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ABSTRACT

The poor signal-to-noise ratio in transrectal ultrasound (TRUS)

images makes the fully automatic segmentation of the prostate

challenging and most approaches proposed in the literature

still lack robustness and accuracy.

However, it is relatively straightforward to obtain high

quality segmentations in magnetic resonance (MR) images.

In the context of MR to TRUS data fusion the information

gathered in the MR images can hence provide a strong prior

for US segmentation.

In this paper, we describe a method to non-linearly regis-

ter a patient specific mesh of the prostate build from MR im-

ages to TRUS volume. The MR prior provides shape and vol-

ume constraints that are used to guide the MR-to-TRUS sur-

face deformation, in collaboration with a US image contour

appearance model. The anatomical point correspondences be-

tween the MR and TRUS surfaces are obtained implicitly.

The method was validated on 30 pairs of MR/TRUS pa-

tient exams and achieves a mean Dice value 0.85 and a mean

surface error of 2.0 mm.

Index Terms— US, MR, registration, segmentation

1. INTRODUCTION

Prostatic adenocarcimona is the second most common can-

cer in men. It is the second leading cause of cancer death

among men in the US [1]. Currently TRUS imaging is the

most accessible and practical modality for guiding needles

during diagnostic intervention such as prostate biopsy or ther-

apeutic interventions such as brachytherapy. However, TRUS

imaging rarely provides information on the spatial location

of prostate cancer and is hence of limited interest for can-

cer targeting. In recent years, MRI has received increasing

interest for localizing prostate cancer. Recent advance in

MRI such as MR spectroscopy (MRS), dynamic contrast en-

hanced MRI (DCE-MRI) with gadolinium injection or lym-

photrophic nanoparticle enhanced MRI (LN-MRI) emerge

as new promising methods that can improve sensitivity and
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specificity of cancer detection. MR imaging can now be clini-

cally useful to enhance TRUS imaging and therefore improve

needle guidance during biopsy or brachyteraphy. However,

the fusion of pre-operative MR data and per-operative TRUS

data is currently a technical challenge.

Related previous works include rigid MR/TRUS registra-

tion methods [2] which are not suitable when large gland de-

formation occurs between MR and TRUS imaging or octree

based contour registration methods [3] which need prior seg-

mentation on both MR and TRUS images. In [4] a patient-

specific statistical model of MR-to-TRUS deformation build

from simulated data is used for registration. However, the

benefit of statistical modeling based on simulated data is not

clear. In particular the very complex nature of the boundary

conditions of the simulation (rectum, bladder, probe position),

their variability between the acquisitions (bladder and rectal

filling, patient position) and the uncertainty about the tissue

elasticity parameters could cause biases. The method was

validated on intra-prostatic landmarks, for which it yields an

accuracy of 2.36±1.24mm. The accuracy of the ultrasound

surface segmentation was not assessed.

In this paper we propose a method to automatically seg-

ment the prostate in TRUS images by deforming a patient

specific mesh build from MR images to TRUS data. The non-

linear surface deformation estimation is driven by an image

appearance model and constrained by shape and volume pri-

ors stemming from the MR surface. In contrast to deforma-

tion statistics on simulated data [4], shape and volume priors

are simple and less biased representations of the real patient

anatomy (up to MR segmentation errors). Only in a second

step a biomedical model is used to propagate the surface dis-

placements on the whole volume. In this step, the displace-

ments are imposed as constraints/boundary conditions and it

is hence not necessary to model the complex organic bound-

ary conditions (see Fig. 1). We will focus in this article on

the segmentation part of the algorithm, which we validate by

measuring surface registration accuracy on MR/TRUS pairs

stemming from 30 different patients. For completeness, we

also introduce a simple bio-mechanical model for deforma-

tion propagation and give some preliminary visual results.
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Fig. 1. Overview of the method including MR images segmentation, TRUS images segmentation and MR/TRUS data fusion.

2. METHOD

2.1. MR segmentation

The first step of the proposed algorithm consists in the seg-

mentation of the MR volume. In this study it is obtained

by warping a mean shape of the prostate on a manually seg-

mented point cloud using an interactive approach, but this step

can be fully automated [5]. The mean shape stems from the

statistical analysis of 23 manual MR segmentations. A patient

specific mesh M is hence obtained that can be used as tem-

plate for US segmentation. M = (M1, ...,MK)t, Mi ∈ R
3 is

a K × 3 matrix which represents the vertices of the mesh (tri-

angular surface mesh). It is important to note that we thus dis-

pose of an anatomical mapping between the patient-specific

mesh and the mean mesh. This makes it possible to construct

a spatially varying image appearance model for the prostate

capsule in the US volume (see Fig. 1).

2.2. TRUS Segmentation

In the following, T = (T1, ..., TK)t, Ti ∈ R
3 is a K × 3

matrix that represents the vertices of the deformable TRUS

mesh. T is initialized with an approximate repositioning of

the MR mesh M on the TRUS images. In a first step, we es-

timate the rigid body motion of the mesh T . In a second step,

we rely on a shape-constrained deformable mesh to estimate

the residual non-rigid MR/TRUS deformations.

