
HAL Id: hal-00477597
https://hal.science/hal-00477597v2

Preprint submitted on 19 Sep 2011 (v2), last revised 13 Oct 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive mixtures of regressions: Improving predictive
inference when population has changed

Charles Bouveyron, Julien Jacques

To cite this version:
Charles Bouveyron, Julien Jacques. Adaptive mixtures of regressions: Improving predictive inference
when population has changed. 2010. �hal-00477597v2�

https://hal.science/hal-00477597v2
https://hal.archives-ouvertes.fr


Adaptive mixtures of regressions: Improving predictive
inference when population has changed

Charles Bouveyrona, Julien Jacquesb,c,d,∗

aLaboratoire SAMM, EA4543, University Paris I Panthéon-Sorbonne, Paris, France
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Abstract

When regression is carried out in a prediction purpose, one of the main assumptions is the
absence of evolution in the modeled phenomenon between the training and the prediction
stages. Unfortunately, this assumption turns out to be often false in practical situations. The
present work investigates the estimation of regression mixtures when population has changed
between the training and the prediction stages. The main idea of this work is to link the regres-
sion mixture of the prediction population with the known regression mixture of the training
population. For this, two approaches are proposed. On the one hand, a parametric approach
modelling the relationship between dependent variables ofboth populations is presented and
the EM algorithm is used for parameter estimation. On the other hand, a Bayesian approach
is also proposed in which the priors on the prediction population depend on the mixture re-
gression parameters of the training population. In this latter case, a MCMC procedure is used
for inference. Both approaches need nevertheless to observe at least some observations aris-
ing from the prediction population. The relevance of both the parametric and the Bayesian
approaches is illustrated on simulations and then comparedto classical strategies on an envi-
ronmental dataset.

Keywords: Transfer learning, Mixture of regressions, Switching regression, EM algorithm,
Bayesian inference, MCMC algorithm.

1. Introduction

The mixture of regressions, introduced by Goldfeld and Quandt (1973) as the switching re-
gression model and also named clusterwise linear regression model in Hennig (1999), is a pop-
ular regression model for modelling complex system. In particular, the switching regression
model is often used in Economics for modelling phenomena with different phases. This model
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assumes that the dependent variableY ∈ R can be linked to a covariatex = (1,x1, ...,xp) ∈
R

p+1 by one ofK possible regression models:

Y = xtβk +σkε, k = 1, ...,K (1)

with prior probabilitiesπ1, . . . ,πK (with the classical constraint∑K
i=1πk = 1), whereε ∼

N (0,1), βk = (βk0, ...,βkp) ∈ {β1, . . . ,βK} is the regression parameter vector inR
p+1 and

σ2
k ∈ {σ2

1 , . . . ,σ2
K} is the residual variance. The conditional density distribution of Y givenx

is therefore:

p(y|x) =
K

∑
k=1

πkφ(y|xtβk,σ2
k ), (2)

whereφ(·|xtβk,σ2
k ) is the univariate Gaussian density parametrized by its meanxtβk and vari-

anceσ2
k . For such a model, the prediction ofy for a new observed covariatex is usually carried

out in two steps: first the component membership of the data isestimated by the maximum a
posteriori (MAP) rule and theny is predicted using the selected regression model (see Section
2.2). Among the works which focused on this model, we can emphasize the following ones
which have contributed to the popularity of this model: Hennig (2000) investigates the model
identifiability, Hurn et al. (2003) proposes a Bayesian inference for the model estimation, Zhu
and Zhang (2004) studies the asymptotic theory of parameterestimators in order to define
hypothesis tests, and Khalili and Chen (2007) considers variable selection for this specific re-
gression model. Let us also mention that Leisch (2004) develops a package for the R software
devoted to the mixture of regressions.

The present paper focuses on the problem of using a mixture regression model for predic-
tion when the modeled phenomenon has changed between the training stage, which has led to
the parameter estimation, and the prediction stage. More precisely, we assume that model (1)
has been estimated with a sample from a given training population (of size large enough to
have an estimation of satisfaying quality), and we want to use it to predict the dependent vari-
ableY for a new population which could be different from the training one. For instance, the
difference between both populations can be due to a switch inthe covariate distribution or to
a variation of the link between the covariates and the dependent variable. The goal is then to
transfer the knowledge from the training (source) population to the prediction (target) popula-
tion. This task is usually known astransfer learning(see Pan and Yang (2010) for a complete
survey), and can be summarized by Figure 1 in the case of the regession mixture model.

