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In this paper, we propose efficient new algorithms for multi-dimensional multi-
point evaluation and interpolation on certain subsets of so called tensor product
grids. These point-sets naturally occur in the design of efficient multiplication
algorithms for finite-dimensional C-algebras of the form A = C[x1, 	 , xn]/I,
where I is generated by monomials of the form x1

i1
 xn

in; one particularly impor-
tant example is the algebra of truncated power series C[x1,	 , xn]/(x1,	 , xn)d.
Similarly to what is known for multi-point evaluation and interpolation in the
univariate case, our algorithms have quasi-linear time complexity. As a known
consequence [Sch05], we obtain fast multiplication algorithms for algebras A of
the above form.

Keywords: multi-point evaluation, multi-point interpolation, algorithm, com-
plexity, power series multiplication
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1. Introduction

Overview. The purpose of this paper is to give fast algorithms for some polynomial
evaluation and interpolation problems in several variables; as an application, we
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improve algorithms for multiplying multivariate power series.

The complexity of our algorithms will be measured by counting base field oper-
ations: we do not consider numerical issues (they may anyway be irrelevant, if e.g.
our base field is a finite field), and do not discuss the choice of data structures or
index manipulation issues.

From the complexity point of view, evaluation and interpolation are rather well
understood for polynomials in one variable: algorithms of quasi-linear complexity are
known to evaluate a polynomial of degree less than d at d points, and conversely to
interpolate it. The best known algorithms [BM74] run in time O(d log2 d log log d),
and the main remaining question is to close the gap between this and an optimal
O(d), if at all possible.

In several variables, the questions are substantially harder, due to the variety of
monomial bases and evaluation sets one may consider; no quasi-linear time algorithm
is known in general. In this paper, following the terminology of [Sau04], we consider
evaluation points that are subgrids of tensor product grids . We prove that for some
suitable monomial bases, evaluation and interpolation can both be done in time
O(n |I | log2 |I | log log |I |), where n is the number of variables and |I | is the size of
the evaluation set (and of the monomial basis we consider). Remark that this result
directly generalizes the univariate case. In many cases, n is logarithmic in |I |; then,
our result is optimal, up to logarithmic factors.

Problem statement. In what follows, I ⊆ N
n is a finite initial segment for the

partial ordering on N
n: this means that if i6 i′ and i′∈ I, then i∈ I. For instance,

one may think of I as the set of standard monomials modulo a 0-dimensional ideal,
for a given monomial ordering. Figure 1 shows such a set (black dots), as well as
the minimal elements of Nn \ I (green squares).

As a very particular example, for positive integers d1, 	 , dn, let Id1,	 ,dn
denote

the set {0,	 , d1− 1}×
 ×{0,	 , dn − 1}; this is an n-dimensional grid.

Figure 1. An initial segment of cardinality 12 in N
2

The set I will be used as an index set for both the evaluation points and the
monomial basis. Let C be our base field and let d1,	 , dn be such that I ⊆ Id1,	 ,dn

.
For k ∈{1,	 , n}, assume that we are given pairwise distinct elements vk =(vk,0,	 ,

vk,dk−1)∈Cdk; we will denote by v the collection (v1,	 , vn). To i=(i1,	 , in)∈ I we
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associate the point αi,v =(v1,i1,	 , vn,in)∈Cn and we let V (I ,v)= {αi,v: i∈ I }: this
will be our set of evaluation points. Remark that V (I ,v) is contained in the “tensor
product” grid

(v1,0,	 , v1,d1−1)×
 × (vn,0,	 , vn,dn−1).

For instance, if vk,i = i for all (k, i), then αi,v = i and V (I , v) = I.

Let further C[x] = C[x1,	 , xn] be the polynomial ring in n variables over C; for

i = (i1,	 , in) ∈N
n, we write xi = x1

i1
 xn
in. Then, C[x]I denotes the C-vector space

of polynomials P =
∑

i∈I
pi x

i∈ C[x] with support in I. On the example of Figure

1, C[x]I admits the monomial basis

1, x2, x2
2, x2

3, x1, x1 x2, x1 x2
2, x1

2, x1
2 x2, x1

3, x1
3 x2, x1

4.