During these two steps, the estimation is driven by the

detection of feature points. These detections are based on the

minimization of an objective function Ei(k) defined for each

vertex of the mesh. The feature point T̃i = T
i,k̂

is searched

along the vertex normal ni:

k̂ = argmin
k=−l,...,l

Ei(k), Ti,k = Ti + khni,

where l defines the length of the search interval, the global

parameter h is the profile step size and k is an integer used

to explore the profile, i.e. Ti,k is a translated position of the

vertex Ti. Different objective functions Ei(k) will be defined

for rigid and non-rigid registration in the following sections.

2.2.1. Rigid MR Mesh to TRUS Images Registration

For rigid registration, an image appearance model is built to

represent the statistical variation of the grey-values profiles

normal to the mesh surface through each vertex. The Maha-

lanobis distance from a sample profile to the model mean is

then used to locate the feature point :

Ei(k) = (ḡi − g′ik)Σ−1
i (ḡi − g′ik) (1)

Where g′ik is the normalized sample profile centered on V k
i

and oriented in the normal direction ni. g′ik is normalized

similarly to [6] to take into account global lighting variations

across the images. ḡi is the mean normalized grey-level vec-

tor of the vertex i and Σi is the associated covariance ma-

trix. A training-set composed of 8 TRUS exams is used to

construct the appearance model. Each exam is segmented by

warping the mean shape on a dense cloud of manually seg-

mented points on the prostate boundary, i.e. the vertices of

the obtained meshes correspond anatomically. This makes it

possible to compute the statistics on the intensity profiles.

Starting with a rough repositioning of the MR mesh on

TRUS data, we detect at each iteration the feature points

and compute the update of vertex positions T t+1 by rigidly

matching T t on T̃ t.

2.2.2. Non-Rigid MR Mesh to TRUS Images Registration

Theoretically, due to the incompressible nature of the prostate,

the volume of the segmentations should not change signifi-

cantly between the two modalities. This mechanical property

can hence be used as prior to limit the search space of the

MR to US surface registration problem. The second prior is

the shape of the surface segmented in the MR image, which

undergoes only local and limited variations that are mainly

caused by US probe pressure. In this section, both priors are

injected into an appearance-model driven automatic segmen-

tation to prevent segmentation errors.

Starting from the final estimate of T obtained at the end of

the rigid registration, the non-rigid registration is formulated

as a coupled minimization of two objective functions with re-

spect to R and T .



At each iteration t, we first estimate the rigid transforma-

tion R
t of the template MR mesh M onto the previous TRUS

mesh estimation T t−1

R
t = argmin

R

∑

i

‖T t−1
i − R(Mi)‖

2, (2)

followed by the estimation of T t using volume and shape con-

straints, and using the detected feature points T̃ t as attractors:

T t = argmin
T

Ct(T ), with vmin < V (T ) < vmax (3)

Ct(T ) =
∑

i



‖Ti − T̃ t
i ‖

2 +
α

Ni

∑

j∈Ni

‖dij − R
t(d′ij)‖

2



 ,

Where dij = Ti−Tj , d′ij = Mi−Mj and V (T ) is the volume

of the mesh T . Ni is the set of neighbors of the vertex i. Ni

is the number of neighbors of the vertex i.

The first term of Eqn. (3) attracts the model towards de-

tected feature points T̃ t
i . The second term is the shape con-

straint which ensures that the mesh T stays close to mesh

M ◦ R
t 1. The parameter α tunes the strength of the regu-

larization. Finally, the inequality constraint is used to ensure

that the prostate volume lies in an acceptable range.

To solve problem 3, we first need to solve it with equality

constraints, i.e. minT C(T ) subject to V (T ) = v, where v is

the target volume. The Lagrangian of the problem is

L(T, λ) = C(T ) + λS(T ) with S(T ) = V (T ) − v.

Necessary conditions of a minimum of the Lagrangian are

∂λL(T, λ) = S(T ) = 0, and

∂TL(T, λ) = T − T̃ + αL(M ◦ R − T ) + λ∇TS(T ) = 0

where L is a constant K × K matrix that corresponds to the

discretized Laplacian on the meshes (T and M are topologi-

cally identical) and λ is the Lagrange multiplier. By lineariz-

ing S(T ) around the unconstrained solution denoted T̂ we get

an expression of the constrained solution that depends on λ:

T = T̂ − λ(Id − αL)−1∇TS(T̂ ), with (4)

T̂ = (Id − αL)−1(T̃ − αLM ◦ R).

The parameter λ can be estimated by line search. The algo-

rithm to preserve the volume is summarized in Alg. (1). All

systems of linear equations are solved using the conjuate gra-

dient method. The inequality constraint in Eqn. (3) can then

be handled by solving the unconstrained problem, searching

if a constraint is active and applying corresponding equality

constraint if needed.

