perturb pro-
tein function and, consequently, it’s binding to transferrin.
Considering the patient’s alcoholic habits, the cause of his iron
overload is probably the combined action of genetic and
environmental factors. The F280L mutation requires func-
tional studies to complete its characterization.

The other TFR2 abnormal profile found corresponded to
the rare IVS5 −9T→A alteration [15]. It was detected in
double heterozygosity with H63D in a 38-year-old man pre-
senting transferrin saturation=51% and ferritin=186 ng/ml.
This mutation produces a small reduction of the native ac-
ceptor splicing site consensus value (88 to 84) and its effect
on splicing can be hypothesized.

The 5′UTR −25G→A (24) mutation was found in homo-
zygosity in the HAMP gene in a 50-year-old man who pre-
sented, at the age of 28, a severe juvenile hemochromatosis
phenotype (transferrin saturation=70%; cardiomyopathy, he-
patomegaly, intense hepatic hemosiderosis) [36]. This mu-
tation creates a new initiation codon at position +14 related
to the cap site, which induces a shift of the open reading
frame. Homozygosity for this mutation was previously re-
ported as the cause of JH in two other individuals of Por-
tuguese origin [31, 37]. As this third affected individual had a
birth place located near the first one described (Matthes T,
personal communication), probably they are related to the
same HAMP mutational event.

Two of the HJV alterations found are apparently asymp-
tomatic. The A310G is described as a polymorphism in
ensEMBL (www.ensembl.org) and GeneCards® (www.
genecards.org) databases. The other one, a G→A transition
at codon 275, does not alter the amino acid residue (E275E)
and does not seem to affect splicing. On the other hand, the
third alteration observed, the IVS2 +395 C→G (Fig. 1f),
was detected in heterozygosity in a 29-year-old man pre-
senting transferrin saturation=59% and ferritin=661 ng/ml.
It is located at six deoxyribonucleotides from the beginning
of exon 3 and induces an alteration of the consensus value
of the native acceptor site (from 89 to 85), which becomes
lower than another potential splice site (86). Consequently,
some competition between these two splice sites might

Table 1 Clinical data of the HFE Y230F family

Propositus Father Mother Brother

Age (years) 30 55 54 23
Sex M M F M
Cardiomyopathy − + − −
Diabetes mellitus − − + −
Iron (μg/dl) 162 76 69 63
Transferrin
saturation (%)

75.8 35.8 26.3 32.1

Ferritin (ng/ml) 531 165 74 258
HFE genotype Y230F/wt Y230F/H63D wt/wt H63D/wt

wt Wild type, + presence, − absence

Table 2 Clinical data of the HFE E277K family

Propositus Brother Sister I Sister II

Age (years) 63 67 59 46
Sex M M F F
Cardiomyopathy − + − −
Iron (μg/dl) 185 115 77 30
Transferrin
saturation (%)

60.7 39.5 25 9

Ferritin (ng/ml) 620 812 72 20.8
HFE genotype E277K/H63D E277K/H63D H63D/wt wt/wt

wt Wild type, + presence, − absence
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occur, altering the splicing variants produced. Even if the
mutation deleterious effect is confirmed in future functional
studies, it is improbable that its heterozygosity is the only
cause of the individual iron overload.

All novel mutations found were searched for and not
found in 50 healthy individuals, so they cannot be considered
polymorphisms.

In conclusion, in this study, several alterations were found
in HFE, TFR2, HJV, and HAMP genes, screened in 215
Portuguese individuals presenting iron overload, previously
characterized as non-C282Y or non-H63D homozygous or
compound heterozygous. However, only a few number of
these mutations can be directly associated with HH or JH,
revealing a modest contribution of the novel variants in this
phenotype development, and suggesting that their screening
in routine diagnosis is not cost-effective. Nevertheless, the
identification and study of these novel mutations is important
to enlarge the knowledge of the HH genetic heterogeneity.
Additionally, their functional study can be significant for a
better understanding of the correspondent proteins role in the
iron metabolism and in HH development.
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