Given a polynomial P ∈ C[x]I, written on the monomial basis, our problem of
multidimensional multi-point evaluation is the computation of the vector {P (αi,v):
i∈ I}∈CI.

Both the domain C[x]I and the codomain CI of the evaluation map are C-vector
spaces of dimension |I |, so it makes sense to ask whether this map is invertible.
Indeed, let I(I , v) ⊆ C[x] be the defining ideal of V (I , v). A result going back to
Macaulay (see [Mor03] for a proof) shows that the monomials {xi: i ∈ I } form a
monomial basis of C[x]/I(I , v). As a consequence, the former evaluation map is
invertible; the inverse problem is an instance of multivariate interpolation.

Previous work. The purpose of this paper is to give complexity results for the
evaluation and interpolation problems described above. We found no previous
references dedicated to the evaluation problem (a naive solution obviously takes
quadratic time). As to our form of interpolation, an early reference is [Wer80],
with a focus on the bivariate case; the question has been the subject of several
subsequent works, and one finds a comprehensive treatment in [Sau04]. However,
the algorithms mentioned previously do not have quasi-linear complexity.

To obtain a quasi-linear result, we rely on the fast univariate algorithms of
[BM74]. In the special case where I is the grid Id1,	 ,dn

, Pan [Pan94] solves the
multivariate problem by applying a “tensored” form of the univariate algorithms,
evaluating or interpolating one variable after the other. The key contribution of
our paper is the use of a multivariate Newton basis, combined with fast change
of basis algorithms between the Newton basis and the monomial basis; this will
allow us to follow an approach similar to Pan’s in our more general situation. The
Newton basis was already used in many previous works on our interpolation problem
[Wer80, Müh88], accompanied by divided differences computations: we avoid divided
differences, as they lead to quadratic time algorithms.

The results in this paper have a direct application to multivariate power series
multiplication. Let I be as above, and let m be the monomial ideal generated by {xi:
i � I}; equivalently, m is generated by all minimal elements of Nn \ I. Then, one is
interested the complexity of multiplication modulo m, that is, in C[x]/m. Suitable
choices of I lead to total degree truncation (take I = {(i1,	 , in): i1 +
 + in <d}, so
m = 〈x1,	 , xn〉

d), which is used in many forms of Newton-Hensel lifting, or partial
degree truncation (take I = {(i1,	 , in): i1 < d1,	 , in <dn}, so m = 〈x1

d1,	 , xn
dn〉).
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There is no known algorithm with quasi-linear cost for this question in general.
Inspired by the sparse multiplication algorithm of [CKL89], Lecerf and Schost gave
such an algorithm for total degree truncation [LS03]. It was extended to weighted
total degree in [vdH02] and further improved from the bit-complexity point of view
in [vdHL09]. Further speed-ups are possible in small dimensions, when using the
Truncated Fourier Transform or TFT [vdH04, vdH05]. For more general truncation
patterns, Schost [Sch05] introduced an algorithm based on deformation techniques
that uses evaluation and interpolation of the form described in this paper. At the
time of writing [Sch05], no efficient algorithm was known for evaluation and inter-
polation; the present paper fills this gap and completes the results of [Sch05].

Conventions. In all that follows, we let M: N→N denote a multiplication time
function, in the sense that univariate polynomials of degree less than d can be
multiplied in M(d) operations in C. As in [GG03], we impose the condition that
M(d)/d is an increasing function (and freely use all consequences of this assumption),
and we note that M can be taken in O(d logd log logd) using the algorithm of [CK91].

We will use big-Oh notation for expressions that depend on an unbounded
number of variables (e.g., for Lemma 4 below). In such cases, the notation f(d1,	 ,

dn) = O(g(d1,	 , dn)) means that there exists a universal constant λ such that
for all n and all d1,	 , dn, the inequality f(d1,	 , dn) 6λg(d1,	 , dn) holds.