We now give some application examples of transfer learning.In a biological context, Bier-
nacki et al. (2002) and Jacques and Biernacki (2010) proposed models for clustering male and
female birds: the source population consists of birds from acommon species whereas the
target population is composed of birds from a rarer species.Another application concerns
the problem of sentiment classification as considered by Blitzer et al. (2007). As the review
data can be very different among several type of products, there is a need to collect a large
sample of labeled data for each product in order to train a specific review-classification model
per product. The use of transfer learning techniques allowsto adapt a sentiment classifier
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Figure 1: Learning process of transfer learning

from one product to another one. In Bouveyron and Jacques (2010), the authors predict house
prices from house features for a city of the USA West Coast (San Jose, California) by adapt-
ing a regression model learned with data issued from anothercity stated on the East Coast
(Birmingham, Alabama). The use of a transfer learning modelallows to spare an expensive
recollect of training data for the target population (San Jose housing in this application). Other
examples can be found in Pan and Yang (2010).

1.1. Related work

Transfer learning is a particularly active research field since the NIPS-95 workshop “Learn-
ing to Learn”, in which the need for machine learning methodsreusing previously learned
knowledge was exhibited. Countrary to previously cited works in the classification context
(Biernacki et al. (2002); Jacques and Biernacki (2010)), inwhich the data of the target popu-
lation can be unlabelled, the regression purpose need to observe at least some couples(yi,xi)
in the target population. In this case, we speak ofinductivetransfer learning. Readers inter-
ested in a comprehensive review can refer to Pan and Yang (2010).

Most of the methods allowing to treat such setting are especially designed for estimating
simultaneously the parameters of both source and target populations (we speak ofmulti-task
learning), but can easily be adapted for transfer learning. They consider either a Bayesian or
a regularization framework. Typically, in the Bayesian approach, each task is assume to share
the same prior (see Lawrence and Platt (2004) for instance).In the regularization framework,
parameters between models for source and target populationare assumed to be linked (see
Evgeniou and Pontil (2004) in a SVM context for instance).

In the regression context,Covariate Shiftis a specific transfer learning problem consid-
ering that the probability density of the covariates in the target population is different from
the one of the source population. However, the relationshipbetween covariates and depen-
dent variable is assumed not to have changed (Shimodaira (2000); Storkey and Sugiyama
(2007); Sugiyama (2006); Sugiyama and Müller (2005, 2007)). Thus, if the regression model
is exactly known, a change in the probability distribution of the explanatory variables is not
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a problem. Unfortunately, this is never the case in practiceand the regression model esti-
mated with the training data could be very disappointing when applied to data with a different
probability distribution.

The originality of our work consists in introducing parametric models allowing to link the
source and target populations. A more conventional Bayesian approach is also investigated,
and comparison of both approaches are carried out on simulation and real data.

1.2. Problem formulation

Assuming that the target populationP∗, for which we want to predictY, is different from
the source populationP, the mixture regression model forP∗ can be written as follows:

Y∗ = x∗tβ ∗
k +σ∗

k ε∗ (3)

p(y∗|x∗) =
K∗

∑
k=1

π∗
k φ(y∗|x∗tβ ∗

k ,σ∗
k

2)

with ε∗ ∼N (0,1), β ∗
k ∈ {β ∗

1 , . . . ,β ∗
K∗} andσ∗

k ∈ {σ∗
1 , . . . ,σ∗

K∗}. Let us now precise the focus
of this paper by making the three following assumptions:

H1 : the couples of variables(Y,x) and(Y∗,x∗) are assumed to be the same but measured
on two different populations.

H2 : the sizen∗ of the observation sampleS∗ = (y∗i ,x
∗
i )i=1,n∗ of populationP∗ is assumed

to be small compared to the number of observations of the source populationP. Other-
wise, the mixture regression model could be estimated directly without using the source
population.

H3 : as both populations have the same nature, each mixture is assumed to have the same
number of components (K∗ = K).

Under these assumptions, the goal is then to predictY∗ for some newx∗ by using both samples
S= (yi ,xi)i=1,n andS∗. The challenge consists therefore in exhibiting a link between both
populations.

1.3. Organization of the manuscript

The reminder of this work is organised as follows. Section 2 proposes a first solution
to improve the predictive inference on the target population by defining parametric models
for the link between mixture regression models of both populations. This approach has the
advantage to lead to interpretable results, which should help the practitioner in analyzing the
differences between the source and target populations. An alternative Bayesian approach,
most frequent in transfer learning, is presented in Section3. The link between regression
models is then formulated through prior densities on the target population. The advantage of
this strategy is its flexibility which can fit into different situations, if the prior densities are well
chosen. In Section 4, the performance of both the parametricand the Bayesian approaches
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is first illustrated on simulations. Then, the proposed strategies are compared to classical
methods on an environmental dataset. Section 5 finally proposes some concluding remarks
and directions for future works.

2. Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which consistsin modelling the link between
training and test populations by a parametric relationshipbetween the regression parameters.

2.1. Parametric models for linking the reference and test populations

Let us introduce a latent variableZ∗ ∈ {0,1}K representing the belonging of observations
to theK mixture components,i.e. z∗ik = 1 indicates that thei-th observation(x∗i ,y

∗
i ) comes

from thek-th component andz∗ik = 0 otherwise. Conditionally to an observationx of the co-
variates, we would like to exhibit a distributional relationship between the dependent variables
of the same mixture component such thatY∗

|x,z∗ik=1 andψk(Y|x,zik=1) have the same probability

distribution, withψk a function fromR to R.
Let βk andβ ∗

k (1≤ k≤K) be respectively the parameters of the mixture regression models
in the source and the target populations (Equations (1) and (3)). We assume in this section that
the functionψk, exhibiting the link between the source and target populations, is such that:

β ∗
k = Λkβk, whereΛk = diag(λk0,λk1, . . . ,λkp) (4)

σ∗
k is free,

wherediag(λk0,λk1, . . . ,λkp) is the diagonal matrix containing(λk0,λk1, . . . ,λkp) on its diag-
onal. The interest of introducing such a link lies in the reduction of the number of parameters
to estimate for the mixture regression model forP∗. In the following, we go further by in-
troducing some constraints onΛk andσ∗

k in order to define a family of parsimonious models,
which includes many of the situations that may be encountered in practice:

• M1 assumes both populations are the same:Λk = Id is the identity matrix (σ∗
k = σk),

• M2 models assume the link between both populations is covariate and mixture compo-
nent independent:

– M2a : λk0 = 1, λk j = λ andσ∗
k = λσk ∀1≤ j ≤ p,

– M2b : λk0 = λ , λk j = 1 andσ∗
k = σk ∀1≤ j ≤ p,

– M2c : Λk = λ Id andσ∗
k = λσk,

– M2d : λk0 = λ0, λk j = λ1 andσ∗
k = λ1σk ∀1≤ j ≤ p,

• M3 models assume the link between both populations is covariate independent:

– M3a : λk0 = 1, λk j = λk andσ∗
k = λkσk ∀1≤ j ≤ p,
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Model M1 M2a M2b M2c M2d M3a M3b M3c M3d M4a M4b M5

Param. 0 1 1 1 2 K K K 2K p+K p+K +1 K(p+2)

Table 1: Number of parameters to estimate for each model of the proposed family.

– M3b : λk0 = λk, λk j = 1 andσ∗
k = σk ∀1≤ j ≤ p,

– M3c : Λk = λkId andσ∗
k = λkσk,

– M3d : λk0 = λk0, λk j = λk1 andσ∗
k = λk1σk ∀1≤ j ≤ p,

• M4 models assume the link between both populations is mixture component indepen-
dent (σ∗

k free):

– M4a : λk0 = 1 andλk j = λ j ∀1≤ j ≤ p,

– M4b : Λk = Λ with Λ a diagonal matrix,

• M5 assumesΛk is unconstrained, which leads to estimate the mixture regression model
for P∗ by using onlyS∗ (σ∗

k free).

Let us remark that transformation other models could be defined, in particular by considering
that only the variance component is different between the source and target populations. Even
though, only the previous models are investigated in this paper, the practitioner can easily
introduced other models if needed, by following the strategy presented here.
Moreover, the mixing proportions are allowed to be the same in each population or to be
different. In the latter case, they consequently have to be estimated using the sampleS∗.
Corresponding notations for the models are respectivelypM· when the mixing proportion of
P∗ have to be estimated andM· when not. Table 1 gives the number of parameters to estimate
for each model. If the mixing proportions are different fromP to P∗, K −1 parameters to
estimate must be added to these values. The estimation of themodelsM2 to M4 are derived in
the next subsection.

