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THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF

IN THE WHOLE SPACE: I, AN ESSENTIAL COERCIVITY

ESTIMATE

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Abstract. It is known that the singularity in the non-cutoff cross-section of
the Boltzmann equation leads to the gain of regularity and gain of weight in
the velocity variable. By defining and analyzing a non-isotropy norm which
precisely captures the dissipation in the linearized collision operator, we give
a new and precise coercivity estimate for the non-cutoff Boltzmann equation
for general physical cross sections.

1. Introduction

This is the first part of a series of papers related to the inhomogeneous Boltzmann
equation without angular cut-off, in the whole space and for general physical cross-
sections. This global project is a natural continuation of our previous study [6]
which was specialized to Maxwellian type cross sections.

The present part is concerned with an essential coercivity estimate of the lin-
earized collision operator, in the framework of general cross sections. As shown in
[6] for the special Maxwellian case, this estimate plays an important role for the
related Cauchy problem.

Based on this and connected estimations, in the second and third papers, [7,
8], we will prove the global existence of classical non-negative solutions to the
Boltzmann equation without angular cutoff, together with convergence rates to the
equilibrium, for the soft and hard potentials respectively, so that we are able to
cover a general physical setting. Finally, in the fourth paper, [9], we will prove the
full regularization property of the solution for any positive time. On the whole, our
series of works will establish a satisfactory theory on the well-posedness and full
regularity of classical solutions.

To simplify the exposition, we shall work in velocity space dimension 3, which
is the most important physical case, but our results hold true for any dimension
n ≥ 2.

Consider

(1.1) ft + v · ∇xf = Q(f, f).

As usual, f = f(t, x, v) is the density distribution function of particles with space
location x ∈ R3 and velocity v ∈ R3 at time t. Here, the right hand side of
(1.1) is the Boltzmann bilinear collision operator, which is given in the classical
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σ−representation by

Q(g, f) =

∫

R3

∫

S2

B (v − v∗, σ) {g′∗f ′ − g∗f} dσdv∗ ,

where f ′
∗ = f(t, x, v′∗), f

′ = f(t, x, v′), f∗ = f(t, x, v∗), f = f(t, x, v), and for σ ∈ S
2,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

give the relations between the post and pre collisional velocities. Recall that these
relations follow from the conservation of momentum and kinetic energy, that is,
v + v∗ = v′ + v′∗ and |v|2 + |v∗|2 = |v′|2 + |v′∗|2.

The kernel B(v− v∗, σ) appearing in the collision operator is called the collision
cross-section and varies according to different physical settings.

For the monoatomic gas, the non-negative cross-section B(z, σ) depends only
on |z| and the scalar product z

|z| ·σ. In most cases, the kernel B(z, σ) cannot be

expressed explicitly, but to capture its main properties, one may assume that it
takes the form

B(v − v∗, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
v − v∗
|v − v∗|

·σ, 0 ≤ θ ≤ π

2
.

There are two classical and important physical models to be kept in mind. The
first one is the hard sphere model where each particle is viewed as an identical ball.
For this model, the cross-session is proportional to |v − v∗| and has no singularity
in θ. Another model is the inverse power law potential model in which the force
between a pair of particles is proportional to ∇U(ρ) and U(ρ) is proportional to
ρ−r with r > 1. Here, ρ is the distance between the two particles. In the later case,
the kinetic part in the cross-section behaves like

(1.2) Φ(|v − v∗|) = |v − v∗|γ , γ = 1− 4

r
,

and a singular factor in the collision angle arises, such that

(1.3) limθ→0+ b(cos θ)θ
2+2s = K,

for some constant K > 0, and where 0 < s = 1
r < 1.

For the model of inverse power law potential, the cases with 1 < r < 4, r = 4 and
r > 4 correspond to the so-called soft, Maxwellian molecule and hard potentials
respectively. Moreover, since the Boltzmann equation is well defined when r > 1
for this model, one has γ > −3, 0 < s < 1, and

−1 < γ + 2s = 1− 2

r
= 1− 2s < 1.

Herein, we will be concerned with the precise coercivity estimate of the linearized
collisional operator, for cross-sections in this general setting.

That is, we only assume that the indices in the cross-section satisfy γ > −3 and
0 < s < 1 in the kinetic and angular parts respectively. In particular, note that
this assumption includes the inverse power law potential as an example.

For later use, we will need to compare the original cross-session with the situation
when its kinetic part is mollified. That is, for the function Φ(z) appearing in the

cross-section, we denote by Φ̃(z) its smoothed version defined by

(1.4) Φ̃(z) = (1 + |z|2) γ
2 ≡< z >γ .
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To show the dependence of the estimates on the mollified or non-mollified kinetic

factor in the cross-session, we will use the notations QΦ̃ and QΦ to denote the
Boltzmann collisional operator when the kinetic part is Φ̃ and Φ respectively. In
particular, Q = QΦ. This upper-script will be also used for other operators as well.

As usual, and keeping the same notations as in [6], we consider the Boltzmann
equation around a normalized global Maxwellian distribution

µ(v) = (2π)−
3
2 e−

|v|2

2 .

Since µ is the global equilibrium state satisfying Q(µ, µ) = 0, by setting f =
µ+

√
µg, we have

Q(µ+
√
µg, µ+

√
µ g) = Q(µ,

√
µ g) +Q(

√
µ g, µ) +Q(

√
µg,

√
µ g).

Define the following standard nonlinear operator

Γ(g, h) = µ−1/2Q(
√
µ g,

√
µh).

Then the linearized Boltzmann collision operator takes the form

Lg = L1 g + L2 g = −Γ(
√
µ , g)− Γ(g,

√
µ ),

and the original equation (1.1) becomes the following equation on the perturba-
tion g

(1.5) gt + v · ∇xg + Lg = Γ(g, g), t > 0 .

This close to equilibrium framework is classical for the Boltzmann equation with
angular cutoff, but much less is known for the Boltzmann equation without angular
cutoff, though the spectrum of the linearized operator without angular cut-off was
analyzed a long time ago by Pao in [18].

However, since the late 1990s, the regularizing effect on the solution, produced
by the singularity of the cross-section, has become reachable by rigorous analysis.
Let us mention the systematic work on the entropy dissipation method initiated
by Alexandre [1] and developed firstly by Lions [15], and then by many others,
cf [3, 20, 21] and references therein. Since then, various works have been done
on deriving the coercivity estimates in different settings and in different norms for
different purposes. In particular, this kind of coercivity estimates has displayed
some non-isotropic property in the very loose sense that, on one hand one gets a
gain of the regularity in Sobolev norm of fractional order; and on the other hand,
one also get a gain the moment to some fractional power in the velocity variable, cf.
[2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 17, 19, 20, 21] and references therein. Furthermore,
these coercivity estimates have been proven to be very useful in getting the global
existence and gain of full regularity in all variables for the Boltzmann equation
without angular cutoff, as shown in our previous work [6]. For details about the
recent progress in some of the directions mentionned previously, readers are referred
to the survey paper by Alexandre, [2].

Since the coercivity estimate plays an important role in the study on the angular
non-cutoff Boltzmann equation, the precise statement of this estimate in terms of
the indices in the cross-section, that is, γ and s, has been pursued by many people.
The main purpose of this paper is to present a precise estimate that gives the
essential properties of this singular behavior. This main result will be stated in
the next theorem. Let us note that this result is proved in a general setting and
it improves on previous results, such as those obtained in [4, 5, 6, 16, 17]. And
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this estimate will be used in our papers [7, 8, 9] on the global existence and full
regularity of the Boltzmann equation without angular cutoff in the general setting.

To derive the desired coercivity estimate, we generalize the non-isotropic norm
introduced in [6]. The introduction of this norm was motivated by the study on
the Landau equation which can be viewed as the grazing limit of the Boltzmann
equation. It is known that for the Landau equation, see for example [13], that
the essential norm in order to capture the dissipation of the linearized Landau
operator can be defined just as the Dirichlet form of the linearized operator. By
doing so, a norm can be well defined without loss of any dissipative information
in the operator and this can be done directly for the Landau equation mainly
because the corresponding Landau operator is a differential operator. However, for
the Boltzmann equation without angular cutoff, the collision operator is a singular
integral operator so that a direct analog is not obvious or feasible. In order to
extract the essential property in the linearized collision operator, in [6], a non-
isotropic norm was introduced. Therefore, in the first part of this paper, we will
show that this non-isotropic norm is in fact equivalent to the Dirichlet form of the
linearized collision operator. Then by analyzing the properties of the non-isotropic
norm, we obtain the precise coercivity estimate of the linearized collision operator.

The application of the non-isotropic norm and the coercivity estimate for the
global well-posedness theory and the full regularity for the solution to the Cauchy
problem will be given in our papers [7, 8, 9]. At this point, let us mention the
different approach undertaken by Gressman and Strain [11, 12] for the global well-
posedness issue.

To state our main theorem, we recall that the linearized operator L has the
following null space, which is spanned by the set of collision invariants:

(1.6) N = Span
{√

µ , v1
√
µ , v2

√
µ , v3

√
µ , |v|2√µ

}
,

that is,
(
Lg, g

)
L2(R3

v)
= 0 if and only if g ∈ N .

Herein, (., .)L2 = (., .)L2(R3
v)

denotes the usual scalar product of functions in

L2 = L2(R3).
We shall use the standard weighted Sobolev space defined, for k, l ∈ R, as

Hk
l = Hk

l (R
3
v) = {f ∈ S ′(R3

v); W
lf ∈ Hk(R3

v)}
where Hk = Hk(R3) is the usual Sobolev space, and W l(v) =< v >l= (1 + |v|2)l/2
is the weight function. In particular, in the case k = 0, we also use the notation
L2
l = H0

l .

Theorem 1.1. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s < 1
and γ > −3. Then there exist two generic constants C1, C2 > 0 such that

C1

{
‖(I−P)g‖2Hs

γ/2
+ ‖(I−P)g‖2L2

s+γ/2

}
(1.7)

≤
(
Lg, g

)
L2

≤ C2 ‖g‖2Hs
s+γ/2

,

where P is the L2-orthogonal projection onto the null space N .