2. Univariate Algorithms

This section describes some classical algorithms for univariate polynomials over C.
We denote by C[x]d the set of univariate polynomials of degree less than d. Given
pairwise distinct points v = v0,	 , vd−1 in C, we write Ni,v(x)= (x− v0)
 (x− vi−1)
for 06 i6d. The polynomials N0,v,	 ,Nd−1,v are called the Newton basis associated
to v; they form a C-basis of C[x]d. For instance, for vi = i, we have Ni,v(x) =
x (x− 1)
 (x− (i− 1)).

Because we will have to switch frequently between the monomial and the Newton
bases, it will be convenient to use the notation Ni,v,ε(x), for ε∈{0, 1}, with

Ni,v,0(x) = xi

Ni,v,1(x) = Ni,v(x) = (x− v0)
 (x− vi−1).

We write P ⊣ (Ni,v,ε)i<d to indicate that a polynomial P ∈ C[x]d is written on the
basis (Ni,v,ε)i<d; remember that when no value ε is mentioned in subscript, we are
working in the Newton basis. The following classical lemma [BP94, Ex. 15 p. 67]
gives complexity estimates for conversion between these bases.

Lemma 1. For ε ∈ {0, 1}, given P ⊣ (Ni,v,ε)i<d, one can compute P ⊣ (Ni,v,1−ε)i<d

in time O(M(d) log d).

Evaluation and interpolation in the monomial basis can be done in time
O(M(d) log d), by the algorithms of [BM74]; combining this to the previous lemma,
we obtain a similar estimate for evaluation and interpolation with respect to the
Newton basis.

Lemma 2. For ε ∈ {0, 1}, given P ⊣ (Ni,v,ε)i<d, one can compute P (vi)06i<d, and
conversely recover P ⊣ (Ni,v,ε)i<d from its values P (vi)06i<d, in time O(M(d) log d).

4 Multi-point evaluation in higher dimensions



We conclude with a discussion of special cases. If the points v0, 	 , vd−1 are in
geometric progression, we may remove a factor log d in all estimates. Indeed, under
these assumptions, the conversions of Lemma 1 and the evaluation or interpolation
of Lemma 2 take time O(M(d)) [BS05].

In a future paper, we plan to investigate the case of TFT points vi = ζ ı̄ ,
where ζ is a primitive 2p-th root of unity and ı̄ the binary p-bits mirror of i.
It is known [vdH04, vdH05] that evaluation and interpolation can be done in time
O(d log d) for such points, with respect to the monomial basis. We expect that
a similar complexity result holds for Newton bases and basis conversion between
monomial and Newton bases.

3. Projections and Sections

Let I ⊆N
n be a finite initial segment and let (d1,	 , dn) be such that I is contained

in Id1,	 ,dn
. We present here some geometric operations on I that will be useful for

the evaluation and interpolation algorithms.

Projections. We will denote by I ′⊆N
n−1 the projection

I ′= {i′ =(i2,	 , in)∈N
n−1: (0, i2,	 , in)∈ I}

of I on the (i2,	 , in)-coordinate plane. For i′ in I ′, we let d(i′) > 1 be the unique
integer such that (d(i′) − 1, i2,	 , in) ∈ I and (d(i′), i2,	 , in) � I. In particular,
d(i′)6 d1 holds for all i′.

In Figure 1, we have d1 =5; I ′ consists of the points of ordinates 0, 1, 2, 3 on the
vertical axis, with d(0) = 5, d(1)= 4, d(2) = 2 and d(3) = 1.

Finally, if v =(v1,	 , vn) is a collection of points as defined in the introduction,
with vk ∈Cdk for all k 6n, then we will write v ′ =(v2,	 , vn).

Sections. For j1 <d1, we let Ij1 be the section

Ij1 = {(i1,	 , in)∈ I: i1 = j1}

and we let Ij1
′ be the projection of Ij1 on the (i2, 	 , in)-coordinate plane. In other

words, i′=(i2,	 , in) is in Ij1
′ if and only if (j1, i2,	 , in) is in I. We have the following

equivalent definition

Ij1
′ = {i′= (i2,	 , in)∈ I ′: d(i′)> j1}.