Let us also remark that by only assuming that the functionψk (defined at the begining
of this section) isC 1, rather than assuming (4), Biernacki et al. (2002) proves that ψk is
necessarily affine, and thenY∗

|x,z∗ik=1 have the same probability distributionλk1 + λk2Y|x,zik=1,

where(λk1,λk2) ∈ R
2. We therefore obtain the following relationship between the model

parameters ofP andP∗:

β ∗
k = (λk1+λk2βk0,λk2βk1, . . . ,λk2βkp)

t , (5)

σ∗
k = λk2σk. (6)

The modelM3d previously defined, which is the most general model among theM2 andM3

classes of models, is equivalent to the model defined by relations (5) and (6).M4-type models
allow to introduce more flexibility in the proposed model.
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2.2. Parameter estimation

In the situation under review in this paper, the mixture of regressions is assumed to be
known (βk andσk will be estimated in practice from a sample of sufficient size) for the source
populationP, and the goal is to estimate the mixture of regressions forP∗. This will be done in
two steps. In the first step, the link parametersΛk and the mixing proportionsπ∗

k are estimated
as well as the residual variancesσ∗2

k when necessary (modelsM4). In the second step, the
estimation of the mixture regression parametersβ ∗

k and the residual variancesσ∗2
k (for models

M2 andM3) are deduced by plug-in through equations (4) and (6). In thefollowing, only the
situation where mixing proportions are different from those of populationP is considered.

The estimation of the link parameters is carried out by maximum likelihood using a miss-
ing data approachvia the EM algorithm (Dempster et al., 1977). This technique is certainly
the most popular approach for inference in mixtures of regressions (see Leisch (2004) for in-
stance). Conditionally to a sampleS∗ = (y∗,x∗) of observations, wherey∗ = (y∗1, . . . ,y

∗
n) and

x∗ = (x∗1, . . . ,x
∗
n), the log-likelihood of model (3) is given by:

L(θ ;y∗,x∗) =
n∗

∑
i=1

ln

(

K

∑
k=1

π∗
k φ(y∗i |x

t
iΛkβk,σ∗2

k )

)

, (7)

with θ = (π∗
1, . . . ,π∗

K,Λ1, . . . ,ΛK,σ∗
1 , . . . ,σ∗

K), and the complete log-likelihood is:

Lc(θ ;y∗,x∗,z∗) =
n∗

∑
i=1

K

∑
k=1

z∗ik ln
(

π∗
k φ(y∗i |x

t
iΛkβk,σ∗2

k )
)

, (8)

wherez∗ = (z∗ik)i=1,n∗,k=1,K is the unobserved latent variable, introduced in Section 2,and
assumed to be distributed as a one order multinomialM (1,π∗

1, . . . ,π∗
K).

The E step.From a current valueθ (q) of the parameterθ , the E step of the EM algorithm
consists in computing the conditional expectation of the complete log-likelihood:

Q(θ ,θ (q)) = Eθ (q)[Lc(θ ;y∗,x∗,z∗)|y∗,x∗]

=
n∗

∑
i=1

K

∑
k=1

t(q)
ik

(

ln(π∗
k )+ ln(φ(y∗i |x

t
i Λkβk,σ∗2

k ))
)

, (9)

where:

t(q)
ik = E[z∗ik|y

∗,x∗] = P(z∗ik = 1|y∗,x∗) =
π∗

k
(q)φ(y∗i |x

∗t
i Λ(q)

k βk,σ∗2
k

(q)
)

∑K
l=1π∗

l
(q)φ(y∗i |x

∗t
i Λ(q)

l βl ,σ∗2
l

(q)
)

(10)

is the conditional probability for the observationi to belong to thek-th mixture component.
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The M step.The M step of the EM algorithm consists in choosing the valueθ (q+1) which
maximizes the conditional expectationQ computed in the E step:

θ (q+1) = argmax
θ∈Θ

Q(θ ;θ (q)) (11)

whereΘ is a parameter space depending on the model at hand.
For the mixing proportions, the maximum is as usual reached for:

π(q+1)
k =

1
n∗

n∗

∑
i=1

t(q)
ik . (12)

For the residual variances (modelsM4), we have:

σ∗2(q+1)
k =

1

∑n∗
i=1 t(q)

ik

n∗

∑
i=1

t(q)
ik (y∗i −x∗ti Λ(q)

k βk)
2. (13)

The reminder of this section details the maximisation of thelink parameters:

• for modelpM2a: λ (q+1) is the positive solution of the quadratic equation

n∗λ 2 +λ
n∗

∑
i=1

K

∑
k=1

t(q)
ik (y∗i −βk0)x∗ti∼0βk∼0

σ2
k

−
n∗

∑
i=1

K

∑
k=1

t(q)
ik (y∗i −βk0)

2

σ2
k

= 0

wherex∗i∼0 = (x∗i1, . . . ,x
∗
ip) is the vectorx∗i without its first componentx∗i0, and similarly