This essential coercivity estimate of the linearized collisional operator will enable
us in [7, 8] to prove the global existence of classical solutions to the Boltzmann
equation. For this purpose, the analysis on the nonlinear operator is necessary.
By using this essential coercivity estimate and the analytic techniques used in the
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proofs below, we will also give a clear upper bound estimate on the nonlinear
operator when γ > −3/2 which is stated in the next section, the remaining values
of γ being given in [7].

The rest of the paper is arranged as follows. In the next section, we extend
the definition of the non-isotropic norm introduced in [6] and then state the main
estimates in this paper. The proof of the upper and lower bound estimates of
the non-isotropic norm will be given in Section 3. In Section 4, we will prove the
equivalence of the Dirichlet form of the linearized collison operator and the square of
the non-isotropic norm. The equivalence of the non-isotropic norms with different
kinetic factors and different weights will be shown in Section 5. Finally, in the last
section, we will prove an upper bound estimate on the nonlinear collision operator
which is useful for the well-posedness theory for the Boltzmann equation.

Notations: Herein, letters f , g stand for various smooth functions, while C, c...
stand for various numerical constants, independent from functions f , g.., and which
may vary from line to line. Notation A . B means that there exists a constant C
such that A ≤ CB, and similarly for A & B. While A ∼ B means that there exist
two generic constants C1, C2 > 0 such that

C1A ≤ B ≤ C2A.

2. non-isotropic norm and main estimates

First of all, let us recall that
(
Lg, g

)
L2

= −
(
Γ(

√
µ , g) + Γ(g,

√
µ ), g

)
L2

≥ 0.

It is known that L is a non-isotropic operator, so, extending [6], we define a non-
isotropic norm associated with the cross-section Φ(|v−v∗|)b(cos θ) by the following
formula

|||g|||2 =

∫∫∫
Φ(|v − v∗|)b(cos θ)µ∗

(
g′ − g

)2
(2.1)

+

∫∫∫
Φ(|v − v∗|)b(cos θ)g2∗

(√
µ′ −√

µ
)2

= J1 + J2 ,

where the integration is over R3
v × R3

v∗ × S2σ. Note that it is a norm with respect

to the velocity variable v ∈ R3 only. As we will see later, the reason that this
norm is called non-isotropic is due to the fact that it combines both differentiation
and weight to some orders due to the singularity of cross-section b(cos θ). In fact,
compared to the previous works on the Landau case [13], this non-isotropic norm is
much more involved because we bascially deal with a singular integral operator that
behaves like a fractional order differential operator, though with different weight
factors according to the direction of the frequency variable, a fact which is clearly
well understood for the Landau case.

The following proposition gives the equivalence between the non-isotropic norm
and the Dirichlet form of L :

Proposition 2.1. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s <
1 and γ > −3. Then there exist two generic constants C1, C2 > 0 such that

(2.2) C1|||(I−P)g|||2 ≤
(
Lg, g

)
L2

≤ 2
(
L1g, g

)
L2

≤ C2|||g|||2.
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Concerning the lower and upper bounds of the non-isotropic norm we have

Proposition 2.2. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s <
1 and γ > −3. Then there exist two generic constants C1, C2 > 0 such that

C1

{
‖g‖2Hs

γ/2
+ ‖g‖2L2

s+γ/2

}
≤ |||g|||2 ≤ C2 ‖g‖2Hs

s+γ/2
.(2.3)

Our main result, that is, Theorem 1.1, is then a direct consequence of the above
two propositions.

In the following, we will use the lower script Φ on the non-isotropic norm, and
so use the notation |||g|||Φ if we need to specify its dependence on the kinetic factor
Φ. Notations JΦ

1 , J
Φ
2 will be also used for the same purpose.

Part of the proof on the lower bound of the non-isotropic norm given in Propo-
sition 2.2 is essentially due to the following equivalence relations between the non-
isotropic norms with Φ and Φ̃ = 〈v − v∗〉γ .

Proposition 2.3. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s <
1 and γ > −3. Then we have

(2.4) |||g|||Φ ∼ |||g|||Φ̃ .

Concerning the dependence on the index γ in Φγ = |v − v∗|γ , we have

Proposition 2.4. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s <
1 and γ > −3. Then for any β > −3, we have

(2.5) |||g|||Φγ ∼ |||〈v〉(γ−β)/2
g|||Φβ

.

To end this section, we give the following upper bound estimate on the non-linear
term Γ(·, ·) defined in (1.5), which holds only for the restricted value γ > −3/2.

Proposition 2.5. Assume that the cross-section satisfies (1.2), (1.3) with 0 < s <
1 and γ > −3/2. Then

∣∣∣
(
Γ(f, g), h

)∣∣∣ .
{
‖f‖L2

s+γ/2
|||g|||Φγ + ‖g‖L2

s+γ/2
|||f |||Φγ

+min
(
‖f‖L2‖g‖L2

s+γ/2
, ‖f‖L2

s+γ/2
‖g‖L2

)}
|||h|||Φγ .

Furthermore, still assuming (1.2), (1.3) with 0 < s < 1 and γ > −3/2, together
with γ ≥ −3s, one has

∣∣∣
(
Γ(f, g), h

)∣∣∣ .
{
‖f‖L2

s+γ/2
|||g|||Φγ + ‖g‖L2

s+γ/2
|||f |||Φγ

}
|||h|||Φγ .

Let us note that the first statement deals with general values of γ, that is not
necessarily linked with the value of s. For the second statement, note that the
condition γ ≥ −3s is always true in the physical cases mentioned above. Indeed
recall here that γ = 1 − 4s, and that 0 < s < 1. Therefore, we can conclude that
together with the constraint γ > −3/2, the physical range 0 < s < 5/8 is allowed.
The full range up to 1, and thus the fact that the second statement is also true
for these values, will be dealt with in our paper [7], since its proof involves some
slightly different arguments.

For future reference, let us note the immediate corollary of the proof of Propo-
sition 2.5, dealing with nonlinear operator, but with a regularized potential
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Corollary 2.6. With the regularized potential, together with assumptions (1.2),
(1.3), 0 < s < 1 and γ ≥ −3s, one has

∣∣∣
(
ΓΦ̃(f, g), h

)∣∣∣ .
{
‖f‖L2

s+γ/2
|||g|||Φγ + ‖g‖L2

s+γ/2
|||f |||Φγ

}
|||h|||Φγ .

Note carefully that in this last result, the constraint γ > −3/2 is removed, and
we have retained the constraint γ ≥ −3s, which is always true for physical cases,
as we saw above.

3. Bounds on the non-isotropic norm

This section is devoted to the proof of Proposition 2.2. Throughout this paper,
we will often use the following elementary estimate stated in velocity dimension n,
since it will be needed for both cases n = 2 and n = 3.

Lemma 3.1. Let the velocity dimension be n, n ∈ N, ρ > 0, δ ∈ R and let µρ,δ(u) =

〈u〉δe−ρ|u|2 for u ∈ Rn. If α > −n and β ∈ R, then we have

(3.1) Iα,β(u) =

∫

Rn

|w|α〈w〉βµρ,δ(w + u)dw ∼ 〈u〉α+β .

Proof. Since we have

〈u〉β〈u+ w〉−|β| ≤ 〈w〉β ≤ 〈u〉β〈u+ w〉|β|,
it suffices to show (3.1) with β = 0, by taking µρ,δ±|β| instead of µρ,δ. Taking into
account the fact that α > −n, this estimate is obvious when |u| ≤ 1. If |u| ≥ 1,
then we have

Iα,0(u) ≥ 4−|α|〈u〉α
∫

{|u+w|≤1/2}
µρ,δ(u+ w)dw & 〈u〉α,

because |u + w| ≤ 1/2 implies that 4−1〈u〉 ≤ |w| ≤ 4〈u〉. Noticing that 2|w| ≥ 〈w〉
if |w| ≥ 1, we have

Iα,0(u) ≤
(
max
|w|≤1

µρ,δ(u + w)
) ∫

{|w|≤1}
|w|αdw + 2|α|

∫

{|w|≥1}
〈w〉αµρ,δ(u+ w)dw

.
(
〈u〉|δ|e−ρ|u|2/2 + 〈u〉α

∫

Rn

〈u+ w〉αµρ,δ(u+ w)dw
)
. 〈u〉α .

And this completes the proof of the lemma.
�

Recall from (2.1) that the non-isotropic norm contains two parts, denoted by
J1 and J2 respectively. The estimation on each part will be given in the following
subsections. We start with the estimation on J2 because the analysis is easier.

J2-estimate. Let us start with the following upper bound on J2.

Lemma 3.2. Under the same assumptions as in Theorem 1.1, we have

J2 :=

∫∫∫
b(cos θ)Φ(|v − v∗|)g2∗

(√
µ′ −√

µ
)2
dvdv∗dσ . ‖g‖2L2

s+γ/2
.
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Proof. Note that

J2 ≤ 2

∫∫∫
bΦ(|v − v∗|)g2∗

(
µ′1/4 − µ1/4

)2(
µ′1/2 + µ1/2

)
dvdv∗dσ

.

∫∫∫
b |v′ − v∗|γg2∗

(
µ′1/4 − µ1/4

)2
µ′1/2dvdv∗dσ

+

∫∫∫
b |v − v∗|γg2∗

(
µ′1/4 − µ1/4

)2
µ1/2dvdv∗dσ

=F1 + F2 .

By the regular change of variables v → v′, we have

F1 .

∫∫
|v′ − v∗|γ

(∫
b(cos θ)min

(
|v′ − v∗|2θ2, 1

)
dσ
)
g2∗µ

′1/2dv′dv∗

.

∫ (∫
|v′ − v∗|γ+2sµ′dv′

)
g2∗dv∗ . ‖g‖2L2

s+γ/2
,

where we have used Lemma 3.1 in the case n = 3 to get the last inequality. A direct
estimation show thats the same bound holds true for F2. And this completes the
proof of the lemma. �

Remark 3.3. Note that the above lemma holds even if Φ is replaced by Φ̃ by using
Lemma 3.1.

We now turn to the lower bound for J2.