Because the sets Ij1 form a partition of I, we deduce the equality |I |=
∑

j1=0

d1−1
|Ij1

′ |.

Notice also that all Ij1
′ are initial segments in N

n−1. In Figure 1, we have I0
′ = {0, 1,

2, 3}, I1
′ = {0, 1, 2}, I2

′ = {0, 1}, I3
′ = {0, 1} and I4

′ = {0}.

4. Multivariate Bases

From now on, we focus on multivariate polynomials. In all this section, we fix a finite
initial segment I ⊆N

n and d1,	 , dn such that I ⊆ Id1,	 ,dn
. Naturally, polynomials

in C[x]I may be written in the monomial basis (xi)i∈I, but we may also use the
multivariate Newton basis (Ni,v)i∈I, defined by

Ni,v(x) = Ni1,v1
(x1)
 Nin,vn

(xn).

Joris van der Hoeven, Éric Schost 5



Generalizing the univariate notation, given ε ∈ {0, 1}n, we will consider a mixed
monomial-Newton basis (Ni,v,ε)i∈I with

Ni,v,ε(x) = Ni1,v1,ε1
(x1)
 Nin,vn,εn

(xn).

As in the univariate case, we will write P ⊣ (Ni,v,ε)i∈I to indicate that P is written
on the corresponding basis.

It will be useful to rely on the following decomposition. Let P be in C[x]I, written
on the basis (Ni,v,ε)i∈I. Collecting coefficients, we obtain

P =
∑

i∈I

pi,v,εNi,v,ε =
∑

i′=(i2,	 ,in)∈I ′

Pi′,v′,ε(x1)Ni2,v2,ε2
(x2)
 Nin,vn,εn

(xn), (1)

with i =(i1,	 , in) and

Pi′,v′,ε(x1)=
∑

i1=0

d(i′)−1

pi,v,εNi1,v1,ε1
(x1). (2)

Keep in mind that if the indices ε and εi are omitted, we are using the Newton basis.

Lemma 3. Let ε be in {0, 1}n, and let ε′ be obtained by replacing εk by 1− εk in ε,
for some k in {1,	 , n}. Let P be in C[x]I. Given P ⊣ (Ni,v,ε)i∈I, one can compute
P ⊣ (Ni,v,ε′)i∈I in time

O

(

M(dk) log dk

dk

|I |

)

.

Proof. Using a permutation of coordinates, we reduce to the case when k=1. Using
the above notations, it suffices to convert Pi′,v′,ε(x1) from the basis (Ni1,v1,ε1

)i1<d1

to the basis (Ni1,v1,1−ε1
) for all i′∈ I ′. By Lemma 1, each conversion can be done in

time O(M(d(i′)) log (d(i′))), so the total cost is

O

(

∑

i′∈I ′

M(d(i′)) log (d(i′))

)

= O

(

∑

i′∈I ′

M(d(i′)) log (d(i′))

d(i′)
d(i′)

)

.

Since the function M(d) log (d)/d is increasing, we get the upper bound

O

(

∑

i′∈I ′

M(d1) log d1

d1
d(i′)

)

= O

(

M(d1) log d1

d1

∑

i′∈I ′

d(i′)

)

;

the conclusion follows from the equality
∑

i′∈I
d(i′)= |I |. �

Let us write 0 = (0, 	 , 0) and 1 = (1, 	 , 1), where both vectors have length n.
Then, the basis (Ni,v,0)i∈I is the monomial basis, whereas the basis (Ni,v,1)i∈I is the
Newton basis. Changing one coordinate at a time, we obtain the following corollary,
which shows how to convert from the monomial basis to the Newton basis, and back.

Lemma 4. Let ε be in {0, 1}n and let P be in C[x]I. Given P ⊣ (Ni,v,ǫ)i∈I, one can
compute P ⊣ (Ni,v,1−ε)i∈I in time

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |

)

.
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The remarks at the end of the previous section apply here as well: if the points in
v have special properties (e.g., all vk are in geometric progression), the cost may be
reduced (in the geometric case, we may save the factors log dk).

5. Multivariate Evaluation and Interpolation

We are now in a position to state and prove our main result.