βk∼0 = (βk1, . . . ,βkp),

• for modelpM3a: λ (q+1)
k is the positive solution of the quadratic equation

n∗kλ 2
k +λk

n∗

∑
i=1

t(q)
ik (y∗i −βk0)x∗ti∼0βk∼0

σ2
k

−
n∗

∑
i=1

t(q)
ik (y∗i −βk0)

2

σ2
k

= 0

wherex∗i∼0 = (x∗i1, . . . ,x
∗
ip) is the vectorx∗i without its first componentx∗i0, similarly

βk∼0 = (βk1, . . . ,βkp), andn∗k = ∑n∗
i=1 t(q)

ik ,

• for modelpM2b: λ (q+1) =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

βk0
2

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −x∗ti∼0βk∼0)βk0,

• for modelpM3b: λ (q+1)
k =

(

n∗

∑
i=1

t(q)
ik

σ2
k

βk0
2

)−1
n∗

∑
i=1

t(q)
ik

σ2
k

(y∗i −x∗ti∼0βk∼0)βk0,
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• for modelpM2c: λ (q+1) is the positive solution of the quadratic equation

n∗λ 2+λ
n∗

∑
i=1

K

∑
k=1

t(q)
ik y∗i x∗ti βk

σ2
k

−
n∗

∑
i=1

K

∑
k=1

t(q)
ik y∗i

2

σ2
k

= 0

• for modelpM3c: λ (q+1)
k is the positive solution of the quadratic equation

n∗kλ 2
k +λk

n∗

∑
i=1

t(q)
ik y∗i x∗ti βk

σ2
k

−
n∗

∑
i=1

t(q)
ik y∗i

2

σ2
k

= 0

For the modelpM2d, as two interdependent scalar parametersλ0 andλ1 are considered, no an-
alytical formulae are available for the global maximum on both λ0 andλ1. In such a situation,
an easy way to carry out the maximization in this case is to consider a descending algorithm
in which λ0 andλ1 are alternatively maximized. Using such a strategy incorporated in a EM
algorithm is very frequent and, in such a case, the algorithmis called GEM (generalized EM,
(Dempster et al., 1977)). Update formulas for these two parameters are consequently:

λ (q+1)
0 =

∑n∗
i=1∑K

k=1 t(q)
ik βk0(y∗i −λ (q+1)

1 x∗ti∼0βk∼0)σ−2
k

∑n∗
i=1 ∑K

k=1 t(q)
ik β 2

k0σ−2
k

,

andλ (q+1)
1 is the positive solution of the quadratic system

n∗λ 2
1 +λ1

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

x∗ti∼0βk∼0(y
∗
i −λ (q+1)

0 βk0)−
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
0 βk0)

2 = 0

For the modelpM3d, the same algorithm is considered with the following updateformulas:

λ (q+1)
k0 =

∑n∗
i=1 t(q)

ik (y∗i −λ (q+1)
k1 x∗ti∼0βk∼0)

∑n∗
i=1 t(q)

ik βk0

,

andλ (q+1)
k1 is the positive solution of the quadratic system

n∗kλ 2
1 +λ1

n∗

∑
i=1

t(q)
ik

σ2
k

x∗ti∼0βk∼0(y
∗
i −λ (q+1)

k0 βk0)−
n∗

∑
i=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
k0 βk0)

2 = 0

ModelsM4a andM4b have respectivelyp and p+ 1 scalar parameters plus the residual vari-
ance. A descending algorithm has to be used for alternatively maximizing the variances (by
(13)) and each scalar link parameter. Update formulas for the link parameters are the follow-
ing:
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• modelM4a, ∀1≤ J ≤ p:

λ (q+1)
J =

(

n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2(x∗iJβkJ)
2

)−1
n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2x∗tiJ βkJ

(

y∗i −βk0−
p

∑
j=1, j 6=J

λ (q+1)
j x∗i j βk j

)

,

• modelM4b, ∀0≤ J ≤ p:

λ (q+1)
J =

(

n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2(x∗iJβkJ)
2

)−1
n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2x∗iJβkJ

(

y∗i −
p

∑
j=0, j 6=J

λ (q+1)
j x∗i j βk j

)

.

with xi0 = 1 for all 1≤ i ≤ n.

The EM algorithm stops when the difference of the likelihoodvalue of two consecutive
steps is lower than a given thresholdε (typically ε = 10−6).