Lemma 3.4. Under the assumptions (1.2) and (1.3), with γ > −3, there exists a
constant C > 0 such that

J2 :=

∫∫∫
b(cos θ)Φ(|v − v∗|)g2∗

(√
µ′ −√

µ
)2
dvdv∗dσ ≥ C‖g‖2L2

s+γ/2
.

Proof. We will apply the argument used in [20]. By shifting to the ω-representation,

v′ = v −
(
(v − v∗) · ω

)
ω v′∗ = v +

(
(v − v∗) · ω

)
ω , ω ∈ S

2,

in view of the change of variables (v, v∗) → (v∗, v), we get,

J2 = 4

∫∫∫
b(cos θ) sin(θ/2)Φ(|v − v∗|)g2

(√
µ′
∗ −√

µ∗
)2
dvdv∗dω ,

because dσ = 4 sin(θ/2)dω. Then, we use the Carleman representation. The idea of
this representation is to replace the set of variables (v, v∗, ω) by the set (v, v′, v′∗).
Here, v, v′ ∈ R3 and v′∗ ∈ Evv′ , where Evv′ is the hyperplane passing through v and
orthogonal to v − v′. By using the formula

dv∗dω =
dv′∗dv

′

|v − v′|2 ,

cf. page 347 of [20], and by taking the change of variables

(v, v′, v′∗) → (v, v + h, v + y),
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with h ∈ R3 and y ∈ Eh, where Eh is the hyperplane orthogonal to h passing
through the origin in R3, we have

J2 ∼
∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≥|h|}

|y|1+2s+γ

|h|1+2s
g(v)2

×
(√

µ(v + y) −
√
µ(v + y + h)

)2
dv
dhdy

|h|2 ,

because

|h| = |v′ − v| = |v′∗ − v| tan θ
2
= |y| tan θ

2
, θ ∈ [0, π/2] ,

b(cos θ) sin(θ/2)Φ(|v − v∗|) ∼
|v∗ − v′|1+2s+γ

|v − v′|1+2s
1{|v′

∗−v|≥|v′−v|} .

We decompose v = v1 + v2, where v2 is the orthogonal projection of v on Eh.
Since µ is invariant by rotation, we may assume v = (0, 0, |v|) without loss of
generality. By introducing the polar coordinates

h = (ρ sinϑ cosφ, ρ sinϑ sinφ, ρ cosϑ) , ϑ ∈ [0, π], φ ∈ [0, 2π], ρ > 0,

we obtain |v1| = |v|| cosϑ|, |v1 + h| = | |v| cosϑ+ ρ| and |v2| = |v| sinϑ. Note that
if 0 < ϑ ≤ π/2, then

(√
µ(v + y) −

√
µ(v + y + h)

)2
= µ(v2 + y)

(√
µ(v1) −

√
µ(v1 + h)

)2

≥ µ(v2 + y)µ(v1)
(
1− e−ρ2/4

)2
/(2π)3/2.

Therefore, we have for any δ > 0

J2 ≥ C

∫

R3
v

g(v)2
{∫

R3
h

(√
µ(v1) −

√
µ(v1 + h)

)2

|h|3+2s

×
( ∫

y∈Eh∩{|y|≥|h|}
|y|1+2s+γµ(v2 + y)dy

)
dh
}
dv

≥ C

∫

R3
v

g(v)2
{∫ π/2

π/2−1/〈v〉
µ(v1)

(∫ δ

0

(
1− e−ρ2/4

)2

ρ1+2s

×
( ∫

y∈Eh

|y|1+2s+γµ(v2 + y)dy

−
∫

y∈Eh∩{|y|≤ρ}
|y|1+2s+γµ(v2 + y)dy

)
dρ

)
sinϑdϑ

}
dv .

Since we have
∫

y∈Eh∩{|y|≤ρ}
|y|1+2s+γµ(v2 + y)dy ≤ δ2s

∫

y∈Eh

|y|1+γµ(v2 + y)dy, if ρ ≤ δ ,

and it follows from Lemma 3.1 in the case n = 2, that
∫

y∈Eh

|y|βµ(v2 + y)dy ∼ 〈v2〉β if β > −2 ,
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there exist two constants C1, C2 > 0 such that if ρ ≤ δ, we have
∫

y∈Eh

|y|1+2s+γµ(v2 + y)dy −
∫

y∈Eh∩{|y|≤ρ}
|y|1+2s+γµ(v2 + y)dy

≥ C1〈v2〉1+2s+γ − C2δ
2s〈v2〉1+γ .

Taking a sufficiently small δ > 0 gives

J2 ≥ C

∫

R3
v

g(v)2
{∫ π/2

π/2−1/〈v〉
µ(v1)

×
(∫ δ

0

(
1− e−ρ2/4

)2

ρ1+2s
dρ

)
〈v2〉1+2s+γ sinϑdϑ

}
dv

≥ Cδ

∫

R3
v

〈v〉2s+γg(v)2
{∫ π/2

π/2−1/〈v〉
e−|v|2 cos2 ϑ〈v〉dϑ

}
dv

≥ Cδ‖g‖2s+γ/2 .

The proof of the lemma is now completed. �

Remark 3.5. In the above proof, the factor |y|γ can be replaced by 〈y〉γ, so that

Lemma 3.4 is valid even if Φ is replaced by Φ̃ = 〈v − v∗〉γ . By the above lemma
together with Lemma 3.2 and the Remark after it, we can conclude

(3.2) JΦ
2 ∼ ‖g‖2L2

s+γ/2
∼ J Φ̃

2 .

J1-estimate. We now turn to the estimation of the first term of the non-isotropic
norm, that is, J1. We will firstly show that the singular behavior of the cross-section
when v = v∗ can be smoothed out. This point is given by the following proposition.

Proposition 3.6. Under the same assumtion as in Theorem 1.1, we have

JΦ
1 + ‖g‖2L2

s+γ/2
∼ J Φ̃

1 + ‖g‖2L2
s+γ/2

.(3.3)

Remark 3.7. This proposition is nothing but Proposition 2.3 by Remark 3.5.

Proof. By using similar arguments as in the proof of Lemma 3.4, it follows from
the Carleman representation that

JΦ
1 ∼

∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≥|h|}

|y|1+2s+γ

|h|1+2s
µ(v)

(
g(v + y) − g(v + y + h)

)2
dv
dhdy

|h|2

=

∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≥|h|}

|y|1+2s+γ

|h|1+2s
µ(v + y)

(
g(v) − g(v + h)

)2
dv
dhdy

|h|2 ,

where the last equality is a direct consequence of the change of variables (v+y, y) →
(v,−y).

Similarly, we have

J Φ̃
1 ∼

∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≥|h|}

|y|1+2s〈y〉γ
|h|1+2s

µ(v + y)
(
g(v + h) − g(v)

)2
dv
dhdy

|h|2 .
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We claim that

∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≤|h|}

|y|1+2s+γ

|h|1+2s
µ(v + y)

(
g(v + h) − g(v)

)2
dv
dhdy

|h|2(3.4)

. ‖g‖2L2
s+γ/2

,
∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≤|h|}

|y|1+2s〈y〉γ
|h|1+2s

µ(v + y)
(
g(v + h) − g(v)

)2
dv
dhdy

|h|2(3.5)

. ‖g‖2L2
s+γ/2

.

Note carefully that the integration in these estimates is performed for ”large” values
of h.

Once we admit those estimates, to conclude the proof of the lemma, it suffices
to show that

G(v, h) =

∫

y∈Eh

|y|1+2s+γµ(v + y)dy ∼
∫

y∈Eh

|y|1+2s〈y〉γµ(v + y)dy = G̃(v, h).

We decompose v = v1+ v2, where v2 is the orthogonal projection of v on Eh. Then
we have µ(v+y) = µ(v1)µ(v2+y), whence it follows from Lemma 3.1 together with
1 + 2s+ γ > −2 that

G(v, h) ∼ µ(v1)〈v2〉1+2s+γ ∼ G̃(v, h) .

It remains to show (3.4) and (3.5). We write

∫

R3
v

∫

R3
h

∫

y∈Eh∩{|y|≤|h|}

|y|1+2s+γ

|h|1+2s
µ(v + y)

(
g(v + h) − g(v)

)2
dv
dhdy

|h|2

=

∫

R3
v

∫

{|h|≤1}

∫

y∈Eh∩{|y|≤|h|}
+

∫

R3
v

∫

{|h|≥1}

∫

y∈Eh∩{|y|≤|h|}
= A1 +A2 .

Take a small δ > 0 such that γ− δ > −3. Then, in view of 1+ γ− δ > −2, we have

A1 ≤
∫

R3
v

∫

{|h|≤1}

∫

y∈Eh

|y|1+γ−δ

|h|1−δ
µ(v + y)

(
g(v + h) − g(v)

)2
dv
dhdy

|h|2

=

∫

R3
v

µ(v1)

∫

{|h|≤1}

(∫

y∈Eh

|y|1+γ−δµ(v2 + y)dy
)(
g(v + h) − g(v)

)2 dh

|h|3−δ
dv

.

∫

R3
v

µ(v1)〈v2〉1+γ−δ
∫

{|h|≤1}

(
g(v + h) − g(v)

)2 dh

|h|3−δ
dv

.

∫

R3
v

∫

{|h|≤1}

(
µ(v1 − h) + µ(v1)

)
〈v2〉1+γ−δ∣∣g(v)

∣∣2 dh

|h|3−δ
dv ,

where we have used the change of variables v + h → v for the factor g(v + h).
As in the proof of Lemma 3.4, by assuming v = (0, 0, |v|), we introduce the polar
coordinates

h = (ρ sinϑ cosφ, ρ sinϑ sinφ, ρ cosϑ) , ϑ ∈ [0, π], φ ∈ [0, 2π], ρ > 0 .
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Since |v1| = |v|| cosϑ|, |v1 − h| = | |v| cosϑ − ρ| and |v2| = |v| sinϑ, by using the
change of varible |v| cosϑ = r, we obtain

A1 .