During the non-rigid registration, the feature point detec-

tions are realized by detecting dark-to-bright transitions:

Ei(k) =
∑

i=k+1,...,k+c

I(Ti,k) −
∑

i=k−c,...,k−1

I(Ti,k) (5)

1M ◦ R = (R(M0),R(M1), ...,R(MK))t

The first term and second term are the sum of the intensity

profile values in the outer and inner region respectively. We

take into account the c − 1 first elements in each direction.

Algorithm 1 Exact Volume Constraint Procedure

1: Solve unconstrained problem :

T̂ = (Id − αL)−1(T̃ − αM ◦ R)
2: Solve : D = −(Id − αL)−1∇TS(T̂ )
3: Find λ such that V (T, λ) = v by line search with

T (λ) = T̂ + λD

2.3. MR-US Fusion

After MR-prior based segmentation of the US volume, the

estimated surface deformation is interpolated on the volume

of interest Ω. Let us assume that the MR volume is floating

and that the US volume is fixed. A natural choice of Ω is then

the TRUS volume. The surface deformations are propagated

on Ω by minimizing the linear elastic energy

ϕ̂ = argmin
ϕ

∫

Ω

µ

4

3
∑

i=1

||∇(ϕ(x)i)||
2 +

λ

2
(divϕ(x))2 dx,

(6)

under the constraints

ϕ(Ti) = R
n(Mi) − Ti ∀i, (7)

where ϕ : R
3 → R

3 is the displacement function and R
n is

the result of the final iteration of Eqn. (2). Eqn. (6) is solved

by gradient descent using the semi-implicit diffusion scheme

ϕt+1 − ϕt

δ
+ µ∆ϕ + (λ + µ)∇divϕ = 0, (8)

where t ∈ N is the iteration number and δ ∈ R is the dis-

cretization granularity of the partial differential system. The

displacement constraints (7) are enforced at each iteration.

Eqn. (8) is solved using the full multigrid strategy and Gauss-

Seidel relaxation for all x ∈ Ω that lie on a regular, isotropic

3D grid, which defines the spatial discretization of the de-

formation function. Since the constraints do in general not

lie on a node of the regular grid it is necessary to project

them onto their 8 nearest grid points using tri-linear distance

weighting. After processing all constraints, the accumulated

weighted distances at each grid point are normalized with the

corresponding accumulated weights (if not zero).

3. EXPERIMENTS AND VALIDATION

All MR exams are acquired with a 1.5 Tesla (T) scanner using

a surface coil. Ultrasound (US) images are obtained using a

3D ultrasound device and a transrectal probe. The validation

has been carried out using a data-set composed of 30 cou-

ples of MR/TRUS exams. 8 additional TRUS exams were

used to build the appearance model. The accuracy of the



Fig. 2. Final contours on TRUS images compared with manual segmentation. A: automatic segmentation. B: manual

segmentation. C: final deformable mesh. D: MR image data superimposed on TRUS image data.

Table 1. Segmentation accuracy. PPV: Positive Predictive

Value, Sens: Sensitivity, mean err: mean value of surface er-

rors, RMSD: Root mean square deviation of surface errors.

Surface errors are distances between each vertex of the auto-

matic segmentation and its closest point on the manual seg-

mentation.

PPV Sens Dice mean err. RMSD

0.82 0.88 0.85 2.0 mm 1.5 mm

prostate segmentation in TRUS images has been validated by

comparing manual segmentations to the automatic segmen-

tations. The manual segmentations were obtained by accu-

rately identifying points on the prostate boundaries and by

reconstructing the prostate using a deformable surface which

does not use any prior information on the prostate shape. The

maximum and minimum volume used in Eqn. (3) are deter-

mined using the following formula: vmax = (1+p)VMR and

vmin = (1 − p)VMR. Where VMR is the prostate volume

obtained in MRI. The parameter p was set to 10%, which cor-

responds approximatively to the volume fluctuations that we

could observe. The segmentation accuracy has been evaluated

using surface-based and volume-based measures. Results are

reported in table 1. Fig. 2. presents an example of MR seg-

mentation and the corresponding automatic segmentation in

TRUS and shows an example of MR/TRUS fusion where the

MR image is superimposed on the TRUS images.

4. DISCUSSION & CONCLUSION

In this paper, we have proposed an automatic prostate seg-

mentation method in TRUS images based on the non-rigid

registration of a patient specific mesh obtained from MR seg-

mentation. MR-to-TRUS mapping is performed by propa-

gating surface displacements in the whole volume. The pre-

sented approach, validated on 30 couples of MR/TRUS ex-

ams, is robust and yields more accurate segmentations of the

prostate than methods that do not use MR priors.

A remaining issue is that poor initial manual positioning

of the MR template can lead to false anatomical mappings. A

careful initialization is hence necessary. This problem could

be attenuated if the deformation propagation algorithm would

use vertex to surface distances as constraints instead of the

distances between corresponding vertices. We are currently

implementing this feature.
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