Prediction rule. Once the model parameters have been estimated, the prediction ŷ∗i of the
response variable corresponding to an observationxi of X is obtained by a two step procedure.
First, the component membershipzi of xi is estimated by the maximum a posteriori rule.
It consists in assigningxi to thekth component (zik = 1) which maximizes the conditional
probability (10) obtained at the last step of the EM algorithm. Then, ˆy∗i is predicted using the
kth regression model of the mixture:

ŷ∗i = xi β̂k where k = argmax
1≤k≤K

t(qlast)
ik (14)

with qlast the number of EM steps until convergence.

2.3. Model selection

In order to select among the 24 transformation models definedin Section 2 the most ap-
propriate model of transformation between the populationsP andP∗ , we propose to use two
well known criteria. The reader interested in a comparison of the respective performances of
models selection criteria could refer to Hastie et al. (2001) for instance. The first considered
criterion is the PRESS criterion (Allen, 1974), which represents the mean squared prediction
error computed on a cross-validation scheme, formally defined by:

PRESS=
n∗

∑
i=1

(y∗i − ŷ∗(i))
2

whereŷ∗(i) is the prediction ofy∗i obtained by the mixture regression model estimated without
using theith observation of the sampleS∗. This criterion is one of the most often used for
model selection in regression analysis, and we encourage its use when it is computationally
feasible. The second considered criterion is the Bayesian Information Criterion (BIC, Schwarz
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(1978)), which is a penalized likelihood criterion with a less computation cost. The BIC
criterion is defined by:

BIC = −2lnℓ+ν lnn∗,

whereℓ is the maximum log-likelihood value andν is the number of estimated parameters (see
Table 1). It consists in selecting the models leading to the highest likelihood while penalizing
models with a large number of parameters. Let us precise that, for both criteria, the most
adapted model is the one with the smallest criterion value.

3. Bayesian approach for adaptive mixture of regressions

The previous section has considered the modelling and the estimation of parametric adap-
tive models for mixture of regressions with the classical frequentist point of view. This section
adopts a Bayesian approach for inferring adaptive mixture of regressions and Gibbs sampling
is considered for the estimation of the posterior distribution.

3.1. A Bayesian view of the problem
The classical treatment of the mixture regression problem seeks a point estimate of the un-

known regression parameters. By contrast, the Bayesian approach (Hurn et al., 2003; Robert,
2007) characterizes the uncertainty on parameters througha probability distribution, called
a prior distribution. Bayesian analysis combines the priorinformation on the parameters
(carried out by the prior distribution) with information onthe current sample (through the
likelihood function) to provide estimates of the parameters using the posterior distribution.
In the context of adaptive mixture of regressions, the Bayesian approach makes particularly
sense since there is an actual prior on the model parameters of populationP∗. Indeed, even
though source and target populations differ, they are here assumed to have a strong link and
it is therefore natural to define the prior on parameters of populationP∗ according to the ones
of populationP.

In the context of mixture of regressions, it is usual to assume the conditional indepen-
dence between the mixing parametersπ∗ and both component parametersβ ∗ = {β ∗

1 , ...β ∗
K}

andσ∗2 = {σ∗2
1 , ...,σ∗2

K }. The independence between(β ∗
k ,σ∗2

k ) and(β ∗
ℓ ,σ∗2

ℓ ) is as well as-
sumed for allk 6= ℓ, k, ℓ = 1, ...,K. For simplicity, only conjugate priors are considered in this
work and, since model parameters of the reference population P are assumed to be known,
prior distributions of the parameters of populationP∗ will depend on model parameters of the
populationP. We therefore propose to assume that, for allk = 1, ...,K, the prior distribution
for β ∗

k is a normal distribution centered inβk:

β ∗
k ∼ N (βk,σ∗2

k Ak),

whereAk is a (p+ 1)× (p+ 1) covariance matrix. The prior distribution ofσ∗2
k , for all

k = 1, ...,K, is assumed to be an inverse-gamma distribution:

σ∗2
k ∼ I G (γk,νk).

11



The prior distribution for parametersπ∗ = {π∗
1, ...,π∗

K} is assumed to be a Dirichlet distribu-
tion centered in the mixing proportions(π1, ...,πK) of populationP:

π∗ ∼ D(π1, ...,πK).

With such a modelling, the regression coefficientsβ ∗
k and the mixing proportionsπ∗ = {π∗

1, ...,π∗
K}

of populationP∗ are naturally linked to the ones of populationP. The variance termsσ∗2
k Ak

control how the regression coefficientsβ ∗
k differ from the ones of the reference populationP.