∫

R3
v

∣∣g(v)
∣∣2
∫ 1

0

1

ρ1−δ

×
(∫ |v|

−|v|

(1 + |v|2 − r2)(1+γ−δ)/2

|v|
(
e−|r−ρ|2/2 + e−r2/2

)
dr

)
dρdv .

Similarly, if 1 + 2s− δ > 1, then we have

A2 ≤
∫

R3
v

∫

{|h|≥1}

∫

y∈Eh

|y|1+γ+2s−δ

|h|1+2s−δ
µ(v + y)

(
g(v + h) − g(v)

)2
dv
dhdy

|h|2

.

∫

R3
v

∣∣g(v)
∣∣2
∫ ∞

1

1

ρ1+2s−δ

×
(∫ |v|

−|v|

(1 + |v|2 − r2)(1+γ+2s−δ)/2

|v|
(
e−|r−ρ|2/2 + e−r2/2

)
dr

)
dρdv .

If 1 + γ + 2s− δ ≥ 0, then

K(v, ρ) =

∫ |v|

−|v|

(1 + |v|2 − r2)(1+γ+2s−δ)/2

|v|
(
e−|r−ρ|2/2 + e−r2/2

)
dr

≤ 〈v〉(γ+2s−δ)/2
∫ |v|

−|v|

(
e−|r−ρ|2/2 + e−r2/2

)
dr . 〈v〉γ+2s

,

which shows

A2 .

∫

R3
v

∣∣g(v)
∣∣2
∫ ∞

1

K(v, ρ)

ρ1+2s−δ
dρdv .

∫
〈v〉γ+2s∣∣g(v)

∣∣2dv .(3.6)

On the other hand, if 1 + γ + 2s− δ < 0 and |v| ≥ 3, then

K(v, ρ) .

∫ |v|

0

(|v|2 − r2)(1+γ+2s−δ)/2

|v|
(
e−|r−ρ|2/2 + 3e−r2/2

)
dr

. |v|(−1+γ+2s−δ)/2

∫ |v|

0

(
|v| − r

)(1+γ+2s−δ)/2(
e−|r−ρ|2/2 + 3e−r2/2

)
dr

. 〈v〉γ+2s
+ |v|(−1+γ+2s−δ)/2

∫ |v|

|v|/2

(
|v| − r

)(1+γ+2s−δ)/2

3e−|r−ρ|2/2dr,

because

∫ |v|

0

(
|v| − r

)(1+γ+2s−δ)/2

e−|r|2/2dr . |v|(1+γ+2s−δ)/2

∫ |v|/2

0

e−|r|2/2dr

+ e−|v|2/8
∫ |v|

|v|/2

(
|v| − r

)(1+γ+2s−δ)/2

dr,
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where we have used that (1 + γ + 2s− δ)/2 > −1 for small δ > 0 that follows from
the assumption γ > −3. We now consider

∫ ∞

1

dρ

ρ1+2s−δ

∫ |v|

|v|/2

(
|v| − r

)(1+γ+2s−δ)/2

e−|r−ρ|2/2dr

≤
∫ |v|

|v|/2

(
|v| − r

)(1+γ+2s−δ)/2(∫

{|r−ρ|≤
√

2 log |v|}
(|v|/3)−(1+2s−δ)dρ

)
dr

+

∫ |v|

|v|/2

(
|v| − r

)(1+γ+2s−δ)/2(∫

{|r−ρ|≥
√

2 log |v|}

|v|−1dρ

ρ1+2s−δ

)
dr

.
(
|v|(1+γ+2s−δ)/2

√
2 log |v|+ |v|(1+γ+2s−δ)/2

)
. 〈v〉(1+γ+2s)/2

.

Therefore, in the case when 1 + γ + 2s − δ < 0, we also have (3.6). Similarly, we
have

A1 .

∫

R3
v

∣∣g(v)
∣∣2
∫ 1

0

K(v, ρ)

ρ1−δ
dρdv .

∫
〈v〉γ+2s∣∣g(v)

∣∣2dv ,

which shows (3.4). The proof of (3.5) is similar, and thus the proof of the proposi-
tion is completed.

�

Lemma 3.8. There exist constants C1, C2 > 0 such that

J1 ≥ C1‖〈v〉γ/2g‖2Hs − C2‖g‖2L2
s+γ/2

.(3.7)

The same conclusion holds even if µ replaced by µρ for any fixed ρ > 0.

Proof. It follows from Proposition 3.6 that

C
(
JΦ
1 + ‖g‖2L2

s+γ/2

)
≥ 2 J Φ̃

1

≥
∫∫∫

b(cos θ)
µ∗

〈v∗〉|γ|
(
〈v′〉γ/2g′ − 〈v〉γ/2g

)2
dσdvdv∗(3.8)

− 2

∫∫∫
b(cos θ)

µ∗

〈v∗〉|γ|
(
〈v〉γ/2 − 〈v′〉γ/2

)2
|g|2dσdvdv∗

= A1 +A2,

because Φ̃(|v − v∗|) ∼ 〈v′ − v∗〉γ ≥ 〈v′〉γ

〈v∗〉|γ|
and 2(a + b)2 ≥ a2 − 2b2. Setting

g̃ = 〈v〉γ/2g and noting Cγµ(v)〈v〉−|γ| ≥ µ(2v) for a Cγ > 0, as in Proposition 1 of
[3], we have

Cγ A1 ≥
∫

R6

∫

S2

b
( v − v∗
|v − v∗|

· σ
)
µ(2v∗)

(
g̃(v)− g̃(v′)

)2
dσdv∗dv

= (4π)−3

∫

R3

∫

S2

b
( ξ
|ξ| · σ

){
µ̂(0)|ˆ̃g(ξ)|2 + µ̂(0)|ˆ̃g(ξ+)|2

− 2Re µ̂(ξ−/2)ˆ̃g(ξ+)¯̃̂g(ξ)
}
dσdξ

≥ 1

2(4π)3

∫

R3

|ˆ̃g(ξ)|2
{∫

S2

b
( ξ
|ξ| · σ

)
(µ̂(0)− |µ̂(ξ−/2)|)dσ

}
dξ .
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Since we have µ̂(0)− |µ̂(ξ−/2)| = c(1 − e−|ξ−|2/8) ≥ c′|ξ−|2 if |ξ−| ≤ 1, in view of
|ξ−|2 = |ξ|2 sin2 θ/2 ≥ |ξ|2(θ/π)2, we obtain for |ξ| ≥ 1

∫

S2

b
( ξ
|ξ| · σ

)
(µ̂(0)− |µ̂(ξ−)|)dσ ≥

∫

|ξ|(θ/π)≤1

sin θb(cos θ)|ξ|2(θ/π)2dθ

≥ c′′K|ξ|2
∫ 1/|ξ|

0

θ−1−2sθ2dθ

= c′′K|ξ|2|ξ|2s−2/(2− 2s).

Therefore, we have

A1 ≥ C1

∫

|ξ|≥1

|ξ|2s|ˆ̃g(ξ)|2dξ ≥ C12
−2s

∫

|ξ|≥1

(1 + |ξ|2)s|ˆ̃g(ξ)|2dξ(3.9)

≥ C12
−2s‖〈v〉γ/2g‖2Hs(R3

v)
− C1‖〈v〉γ/2g‖2L2(R3

v)
.

As for A2, we note that if vτ = v′ + τ(v − v′) for τ ∈ [0, 1], then

〈v〉 ≤ 〈v − v∗〉+ 〈v∗〉 ≤
√
2〈vτ − v∗〉+ 〈v∗〉 ≤ (1 +

√
2)〈vτ 〉〈v∗〉,

and 〈vτ 〉 ≤ (1 +
√
2)〈v〉〈v∗〉, which show 〈vτ 〉β ≤ Cβ〈v〉β〈v∗〉|β| for any β ∈ R. It

follows that
∣∣∣〈v〉γ/2 − 〈v′〉γ/2

∣∣∣ ≤ Cγ

∫ 1

0

〈v′ + τ(v − v′)〉(γ/2−1)
dτ |v − v∗|θ

≤ C′
γ

(
〈v〉(γ/2−1)〈v∗〉|γ/2−1|

)
〈v − v∗〉θ,

and thus we have

A2 ≤ C

∫∫
µ∗

〈v∗〉|γ|
|g|2
{(

〈v〉(γ−2)〈v∗〉|γ−2|
)2( ∫ 〈v−v∗〉−1

0

θ−1−2s
(
〈v − v∗〉θ

)2
dθ
)

+

∫ π/2

〈v−v∗〉−1

(
〈v〉γ + 〈v〉γ〈v∗〉|γ|

)
θ−1−2sdθ

}
dvdv∗

≤ C

∫∫ (
〈v〉2s+γ〈v∗〉2s+max(|γ−2|−|γ|,0)

)
µ∗|g|2dvdv∗ ≤ C‖g‖2L2

s+γ/2
,

which together with (3.9) yields the desired estimate (3.7). The last estimate of
the lemma is obvious by replacing µ by µρ in each step of the above arguments, so
that the proof of the lemma is completed. �

Lemma 3.4 together with Lemma 3.8 imply that we have the following lower
bound on the non-isotropic norm,

(3.10) |||g|||2 &
(
‖g‖2Hs

γ/2
+ ‖g‖2L2

s+γ/2

)
.

Therefore, to complete the proof of Proposition 2.2, it remains to show

Lemma 3.9. Let γ > −3. Then we have

J1 . ‖g‖2Hs
s+γ/2

+ ‖g‖2L2
s+γ/2

.

The same conclusion holds even if µ in J1 is replaced by µρ for any fixed ρ > 0.
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Proof. As for Lemma 3.8, it follows from Proposition 3.6 that, for suitable constants
C1, C2 > 0, we have

C1J
Φ
1 − C2‖g‖2L2

s+γ/2
≤ J Φ̃

1

≤ 2

∫∫∫
b(cos θ)µ∗〈v∗〉|γ|

(
〈v′〉γ/2g′ − 〈v〉γ/2g

)2
dσdvdv∗(3.11)

+ 2

∫∫∫
b(cos θ)µ∗〈v∗〉|γ|

(
〈v〉γ/2 − 〈v′〉γ/2

)2
|g|2dσdvdv∗

= B1 +B2,

because Φ̃(|v − v∗|) ∼ 〈v′ − v∗〉γ ≤ 〈v′〉γ〈v∗〉|γ| and (a+ b)2 ≤ 2(a2 + b2).
By the same argument for A2 in the proof of Lemma 3.8, we get B2 . ‖g‖L2

s+γ/2
.