Theorem 5. Given (I ,v , P ) such that I ⊆ Id1,	 ,dn
, with P written on the monomial

basis of C[x]I, one can evaluate P at V (I ,v) in time

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |

)

.

Conversely, given the values of P at V (I , v), one can compute the representation
of P on the monomial basis of C[x]I with the same cost.

Using the bound M(d) = O(d log d log log d), and the fact that di 6 |I | holds
for all i, we deduce the simplified bound O(n |I | log2 |I | log log |I |) claimed in
the introduction. Remark also that our result matches the cost of the algorithm
of [Pan94], which applies in the special case of evaluation-interpolation at a grid.

The input P to the evaluation algorithm is given on the monomial basis of C[x]I;
however, internally to the algorithm, we use the Newton basis. Thus, before entering
the (recursive) evaluation algorithm, we switch once and for all to the Newton basis;
this does not harm complexity, in view of Lemma 4. Similarly, the interpolation
algorithm uses the Newton basis, so we convert the result to the monomial basis
after we have completed the interpolation.

Remark also that if the points vk,0, 	 , vk,dk−1 are in geometric progression for
each k, then one may eliminate the factors logdi from the complexity bound, in view
of the remarks of the previous section; we expect that using TFT evaluation points
would allow for similar reductions.

5.1. Setup

The algorithm follows a pattern similar to Pan’s multivariate evaluation and inter-
polation at a grid [Pan94]: e.g. for evaluation, we evaluate at the fibers above each
i′ ∈ I ′, and proceed recursively with polynomials obtained from the sections Ij1.
Using the Newton basis allows us to alleviate the issues coming from the fact that
V (I ,v) is not a grid.

Let P ∈C[x]I be written (in the Newton basis) as in the previous section:

P (x1,	 , xn) =
∑

i′=(i2,	 ,in)∈I ′

∑

i1=0

d(i′)−1

pi,vNi1,v1
(x1)Ni2,v2

(x2)
 Nin,vn
(xn)

=
∑

i′=(i2,	 ,in)∈I ′

Pi′,v′(x1) Ni2,v2
(x2)
 Nin,vn

(xn),

where we write i =(i1,	 , in) and

Pi′,v′(x1) =
∑

i1=0

d(i′)−1

pi,vNi1,v1
(x1).

Joris van der Hoeven, Éric Schost 7



To j1 < d1, we associate the (n− 1)-variate polynomial

Pj1(x2,	 , xn)=
∑

i′=(i2,	 ,in)∈Ij1
′

Pi′,v′(v1,j1)Ni2,v2
(x2)
 Nin,vn

(xn).

The key to our algorithms is the following proposition.

Proposition 6. For all j = (j1,	 , jn)∈ I, the following equality holds:

P (v1,j1,	 , vn,jn
) =Pj1(v2,j2,	 , vn,jn

).

Proof. First, we make both quantities explicit. The left-hand side is given by

P (v1,j1,	 , vn,jn
) =

∑

i′=(i2,	 ,in)∈I ′

∑

i1=0

d(i′)−1

pi,vNi1,v1
(v1,j1)Ni2,v2

(v2,j2)
 Nin,vn
(vn,jn

),

whereas the right-hand side is

Pj1(v2,j2,	 , vn,jn
) =

∑

i′=(i2,	 ,in)∈Ij1
′

∑

i1=0

d(i′)−1

pi,vNi1,v1
(v1,j1)Ni2,v2

(v2,j2)
 Nin,vn
(vn,jn

),

where in both cases we write i=(i1,	 , in). Thus, to conclude, it is enough to prove
that, for i′∈ I ′ \ Ij1

′ , we have Ni1,v1
(v1,j1)Ni2,v2

(v2,j2)
 Nin,vn
(vn,jn

)= 0.
Indeed, recall that the assumption i′ ∈ I ′ \ Ij1

′ implies d(i′) 6 j1. On the other

hand, we have j ∈ I, whence the inequality j1 < d(j ′), where we write j ′ = (j2,	 ,

jn). In particular, we deduce d(i′)<d(j ′), which in turn implies that i′ 
 j ′. Thus,

there exists k ∈ {2, 	 , n} such that ik > jk. This implies that Nik,vk
(vk,jk

) = 0, as
requested. �

5.2. Evaluation

Given (I ,v , P ), with P ∈C[x]I written in the Newton basis (Ni,v)i∈I, we show here
how evaluate P at V (I , v). The algorithm is the following.