In the experiments presented in Section 4, the prior parametersνk, γk andAk, k = 1, ...,K,
were respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regressions model and the priors,
we end up with the joint posterior distribution:

p(θ∗|Y∗) ∝
n∗

∏
i=1

[

K

∑
k=1

π∗
k φ(y∗i |x

∗tβ ∗
k ,σ∗2

k )

]

p(π∗)
K

∏
k=1

[

p(β ∗
k |σ

∗2
k )p(σ∗2

k )
]

,

whereθ∗ = (π∗
k ,β ∗

k ,σ∗
k )k=1,K. However, since the posterior distributionp(θ∗|Y∗) takes into

account all possible partitions of the sample intoK groups, the maximization ofp(θ∗|Y∗) is
intractable even with moderately large sample size and Markov Chain Monte Carlo methods
have to be used.

3.2. Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a complicated distribution by
using samples drawn indirectly from this distribution. Among MCMC methods, the Gibbs
sampler is the most commonly used approach when dealing withmixture distribution (Diebolt
and Robert (1994)). In Gibbs sampling, the vector parameterθ∗ is partitioned intos groups
of parameters{θ∗

1 , ...,θ∗
s} and a Markov chain is generated by iteratively sampling fromthe

conditional posterior distributions. Once a Markov chain of length Q has been generated,
sample values can be averaged on the last sampling iterations to provide consistent estimates
of model parameters. In the context of inference for mixturedistribution, the Gibbs sampler
requires to add a latent variableZ∗ ∈ {0,1}K representing the allocation of observations to
theK mixture components (introduced in Section 2). Since the latent variableZ∗ is not ob-
served,Z∗ can be viewed as unknown and should be estimated along with the other model
parameters. Consequently, given estimatesβ̂ andπ̂ of respectively regression parameters and
mixing proportions of populationP and starting from initial valuesπ∗(0), β ∗(0) andσ∗2(0),
the Gibbs algorithm generates, at iterationq, parameter values from the conditional posterior
distributions:

Z∗(q) ∼ p(Z|Y∗, β̂ , π̂,π∗(q−1),β ∗(q−1),σ∗2(q−1)),

π∗(q) ∼ p(π∗|Y∗, β̂ , π̂,Z∗(q),β ∗(q−1),σ∗2(q−1)),

σ∗2(q)
k ∼ p(σ∗2

k |Y∗, β̂ , π̂,Z∗(q),π∗(q),β ∗(q−1)),

β ∗(q)
k ∼ p(β ∗

k |Y
∗, β̂ , π̂,Z∗(q),π∗(q),σ∗2(q−1)).

12



According to the priors given in the previous paragraph, theconditional posterior distribution
of Z∗ is a multinomial distribution:

z∗i |Y
∗, β̂ , π̂,π∗,β ∗,σ∗2 ∼ M (1, ti1, ..., tiK),

wheretik = π∗
k φ(y∗i |x

∗t
i β ∗

k ,σ∗2
k )/∑K

ℓ=1 π∗
ℓ φ(y∗i |x

∗t
i β ∗

ℓ ,σ∗2
ℓ ), and the conditional posterior distri-

bution ofπ∗ is a Dirichlet distribution:

π∗|Y∗, β̂ , π̂,Z∗,β ∗,σ∗2 ∼ D(π̂1+n∗1, ..., π̂K +n∗K),

with n∗k = ∑n
i=1z∗ik. Once the component belongings of each observation are known, the

observations of the same componentk can be gathered into the matricesx∗k andY∗
k , for all

k = 1, ...,K. With these notations, the conditional posterior distribution of σ∗2
k is an inverse

gamma:
σ∗2

k |Y∗, β̂ , π̂,Z∗,π∗,β ∗
k ∼ I G (γk +nk/2,νk +Sk/2),

whereSk = (Y∗
k −x∗tk β ∗

k )t(Y∗
k −x∗tk β ∗

k )+(β̂k−β ∗
k )t(Ak +(x∗tk x∗k)

−1)−1(β̂k−β ∗
k ), and the con-

ditional posterior distribution ofβ ∗
k is a normal distribution:

β ∗
k |Y

∗, β̂ , π̂,Z∗,π∗,σ∗2
k ∼ N (mk,∆k) ,

with

mk = (A−1
k +x∗tk x∗k)

−1(x∗tk Y∗
k +A−1

k β̂k),

∆k = σ∗2
k (x∗tk x∗k +A−1

k )−1.

Finally, consistent estimates of model parametersπ∗,β ∗ andσ∗2 are obtained by averaging on
the lastQ−q0 sampling iterations, whereq0 defines the number of iterations of the so called
“burning phase” of the Gibbs sampler.