To estimate B1, we apply Theorem 2.1 of [5] about the upper bound on the
collision operator in the Maxwellian molecule case. It follows from (2.1.9) of [5]
with (m,α) = (−s,−s) that

∣∣∣
(
QΦ0(F,G), G

)∣∣∣ . ‖F‖L1
s+2s

‖G‖2Hs
s
.

Since 2a(b− a) = −(b− a)2 + (a2 − b2), we get
(
QΦ0(F,G), G

)
=

∫∫∫
bF∗G(G

′ −G)

= −1

2

∫∫∫
bF∗(G

′ −G)2 +
1

2

∫∫
F∗
(
G′2 −G2

)
,

and therefore
∣∣∣
∫∫∫

bF∗(G
′ −G)2

∣∣∣ ≤ 2
∣∣∣
(
QΦ0(F,G), G

)∣∣∣+
∣∣∣
∫∫

F∗
(
G′2 −G2

)∣∣∣

. ‖F‖L1
3s
‖G‖2Hs

s
+ ‖F‖L1‖G‖2L2 ,

where we have used the cancellation lemma from [3] for the second term. Choosing

F = µ〈v〉|γ| and G = 〈v〉γ/2g, it follows that B1 . ‖g‖2Hs
s+γ/2

, completing the proof

of the lemma. �

4. Equivalence to the linearized operator

We will now show that the Dirichlet form of the linearized collision operator
is equivalent to the square of the non-isotropic norm, and therefore, the proof of
Proposition 2.1 will be given. Let us note that for the bilinear operator Γ( ·, · ), for
suitable functions f, g, one has

(
Γ(f, g), h

)
L2

=

∫∫∫
b(cos θ)Φ(|v − v∗|)√µ∗

(
f ′
∗g

′ − f∗g
)
h

=

∫∫∫
b(cos θ)Φ(|v − v∗|)

√
µ′
∗
(
f∗g − f ′

∗g
′)h′ ,

and by adding these two lines, it follows that

(4.1)
(
Γ(f, g), h

)
L2

=
1

2

∫∫∫
b(cos θ)Φ(|v− v∗|)

(
f ′
∗g

′− f∗g
)(√

µ∗ h−
√
µ′
∗ h

′
)
.

The following lemma shows that L1 dominates L.
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Lemma 4.1. Under the conditions (1.2),(1.3) on the cross-section with 0 < s < 1
and γ ∈ R, we have

(4.2)
(
L1g, g

)
L2

≥ 1

2

(
Lg, g

)
L2
.

Proof. By standard changes of variables, the following computations hold true

(
L1g, g

)
L2

= −
(
Γ(

√
µ , g), g

)
L2

=
1

2

∫∫∫
B(|v − v∗|, cos θ)

(
(µ′

∗)
1/2g′ − (µ∗)

1/2g
)2
dv∗dσdv

=
1

2

∫∫∫
B(|v − v∗|, cos θ)

(
(µ′)1/2g′∗ − (µ)1/2g∗

)2
dv∗dσdv

=
1

4

∫∫∫
B(|v − v∗|, cos θ)

×
{(

(µ′
∗)

1/2g′ − (µ∗)
1/2g

)2
+
(
(µ′)1/2g′∗ − (µ)1/2g∗

)2}
,

and

(
Lg, g

)
L2

= −
(
Γ(

√
µ , g) + Γ(g,

√
µ ), g

)
L2(R3

v)

=

∫∫∫
B
(
(µ∗)

1/2g − (µ′
∗)

1/2g′ + g∗(µ)
1/2 − g′∗(µ

′)1/2
)
(µ∗)

1/2 g

=

∫∫∫
B
(
(µ′

∗)
1/2g′ − (µ∗)

1/2g + g′∗(µ
′)1/2 − g∗(µ)

1/2
)
(µ′

∗)
1/2 g′

=

∫∫∫
B
(
(µ)1/2g∗ − (µ′)1/2g′∗ + g(µ∗)

1/2 − g′(µ′
∗)

1/2
)
(µ)1/2 g∗

=

∫∫∫
B
(
(µ′)1/2g′∗ − (µ)1/2g∗ + g′(µ′

∗)
1/2 − g(µ∗)

1/2
)
(µ′)1/2 g′∗

=
1

4

∫∫∫
B
{(

(µ∗)
1/2g − (µ′

∗)
1/2g′

)
+
(
(µ)1/2g∗ − (µ′)1/2g′∗

)}2

.

Therefore, (4.2) follows from (α+β)2 ≤ 2(α2+β2) and the proof is completed. �

Now for the term L2, we have

Lemma 4.2. One has

∣∣∣
(
L2g, h

)
L2

∣∣∣ . ‖µ1/103g‖L2‖µ1/103h‖L2 .

Proof. It follows from (4.1) that

(
L2(g), h

)
L2

= −1

2

∫∫∫
B
(
g′∗
√
µ′ − g∗

√
µ
)(√

µ∗ h−
√
µ′
∗ h

′
)

=
(
g ,L2(h)

)
L2
,
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that is, L2 is symmetric. Hence it suffices to show the lemma in the case when
g = h. Putting G =

√
µg, we have

−L2g =µ
−1/2Q(G, µ)

=µ−1/2

∫∫
b(cos θ)Φ(|v − v∗|)G′

∗

(
µ′ − µ

)
dv∗dσ

+
√
µ

∫∫
b(cos θ)Φ(|v − v∗|)

(
G′

∗ −G∗
)
dv∗dσ

=I1(v) + I2(v).

Thanks to the cancellation lemma, we have I2(v) =
√
µ(v)

(
S ∗G)(v) with S(v) ∼

|v|γ , whence we have
∣∣∣(I2, g)L2

∣∣∣ .
∫

v

∫

v∗

|v − v∗|γ
√
µ
√
µ∗|g||g∗|dvdv∗(4.3)

.

∫

v

∫

v∗

|v − v∗|γ
{
(µ

1/4
∗ µ1/4g)2 + (µ1/4µ

1/4
∗ g∗)

2
}
dvdv∗

. ‖〈v〉γµ1/4g‖2L2 . ‖µ1/8g‖2L2 ,

by means of Lemma 3.1.
Writing

µ′ − µ =
√
µ′(√µ′ −√

µ
)
+
√
µ
(√

µ′ −√
µ
)

and using
√
µ′µ′

∗ =
√
µµ∗ , we have

I1(v) =

∫∫
b(cos θ)Φ(|v − v∗|)g′∗

(√
µ∗ +

√
µ′
∗

) (√
µ′ −√

µ
)
dv∗dσ.

Hence
(
I1, g

)
L2

=

∫∫∫
b(cos θ)Φ(|v − v∗|)g′∗

(√
µ∗ −

√
µ′
∗

) (√
µ′ −√

µ
)
gdvdv∗dσ

+ 2

∫∫∫
b(cos θ)Φ(|v − v∗|)G∗

(√
µ −

√
µ′
)
g′dvdv∗dσ

=A1 +A2 ,

where we have used the change of variables (v, v∗) → (v′, v′∗) for the second term.
We can write

A1 =

∫∫∫
b(cos θ)Φ(|v − v∗|)

(
µ∗

1/4 − µ′
∗
1/4
) (

µ′1/4 − µ1/4
)
g′∗g

×
(
µ∗

1/4 + µ′
∗
1/4
) (

µ′1/4 + µ1/4
)
dσdvdv∗ .

Since we have

|v′∗|2 ≤ (|v′∗ − v′|+ |v′|)2 ≤ (
√
2|v∗ − v′|+ |v′|)2

≤ (
√
2|v∗|+ (

√
2 + 1)|v′|)2 ≤ 4|v∗|2 + 2(

√
2 + 1)2|v′|2,

and in the same way, |v|2 ≤ 4|v′|2 + 2(
√
2 + 1)2|v∗|2, we get, by adding the two

corresponding inequalities, that µ∗µ′ ≤ (µ′
∗µ)

1/(10+4
√
2). Moreover, we have µ′

∗µ
′ =

µ∗µ ≤ (µ′
∗µ)

1/5 because |v′∗|2 ≤ (|v′∗ − v|+ |v|)2 ≤ (|v∗ − v|+ |v|)2 ≤ 2|v∗|2 + 8|v|2.
Noticing that ∣∣∣

(
µ∗

1/4 − µ′
∗
1/4
) (

µ′1/4 − µ1/4
)∣∣∣ . |v − v′∗|2θ2,
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we get

|A1| .
∫∫

|v − v′∗|γ+2

{∫ π/2

0

θ1−2sdθ

}
(µ′

∗µ)
1/80g′∗gdvdv

′
∗(4.4)

.

∫∫
|v − v′∗|γ(µ′

∗µ)
1/160g′∗gdvdv

′
∗ . ‖µ1/103g‖2L2 ,

by an argument similar to the analysis of I1.
For A2, we use the regular change of variable v → v′, and denote its inverse

transformation by v′ → ψσ(v
′) = v. Then

A2 = 2

∫∫ √
µ∗g∗

{∫

S2

b
( ψσ(v

′)− v∗
|ψσ(v′)− v∗|

· σ
)
Φ(|ψσ(v

′)− v∗|)

×
(√

µ(ψσ(v′)) −
√
µ(v′)

)∣∣∣∂(ψσ(v
′))

∂(v′)

∣∣∣dσ
}
g(v′)dv∗dv

′ .

It follows from the Taylor expansion that
√
µ(ψσ(v′)) −

√
µ(v′)) =

(
∇√

µ
)
(v′) ·

(
ψσ(v

′)− v′
)

+

∫ 1

0

(1− τ)
(
∇2√µ

)
(v′ + τ(ψσ(v

′)− v′))
(
ψσ(v

′)− v′
)2
dτ.