• If n =0, P is a constant; we return it unchanged.

• Otherwise, we compute all values Pi′,v′(v1,j1), for i′ ∈ I ′ and 0 6 j1 < d(i′),
by applying the fast univariate evaluation algorithm to each Pi′,v′. For 0 6

j1 < d1, and for i′∈ Ij1
′ , we have (by definition) j1 < d(i′), so we have all the

information we need to form the polynomial Pj1 ⊣ (Ni′,v′)i′∈I ′. Then, we
evaluate recursively each Pj1 at V (Ij1

′ , v ′), for 06 j1 < d1.

Proposition 7. The above algorithm correctly evaluates P at V (I , v) in time

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |

)

.

Proof. Correctness follows directly from Proposition 6, so we can focus on the
cost analysis. Let E(n, I , d1, 	 , dn) denote the cost of this algorithm. The former
discussion shows that E(0, I) = 0 and that E(n, I , d1, 	 , dn) is the sum of two
contributions:

• the cost of computing all values Pi′,v′(v1,j1), for i′∈ I ′ and j1 <d(i′)

• the cost of the recursive calls on (Ij1
′ ,v ′, Pj1) for 06 j1 <d1.
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Lemma 2 shows that the former admits the upper bound

O

(

∑

i′∈I ′

M(d(i′)) log (d(i′))

)

;

as in the proof of Lemma 3, this can be bounded by

O

(

M(d1) log d1

d1
|I |

)

.

As to the recursive calls, notice that all Ij1
′ are contained in I ′, which is contained

in Id2,	 ,dn
. Thus, for some constant K, we obtain the inequality

E(n, I , d1,	 , dn) 6
∑

j1<d1

E(n, Ij1
′ , d2,	 , dn) +K

M(d1) log d1

d1
|I |. (3)

To conclude, we prove that for all n, for all d1, 	 , dn and for any initial segment
I ⊆ Id1,	 ,dn

, we have

E(n, I , d1,	 , dn) 6 K

(

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |. (4)

Such an inequality clearly holds for n = 0. Assume by induction on n that for any
d2,	 , dn and any initial segment J ⊆ Id2,	 ,dn

, we have

E(n− 1, J , d2,	 , dn) 6 K

(

M(d2) log d2

d2
+
 +

M(dn) log dn

dn

)

|J |. (5)

To prove (4), we substitute (5) in (3), to get

E(n, I , d1,	 , dn) 6
∑

j1<d1

K

(

M(d2) log d2

d2
+
 +

M(dn) log dn

dn

)

|Ij1
′ |

+K
M(d1) log d1

d1
|I |.

Since
∑

j1<d1

|Ij1
′ |= |I |, we are done. �

5.3. Interpolation

The interpolation algorithm is obtained by reversing step-by-step the evaluation
algorithm. On input, we take (I , v , F ), with F ∈ CI; the output is the unique
polynomial P ⊣ (Ni,v)i∈I such that Fi =P (αi,v) for all i∈ I.

• If n =0, F consists of a single entry; we return it unchanged.

• Otherwise, we recover recursively all Pj1 ⊣ (Ni′,v′)i′∈I ′, for 0 6 j1 < d1. This
is made possible by Proposition 6, which shows that we actually know the
values of each Pj1 at the corresponding V (Ij1

′ , v ′). Knowing all Pj1 gives us

the values Pi′,v′(v1,j1) for all i′∈ I ′ and 06 j1<d(i′). It suffices to interpolate
each Pi′,v′ on the Newton basis (Ni1,v1

)i1<d(i′) to conclude.

Joris van der Hoeven, Éric Schost 9



Correctness of this algorithm is clear and the following complexity bound is proved
in a similar way as in the case of evaluation.