Note that the integral with respect to σ corresponding to the first order term
vanishes, by means of the symmetry on S2. Putting v′τ = v′ + τ(ψσ(v

′) − v′), we
have |v′|2 ≤ (|v′ − v∗|+ |v∗|)2 ≤ ((|v′τ − v∗|+ |v∗|)2 ≤ 2|v′τ |2 + 8|v∗|2, so that

∣∣∣
√
µ(v∗)

(
∇2√µ

)
(v′ + τ(ψσ(v

′)− v′))
∣∣∣ . (µ(v∗)µ(v

′))1/12 .

Since |ψσ(v
′)− v′| . |v′ − v∗|θ, we have

|A2| .
∫∫ {∫ π/2

0

θ1−2sdθ

}
|v′ − v∗|γ+2(µ∗ µ

′)1/12|g∗| |g′|dv∗dv′

.

∫∫
|v′ − v∗|γ(µ∗ µ

′)1/24|g∗| |g′|dv∗dv′ . ‖µ1/103g‖2L2.

Together with (4.3) and (4.4), this yields the desired estimate and completes the
proof of the lemma. �

Recalling

|||g|||2 =

∫∫∫
b(cos θ)Φ(|v − v∗|)µ∗

(
g′ − g

)2

+

∫∫∫
b(cos θ)Φ(|v − v∗|)g2∗

(√
µ′ −√

µ
)2

(4.5)

=J1 + J2 ,

let us first note the following inequality between
(
L1g, g

)
L2
, corresponding to the

first term of the linear operator, and the non-isotropic norm.

Proposition 4.3. Let γ > −3. There exists a constant C > 0 such that

|||g|||2 ≥
(
L1g, g

)
L2

≥ 1

10
|||g|||2 − C‖g‖2L2

γ/2
.(4.6)
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Proof. The equalities

2
(
L1g, g

)
L2

= −2
(
Γ(

√
µ, g), g

)
L2

=

∫∫∫
B
(
(µ′

∗)
1/2g′ − (µ∗)

1/2 g
)2
dvdv∗dσ(4.7)

=

∫∫∫
B
(
(µ′

∗)
1/2(g′ − g) + g((µ′

∗)
1/2 − (µ∗)

1/2
)2
dvdv∗dσ,

together with the inequality

2(a2 + b2) ≥ (a+ b)2 ≥ 1

2
a2 − b2

yields

|||g|||2 ≥
(
L1g, g

)
L2

≥ 1

4
J1 −

1

2
J2 ≥ 1

4
|||g|||2 − 3

4
J2 .(4.8)

It follows from the equality (a+ b)2 = a2 + b2 + 2ab that

2
(
L1g, g

)
L2

≥ J2 − C‖g‖2L2
γ/2

,(4.9)

which yields the desired estimate (4.6) together with (4.8).
Indeed, note that

2
(
L1g, g

)
L2

=

∫∫∫
B
(
(µ′

∗)
1/2(g′ − g) + g((µ′

∗)
1/2 − (µ∗)

1/2)
)2
dvdv∗dσ

= J1 + J2 + 2

∫∫∫
B (g′ − g)g(µ′

∗)
1/2
(
(µ′

∗)
1/2 − (µ∗)

1/2
)
dvdv∗dσ .

Using the identity 2(β − α)α = β2 − α2 − (β − α)2, we have

2(g′ − g)g(µ′
∗)

1/2
(
(µ′

∗)
1/2 − (µ∗)

1/2
)

=
1

2

(
g′2 − g2 − (g′ − g)2

)(
µ′
∗ − µ∗ +

(
(µ′

∗)
1/2 − (µ∗)

1/2
)2)

= −1

2

(
g′ − g

)2(
(µ′

∗)
1/2 − (µ∗)

1/2
)2

+
1

2

(
g2 − g′

2 )(
µ∗ − µ′

∗
)

+
1

2

(
g′ − g

)2(
µ∗ − µ′

∗
)
+

1

2

(
g′

2 − g2
)(

(µ′
∗)

1/2 − (µ∗)
1/2
)2

=I1 + I2 + I3 + I4 .

Using the change of variables (v′, v′∗) → (v, v∗), we see that
∣∣∣
∫∫∫

B I2dvdv∗dσ
∣∣∣ =

∣∣∣
∫∫∫

B µ∗
(
g2 − g′2

)
dvdv∗dσ

∣∣∣ ≤ C‖g‖2L2
γ/2

,

by means of the cancellation lemma. Furthermore,∫∫∫
B I1dvdv∗dσ =− 1

2

∫∫∫
B(µ∗ + µ′

∗)
(
g′ − g

)2
dvdv∗dσ

+

∫∫∫
B(µ∗)

1/2(µ′
∗)

1/2
(
g′ − g

)2
dvdv∗dσ ≥ −J1 ,

where we have used the change of variables (v′, v′∗) → (v, v∗). Thus, we obtain (4.9)
because the integrals corresponding to the last two terms I3 and I4 vanish, ending
the proof of the proposition. �
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End of the proof of Proposition 2.1: It follows from (4.6) and (4.2) that

|||g|||2 ≥
(
L1g, g

)
L2

≥ 1

2

(
Lg, g

)
L2
.(4.10)

On the other hand, note that
(
Lg, g

)
L2

=
(
L(I − P)g, (I − P)g

)
L2
, from the

very definition of the projection operator P.
Thus, from Proposition 4.3 and Lemma 4.2, we get

(
Lg, g

)
L2

=
(
L1(I−P)g, (I−P)g

)
L2

+
(
L2(I−P)g, (I−P)g

)
L2

≥ 1

10
|||(I−P)g|||2 − C‖(I−P)g‖2L2

γ/2
.

Since it is known from [16] that we have
(
Lg, g

)
L2

≥ C‖(I−P)g‖2L2
γ/2

,

we get on the whole

|||(I−P)g|||2 ≤ C
(
Lg, g

)
L2

.(4.11)

5. Non-isotropic norms with different kinetic factors

This section is devoted to the proof of Proposition 2.4. That is, we will show
some equivalence relations between the non-isotropic norms with different kinetic
factors and different weights.

For the proof, we introduce some further notations. Let ρ > 0, µρ(v) = µ(v)ρ,
and set

J
Φγ

1,ρ(g) =

∫∫∫
Φγ(|v − v∗|)b(cos θ)µρ,∗

(
g′ − g

)2
dvdv∗dσ .

We simply write J
Φγ

1 (g) if ρ = 1, and also introduce the notation J
Φγ

2,ρ(g) similarly
with µ replaced by µρ.

Then it follows from (3.2) and the change of variables v → v/
√
ρ that

J
Φγ

2,ρ (g) ∼ ‖g‖2L2
s+γ/2

= ‖〈v〉(γ−β)/2g‖2L2
s+β/2

∼ J
Φβ

2,ρ (〈v〉(γ−β)/2g) .(5.1)

By the last assertions of Lemmas 3.8 and 3.9, there exist constants C1, C2 > 0 such
that

(5.2) C1‖g‖2Hs
γ/2

≤ J
Φγ

1,ρ(g) + ‖g‖2L2
s+γ/2

≤ C2‖g‖2Hs
s+γ/2

.

Furthermore, it follows from (3.8), (3.11) and the proofs of Lemmas 3.8 and 3.9
that

JΦ0

1,2(〈v〉γ/2g) . J
Φγ

1 (g) . JΦ0

1,1/2(〈v〉
γ/2

g), modulo ‖g|2L2
s+γ/2

,

because we have C1µ2 ≤ µ〈v〉±|γ| ≤ C2µ1/2.
Therefore, to complete the proof of Proposition 2.3, it suffices to show that for

any ρ, ρ′ > 0

(5.3) JΦ0

1,ρ(g) ∼ JΦ0

1,ρ′(g), modulo ‖g‖2L2
s
.

In fact, note that

J
Φγ

1 (g) ∼ JΦ0

1,ρ(〈v〉γ/2g) ∼ J
Φβ

1 (〈v〉(γ−β)/2
g), modulo ‖g‖2L2

s+γ/2
.
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This equivalence looks quite obvious, however, for completeness, we shall give a
proof. In fact, (5.3) is a direct consequence of the following lemma, by taking
f = µρ′ .

Lemma 5.1. Assume that (1.3) with 0 < s < 1. Then there exists a constant
C > 0 such that

∫∫∫
b f2

∗ (g
′ − g)2dσdvdv∗ ≤ C‖f‖2L2

s

(
JΦ0

1,ρ(g) + ‖g‖2L2
s

)
.(5.4)

Once the equivalence (5.3) has been established, we have

Corollary 5.2. Assume that (1.3) holds with 0 < s < 1. Then there exists a
constant C > 0 such that

∫∫∫
b f2

∗ (g
′ − g)2dσdvdv∗ ≤ C‖f‖2L2

s
|||g|||2Φ0

.(5.5)

Proof. It is enough to consider the case ρ = 1. As in the proof of Lemma 3.8, it
follows from Proposition 2 of [3] that

JΦ0

1 (g) =

∫∫∫
b(cos θ)µ∗(g

′ − g)2dv∗dσdv

=
1

(2π)3

∫∫
b

(
ξ

|ξ| · σ
)(

µ̂(0)|ĝ(ξ)|2 + |ĝ(ξ+)|2

− 2Re µ̂(ξ−)ĝ(ξ+)ĝ(ξ)
)
dξdσ

=
1

(2π)3

∫∫
b
( ξ
|ξ| · σ

)(
µ̂(0)|ĝ(ξ)− ĝ(ξ+)|2(5.6)

+ 2Re
(
µ̂(0)− µ̂(ξ−)

)
ĝ(ξ+)ĝ(ξ)

)
dξdσ,

and

A =

∫∫∫
b(cos θ)f2

∗ (g
′ − g)2dv∗dσdv

=
1

(2π)3

∫∫
b

(
ξ

|ξ| · σ
)(

f̂2(0)|ĝ(ξ)− ĝ(ξ+)|2

+ 2Re
(
f̂2(0)− f̂2(ξ−)

)
ĝ(ξ+)ĝ(ξ)

)
dξdσ .

Since f̂2(0) = ‖f‖2L2 and µ̂(0) = c0 > 0, we obtain

c0A = c0

∫∫∫
b(cos θ)f2

∗ (g
′ − g)2dv∗dσdv

= ‖f‖2L2J
Φ0

1 (g)

− 2

(2π)3
‖f‖2L2

∫∫
b

(
ξ

|ξ| · σ
)
Re
(
µ̂(0)− µ̂(ξ−)

)
ĝ(ξ+)ĝ(ξ)

)
dξdσ

+
2c0
(2π)3

∫∫
b

(
ξ

|ξ| · σ
)
Re
(
f̂2(0)− f̂2(ξ−)

)
ĝ(ξ+)ĝ(ξ)

)
dξdσ

= ‖f‖2L2J
Φ0

1 (g) +A1 +A2 .
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Write

A2 =
2c0
(2π)3

{∫
|ĝ(ξ)|2

( ∫
b

(
ξ

|ξ| · σ
)
Re
(
f̂2(0)− f̂2(ξ−)

)
dσ
)
dξ

+

∫∫
b

(
ξ

|ξ| · σ
)
Re
(
f̂2(0)− f̂2(ξ−)

)(
ĝ(ξ+)− ĝ(ξ)

)
ĝ(ξ)dξdσ

}

=A2,1 +A2,2 .

It follows from Cauchy-Schwarz’s inequality that

|A2,2| ≤ C
(∫∫

b

(
ξ

|ξ| · σ
)
|f̂2(0)− f̂2(ξ−)|2|ĝ|2(ξ)dξdσ

)1/2

×
( ∫∫

b

(
ξ

|ξ| · σ
)
|ĝ(ξ+)− ĝ(ξ)|2dξdσ

)1/2

= B
1/2
1 ×B

1/2
2 .

Since

|f̂2(0)− f̂2(ξ−)| ≤
∫
f2(v)|1 − e−iv·ξ− |dv,

we have

B1 ≤ C

∫∫∫
|ĝ(ξ)|2f2(v)f2(w)

×
( ∫

b

(
ξ

|ξ| · σ
)
(|1− e−iv·ξ− |2 + |1− e−iw·ξ− |2)dσ

)
dvdwdξ

≤ C‖g‖2Hs‖f‖2L2‖f‖2L2
s
,

because
∫
b

(
ξ

|ξ| · σ
)
|1− e−iv·ξ− |2dσ

≤ C
( ∫ (〈v〉〈ξ〉)−1

0

θ−1−2s(|v||ξ|)2θ2dθ +
∫ π/2

(〈v〉〈ξ〉)−1

θ−1−2sdθ
)

≤ C〈v〉2s〈ξ〉2s .

Then we have |A2,1| ≤ C‖g‖2Hs‖f‖2L2
s
because

∫
b

(
ξ

|ξ| · σ
)
Re
(
f̂2(0)− f̂2(ξ−)

)
dσ

=

∫
f2(v)

( ∫
b

(
ξ

|ξ| · σ
)(

1− cos(v · ξ−)
)
dσ
)
dv

≤ C〈ξ〉2s
∫
f2(v)〈v〉2sdv .

Since µ̂(ξ) is real-valued, it follows that

Re
(
µ̂(0)− µ̂(ξ−)

)
ĝ(ξ+)ĝ(ξ) =

(∫ (
1− cos(v · ξ−)

)
µ(v)dv

)
Re ĝ(ξ+)ĝ(ξ) .

Therefore, by using Cauchy-Schwarz’s inequality and the change of variables ξ → ξ+

( see the proof of Lemma 2.8 in [6]), we obtain |A1| ≤ C‖f‖2L2‖g‖2Hs . Furthermore,
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it follows from (5.6) that

B2 =

∫∫
b
( ξ
|ξ| · σ

)
|ĝ(ξ)− ĝ(ξ+)|2dξdσ

≤C
(
JΦ0

1 (g) + ‖g‖2Hs

)
,

which yields |A2,2| ≤ C‖f‖L2‖f‖L2
s
‖g‖Hs

(
JΦ0

1 (g) + ‖g‖2Hs

)1/2
. Hence

|A2| ≤ C‖f‖2L2
s
‖g‖Hs

(
JΦ0

1 (g) + ‖g‖2Hs

)1/2
.

Finally, we have

A ≤ C‖f‖2L2
s
‖g‖Hs

(
JΦ0

1 (g) + ‖g‖2Hs

)1/2
≤ C‖f‖2L2

s

(
JΦ0

1 (g) + ‖g‖2L2
s

)
,

by means of (5.2) with γ = 0, completing the proof of the lemma. �

6. Estimation on the nonlinear operator

Based on the previous analysis, we will give an explicit and simple upper bound
estimate on the Boltzmann nonlinear operator when γ > − 3

2 . In fact, an upper

bound estimate is also available for the case when −3 < γ ≤ − 3
2 . However, since it

is more complicated and not so simple, it will be given in [7].
In any case, our reason for including these non linear estimations here is to show

the usefulness of the estimates on the linearized operator and the non-isotropic
norm.

Firstly, we consider the case when γ ≥ 0.

Lemma 6.1. Let γ ≥ 0. Assume that (1.3) with 0 < s < 1. Then
∫∫∫

Φγ(|v − v∗|)b f2
∗ (g

′ − g)2dσdvdv∗ . ‖f‖2L2
s+γ/2

|||g|||2Φγ
.(6.1)

Proof. Since Φγ(|v − v∗|) . 〈v′〉γ + 〈v∗〉γ , we have
∫∫∫

b(cos θ)Φ(|v − v∗|)f2
∗ (g

′ − g)2dσdvdv∗

.

∫∫∫
b(cos θ)f2

∗

(
〈v′〉γ/2g′ − 〈v〉γ/2g

)2
dσdvdv∗

+

∫∫∫
b(cos θ)

(
〈v∗〉γ/2f∗

)2
(g′ − g)2dσdvdv∗

+

∫∫∫
b(cos θ)f2

∗

(
〈v〉γ/2 − 〈v′〉γ/2

)2
|g|2dσdvdv∗

= A1 +A2 +A3 .

Noticing that

∣∣∣〈v〉γ/2 − 〈v′〉γ/2
∣∣∣ ≤ Cγ

∫ 1

0

〈v′ + τ(v − v′)〉(γ/2−1)+dτ |v − v∗|θ

≤ C′
γ

(
〈v〉(γ/2−1)+

+ 〈v∗〉(γ/2−1)+
)
〈v − v∗〉θ,
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we have

A3 .

∫∫
f2
∗ |g|2

{(
〈v〉(γ/2−1)+

+ 〈v∗〉(γ/2−1)+
)2

×
(∫ 〈v−v∗〉−1

0

θ−1−2s
(
〈v − v∗〉θ

)2
dθ
)

+

∫ π/2

〈v−v∗〉−1

(
〈v〉γ/2 + 〈v∗〉γ/2

)2
θ−1−2sdθ

}
dvdv∗

.

∫∫ (
〈v〉2s+γ

+ 〈v∗〉2s+γ
)
f2
∗ |g|2dvdv∗

.
(
‖f‖2L2

s+γ/2
‖g‖2L2 + ‖f‖2L2‖g‖2L2

s+γ/2

)
.

Applying Corollary 5.2 to A1 and A2, it follows that

A1 +A2 . ‖f‖2L2
s
|||〈v〉γ/2g|||2Φ0

+ ‖〈v〉γ/2f‖2L2
s
|||g|||2Φ0

. ‖f‖2L2
s+γ/2

|||g|||2Φγ
,

where we have used Proposition 2.4 in the last inequality. �

Proof of Proposition 2.5 for the case when γ ≥ 0
Note that

(
Γ(f, g), h

)
L2

=
(
µ−1/2Q(µ1/2f, µ1/2g), h

)
L2

(6.2)

=

∫∫∫
Φγb(cos θ)µ

1/2
∗
(
f ′
∗g

′ − f∗g
)
h

=
1

2

∫∫∫
Φγb(cos θ)

(
f ′
∗g

′ − f∗g
)(
µ
1/2
∗ h− µ

1/2′

∗ h′
)

≤ 1

2

(∫∫∫
Φγb(cos θ)

(
f ′
∗g

′ − f∗g
)2)1/2

×
(∫∫∫

Φγb(cos θ)
(
(µ∗)

1/2h− (µ′
∗)

1/2h′
)2)1/2

≤ 1

2
A1/2 ×B1/2.

For B, we have

B =

∫∫∫
Φγb(cos θ)

(
(µ′

∗)
1/2(h′ − h) + h

(
(µ′

∗)
1/2 − (µ∗)

1/2
))2

≤ 2

∫∫∫
Φγb(cos θ)

{
µ′
∗(h

′ − h)2 + h2
(
(µ′

∗)
1/2 − (µ∗)

1/2
)2}

≤ 2

∫∫∫
Φγb(cos θ)µ∗(h

′ − h)2 + 2

∫∫∫
Φγb(cos θ)h

2
∗

(
(µ′)1/2 − µ1/2

)2

= 2|||h|||2Φγ
,
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where we have used the change of variables (v, v∗) → (v′, v′∗) for the first term and
(v, v∗) → (v∗, v) for the second term. Similarly,

A =

∫∫∫
Φγb(cos θ)

(
f ′
∗(g

′ − g) + g(f ′
∗ − f∗)

)2

≤ 2

∫∫∫
Φγb(cos θ)

{
f ′
∗
2
(g′ − g)2 + g2(f ′

∗ − f∗)
2
}

≤ 2

∫∫∫
Φγb(cos θ)f∗

2(g′ − g)2 + 2

∫∫∫
Φγb(cos θ)g∗

2(f ′ − f)2.

Then (6.1) implies that

A . ||f ||2L2
s+γ/2

|||g|||2Φγ
+ ||g||2L2

s+γ/2
|||f |||2Φγ

,

which completes the proof in the case when γ ≥ 0.