Proposition 8. The above algorithm correctly computes P ⊣ (Ni,v)i∈I in time

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |

)

.

6. Applications

We conclude with an application of our results to the multiplication of polynomials
and power series. Let I and d1,	 , dn be as above. We let d=max (d1,	 , dn), as we
assume that C has cardinality at least d, so that we can find v = (v1,	 , vn), where
vk = (vk,0, 	 , vk,dk−1) consists of pairwise distinct entries in C. Let δ = 1 + max
{i1 +
 + in: (i1,	 , in)∈ I}, so that d 6 δ 6n(d− 1).

6.1. Multiplication of polynomials

We discuss here the case when we want to multiply two polynomials P1∈C[x]I1 and
P2∈C[x]I2 with I1+I2=I. In this case, we may use a simple evaluation-interpolation
strategy.

• Perform multi-point evaluations of P1 and P2 at V (I , v);

• Compute the componentwise product of the evaluations;

• Interpolate the result at V (I ,v) to yield the product P1 P2.

By Theorem 5, this can be done in time

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I |

)

= O

(

n
M(d) log d

d
|I |

)

.

If C admits at least d points in geometric progression, then the factor logd may again
be removed. This result should be compared to the algorithm of [CKL89], which
has complexity O(M(|I |) log |I |); that algorithm applies to more general monomial
supports, but under more restrictive conditions on the base field.

6.2. Multiplication of power series

Let now m be the monomial ideal generated by {xi: i� I }. We discuss here the com-
plexity of multiplication modulo in C[x]/m. To our knowledge, no general algorithm
with a complexity quasi-linear in |I | is known.

Let us first recall an algorithm of [Sch05] and show how our results enable us to
improve it. Theorem 1 of [Sch05] gives an algorithm for multiplication in C[x]/m,
that relies on the following operations:

• O(δ) multi-point evaluations at V (I , v) of polynomials in C[x]I ;

• |I | univariate power series multiplication in precision O(δ);

• O(δ) interpolations at V (I ,v) of polynomials in C[x]I.

10 Multi-point evaluation in higher dimensions



The paper [Sch05] does not specify how to do the evaluation and interpolation (for
lack of an efficient solution); using our results, it becomes possible to fill all the gaps
in this algorithm. Applying Theorem 5, without doing any simplification, we obtain
a cost of

O

((

M(d1) log d1

d1
+
 +

M(dn) log dn

dn

)

|I | δ + |I |M(δ)

)

.

Using the inequality di 6 δ, this gives the upper bound O(nM(δ) log δ |I |). If we can
take at least d points in geometric progression in C, then the upper bound reduces
to O(n M(δ) |I |).

6.3. Power series with total degree truncation

The most important case of truncated power series multiplication is when we trun-
cate with respect to the total degree. In other words, we take I = {(i1, 	 , in):
i1 +
 + in <δ}. In that case, several alternative strategies to the one of the former
subsection are available [LS03, vdH04, vdH05, vdHL09], and we refer to [vdH05,
vdHL09] for some benchmarks.

As it turns out, one can apply the result from Section 6.1, in the special case
of polynomials supported in total degree, to improve these algorithms, when C
admits at least d points in geometric progression. Indeed, the algorithms from [LS03,
vdHL09] rely on multivariate polynomial multiplication. Using the result of Sec-
tion 6.1 in these algorithms (instead of sparse polynomial multiplication), we obtain

a new algorithm of time complexity O(n
M(d)

d
|I |) instead of O(nM(|I |) log |I |). For

constant n, this removes a factor O(log d) from the asymptotic time complexity.
To finish, we would like to point out that the present paper almost repairs an

error in [vdH04, Section 5], which was first announced in [vdH05]. Indeed, it was
implicitly, but mistakenly, assumed that Proposition 6 also holds for monomial
bases. The present “fix” simply consists of converting to the Newton basis before
evaluating, and similarly for the inverse. The asymptotic time complexity analysis
from [vdH04, Section 5] actually remains valid up to a non trivial constant factor.
This constant factor can be further reduced (hopefully to the constant two) by the
use of TFT points, as suggested at the end of Section 2.
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