Proof of Proposition 2.5 in the case when −3/2 < γ < 0

As in Section 5, it is easy to check that for any fixed ρ > 0,

|||g|||2Φγ
∼ J

Φγ

1,ρ (g) + J
Φγ

2,ρ(g) ∼ J
Φγ

1,ρ (g) + ‖g‖2L2
s+γ/2

(6.3)

∼
∫∫∫

Φ2γ

Φ̃γ

bµρ,∗(g
′ − g)2 +

∫∫∫
Φ2γ

Φ̃γ

bg2∗

(√
µ′
ρ −

√
µρ

)2
,

where the assumption 2γ > −3 is required for the existence of the above integral,
and more precisely for

∫
|v∗|2γ〈v∗〉2s−γµρ(v + v∗)dv∗ ∼ 〈v〉γ+2s .

Instead of (6.2), we write

(
Γ(f, g), h

)
=

∫∫∫
bΦγµ

1/2
∗
(
f ′
∗g

′ − f∗g
)
hdvdv∗dσ

=
1

2

∫∫∫ (
bΦ̃γ

)1/2(
f ′
∗g

′ − f∗g
)(
b
Φ2γ

Φ̃γ

)1/2
µ′
∗
1/4
(
µ∗

1/4h− µ′
∗
1/4
h′
)

+
1

2

∫∫∫ (
bΦ̃γ

)1/2(
f ′
∗g

′ − f∗g
)(
b
Φ2γ

Φ̃γ

)1/2
µ∗

1/4
(
µ∗

1/4 − µ′
∗
1/4
)
h .

Noticing that

µ∗
1/4h− µ′

∗
1/4
h′ = µ′

∗
1/4
(
h− h′

)
+
(
µ∗

1/4 − µ′
∗
1/4
)
h ,

by Cauchy-Schwarz’s inequality and (6.3), we have

∣∣∣
(
Γ(f, g), h

)∣∣∣ .
( ∫∫∫

bΦ̃γµ
1/2
∗
(
f ′
∗g

′ − f∗g
)2
dσdvdv∗

)1/2
|||h|||Φγ

=A1/2 |||h|||Φγ .
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We estimate

A ≤ 3
(∫∫∫

bΦ̃γµ
1/4
∗
((
µ1/8f

)′
∗ −

(
µ1/8f

)
∗

)2
g2dσdvdv∗

+

∫∫∫
bΦ̃γµ

1/8
∗
((
µ1/8f

)′
∗

)2(
g′ − g

)2
dσdvdv∗

+

∫∫∫
bΦ̃γµ

1/4
∗
(
µ
1/8
∗ − µ′

∗
1/8
)2(

f ′
∗g

′
)2
dσdvdv∗

)

= A1 +A2 +A3 .

Since Φ̃γ(|v − v∗|)µ1/4
∗ . 〈v〉γ , we have by means of Corollary 5.2

A1 .

∫∫∫
b
(
〈v〉γ/2g

)2((
µ1/8f

)′
∗ −

(
µ1/8f

)
∗

)2
dσdvdv∗

. ‖〈v〉γ/2g‖2L2
s
|||µ1/8f |||2Φ0

. ‖g‖2L2
s+γ/2

|||f |||2Φγ
,

where we have used Propostions 2.4 and 2.2 in the last inequality. As for A2, we
decompose it as follows

A2 .

∫∫∫
b
((
µ1/8f

)′
∗

)2((
〈v〉γ/2g

)′ −
(
〈v〉γ/2g

))2
dσdvdv∗

+

∫∫∫
b
(
〈v〉γ/2 − 〈v′〉γ/2

)2((
µ1/8f

)′
∗

)2
g′2dσdvdv∗

= A2,1 +A2,2 .

Apply Corollary 5.2 again to A2,1. Then

A2,1 . ‖µ1/8f‖2L2
s
|||〈v〉γ/2g|||2Φ0

. ‖f‖2L2
s+γ/2

|||g|||2Φγ
.

The estimation for A2,2 is the same as the one for A2 in the proof of Lemma 3.8.
By using the change of variables (v′, v′∗) → (v, v∗), we obtain

A2,2 .

∫∫ (
〈v〉2s+γ〈v∗〉2s+2

)(
µ1/8f

)2
∗|g|

2dvdv∗ . ‖µ1/10f‖2L2‖g‖2L2
s+γ/2

.

Noticing that
(
µ
1/8
∗ − µ′

∗
1/8
)2

. min(|v − v∗|2θ2, 1), we have

A3 .

∫∫
Φ̃γ

( ∫

S2

b(cos θ)min(|v − v∗|2θ2, 1)dσ
)
f2
∗ g

2dvdv∗

.

∫∫
〈v − v∗〉γ+2s

f2
∗ g

2dvdv∗

.

∫∫
〈v∗〉γ+2s

f2
∗ 〈v〉γ+2s

g2dvdv∗ . ‖f‖2L2
s+γ/2

‖g‖2L2
s+γ/2

,

if γ + 2s ≥ 0 because of 〈v − v∗〉γ+2s ≤ 〈v∗〉γ+2s〈v〉γ+2s.
To consider the case γ + 2s < 0, we divide R3

v × R3
v∗ into three parts

U1 = {|v − v∗| ≤ |v∗|/8} , U2 = {|v − v∗| > |v∗|/8} ∩ {|v∗| ≤ 1} ,
U3 = {|v − v∗| > |v∗|/8} ∩ {|v∗| > 1} .
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Then we have

1

3
A3 =

∫∫∫
bΦ̃γµ

′1/4
∗

(
µ′1/8

∗ − µ
1/8
∗
)2(

f∗g
)2
dσdvdv∗

=

∫∫

U1

∫
dσdvdv∗ +

∫∫

U2

∫
dσdvdv∗ +

∫∫

U3

∫
dσdvdv∗

= A3,1 +A3,2 +A3,3 .

Since |v′ − v∗| ≤ |v − v∗| ≤ |v∗|/8 implies 7|v∗|/8 ≤ |v′|, |v| ≤ 9|v∗|/8 and |v′∗|2 =

|v|2 + |v∗|2 − |v′|2 ≥ |v∗|2/2. Hence, we have µ′1/4
∗ ≤ Cµ

1/8
∗ ≤ C(µ∗µ)1/20 on U1,

which leads to

A3,1 .

∫∫
(µµ∗)

1/20〈v − v∗〉γ+2s
f2
∗ g

2dvdv∗ ≤ C‖f‖2L2
s+γ/2

‖g‖2L2
s+γ/2

.

Furthermore, we have

A3,2 .

∫∫

U2

〈v − v∗〉γ+2s
f2
∗g

2dvdv∗ . ‖f‖2L2
s+γ/2

‖g‖2L2
s+γ/2

,

because 〈v − v∗〉−1 ≤ 〈v〉−1〈v∗〉−1〈v∗〉2 ≤ 2〈v〉−1〈v∗〉−1
on U2. Since 〈v − v∗〉−1 ≤

8|v∗|−1 ≤ 16〈v∗〉−1 on U3, we get

A3,3 . ‖f‖2L2
s+γ/2

‖g‖2L2 .

Therefore, we have in the case when γ + 2s < 0

A3 . ‖f‖2L2
s+γ/2

‖g‖2L2 .

If one considers another partition in R6
v,v∗ with v and v∗ exchanged, then the

estimate

A3 . ‖f‖2L2‖g‖2L2
s+γ/2

holds, because |v′∗ − v| ≤ |v∗ − v| ≤ |v|/8 implies 7|v|/8 ≤ |v′∗|, |v∗| ≤ 9|v|/8.
As a conclusion, when γ > −3/2 and γ + 2s ≤ 0 we have

∣∣∣
(
Γ(f, g), h

)∣∣∣ .
{
‖f‖L2

s+γ/2
|||g|||Φγ + ‖g‖L2

s+γ/2
|||f |||Φγ

+min
(
‖f‖L2‖g‖L2

s+γ/2
, ‖f‖L2

s+γ/2
‖g‖L2

)}
|||h|||Φγ .

which concludes the proof of the first statement of Proposition 2.5.
To consider the case γ + 2s < 0, and γ ≥ −3s, we go back to the very definition

of A3, that is (we have performed the usual change of variables)

A3 ∼
∫∫∫

bΦ̃γµ
′1/4
∗

(
µ′1/8

∗ − µ
1/8
∗
)2
f2
∗g

2dσdvdv∗

.

∫∫∫
bΦ̃γ

(
µ′1/8

∗ − µ
1/8
∗
)2
f2
∗ g

2dσdvdv∗ .

We estimate the spherical integral as usual, that is over the sets

|v′∗ − v∗| ≤
1

2
< v∗ > and |v′∗ − v∗| ≥

1

2
< v∗ >

It follows by Taylor formula that, on the first set (which is the singular part),
one has, for another non important and non negative constant c
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(µ
1/8′

∗ − µ
1/8
∗ )2 . θ2|v − v∗|2µc

∗.

On the other set, we just estimate the square by 1. Note that on the second set
we have, |v − v∗| &< v∗ >.

Then we find, by now standard computations, that

A3 .

∫∫
< v − v∗ >

γ µc
∗|v − v∗|2s < v∗ >

2−2s f2
∗ g

2

+

∫∫
< v − v∗ >

γ |v − v∗|2s < v∗ >
−2s f2

∗ g
2

= Ã3,1 + Ã3,2

Now, for Ã3,1, we write < v−v∗ >γ+2s.< v >γ+2s< v∗ >−γ−2s and we see that
we may absorb all the powers of < v∗ > with the maxwellian, to get, for another
non negative constant d

Ã3,1 . ||µdf ||2L2||g||2L2
γ/2+s

.

For Ã3,2, we write

< v−v∗ >γ+2s< v∗ >
−2s.< v >γ+2s< v∗ >

−γ−2s< v∗ >
−2s=< v >γ+2s< v∗ >

−γ−4s .

Note that the power −γ− 4s which enters the power over < v∗ > can be written

−γ − 4s = −(γ + 2s)− 2s

the first term being positive. Of course −γ− 4s ≤ 0 iff γ ≥ −4s, and this is true
since we have assumed that γ ≥ −3s. Furthermore γ+4s ≥ −γ− 2s again because
γ ≥ −3s.

Therefore we obtained

Ã3,2 . ||f ||2L2
γ/2+s

||g||2L2
γ/2+s

,

concluding the proof of the second statement.
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