3.3. The label switching problem

When simulating a Markov chain to estimate parameters of a mixture model, the label
switching problem frequently arises and is due to the multimodality of the likelihood. Indeed,
if the prior distributions are symmetric, the posterior distribution inherits the multimodality of
the likelihood. In such a case, the Markov chain can move fromone mode to another and it is
difficult to deduce consistent estimators of model parameters. The earliest solution, proposed
by Richardson and Green (1997), consists in adding indenfiability constraints on model pa-
rameters such as an order relation in mixing proportions. Unfortunately, this approach does
not work very well as showed by?. By contrast, some authors like? and Stephens (2000) pro-
pose to worka posteriorion the generated Markov chain in order to reorganize it according
to a specific criterion. The Stephens’ procedure reorganizes the Markov chain by searching
the correct permutations of mixture component which minimizes a divergence criterion. The
solutions proposed by Celeuxet al. are in the same spirit and, among the different proposed
criteria, they propose in particular to reorganize the Markov chain using a sequentialk-means
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Figure 2: PopulationsP andP∗ used for the introductory example. Curves black (left) and red (right) indicates
respectively the actual mixture regression of populationsP andP∗.

algorithm. Both the Stephens and Celeux’s approaches are efficient to deal with the label
switching problem. However, the sequentialk-means algorithm has the advantage to be less
memory consuming and, in the experiments presented in Section 4, this approach is used to
overcome the label switching problem.

4. Experimental results

This section proposes experiments on simulated and real data in order to highlight the
main features of the adaptive models proposed in the previous sections. After an introductory
example, the behavior of adaptive mixtures of regressions (parametric and Bayesian) is com-
pared to the one of classical mixtures of regressions on simulated data. The last experiment
will demonstrate the interest of using adaptive mixtures ofregressions on an illustrative real
dataset, and where the size of the target population sample will be artificially moved from
small to larger sizes.

4.1. An introductory example

This first experiment aims to compare the basic behaviors of adaptive mixtures of re-
gressions (parametric and Bayesian), hereafter referred to as AMR (respectively AMRp and
AMRb), and classical mixtures of regressions, referred to as MR. For this study, the reference
populationP is modeled by a 2 component mixture of quadratic polynomial regressions with
parametersβ1 = (3,0,−2) andβ2 = (−3,0,0.5). The left panel of Figure 2 shows the mixture
regression of populationP as well as some observations simulated from this model. The mix-
ture model of populationP∗ has then been obtained from the previous model by multiplying
all regression parameters of populationP by a factor 3. It follows thatβ ∗

1 = (9,0,−6) and
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Figure 3: Results obtained for the introductory example with the Bayesian approach of adaptive mixture of
regressions (AMRb). From left to right: mixing proportionsover the MCMC iterations, Gibbs sampling in the
parameter space and some of the generated regression curves. See text for details.

β ∗
2 = (−9,0,1.5). Finally, 20 observations of populationP∗ have been simulated using the

latter model on[0,3]. The right panel of Figure 2 shows the actual mixture regression model
of populationP∗ as well as the 20 simulated observations (red triangles). These 20 observa-
tions ofP∗ were used by the three studied regression methods to estimate the regression model
of P∗ and to predict the value of 5000 validation observations ofP∗. The mean square error
(MSE), computed on the validation sample, has been chosen toevaluate the predicting ability
of each regressions method in this introductory example.

Figure 3 illustrates the estimation procedure of the Bayesian approach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterations including a burning phase of
100 iterations. The left panel of Figure 3 shows the sampled proportions over the MCMC
iterations. As one can see, after the burning phase, the proportions of both mixture compo-
nents stabilize in the neighborhood of 0.5 which is the actual value ofπ1 andπ2. The central
panel presents the sampled values for regression parameters β1 andβ2 in the parameter space
(restricted toβk1 andβk3 for k = 1,2 because bothβ12 andβ22 are both equal to 0). The blue
and green dashed lines indicate at the intersections the actual values of regression parameters.
It appears that the Bayesian approach succeeds in estimating the conditional distributions of
regression parameters. Finally, the right panel exhibits some of the 1 000 regression models
generated during the MCMC iterations which are then used to provide by averaging the final
estimated regression model ofP∗.

Figure 4 presents the results obtained for the considered example with the classical mix-
ture of regressions (MR), parametric adaptive mixture of regressions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb). The MR method used only the 20 observations
sampled fromP∗ whereas AMR and AMRb combines the informations carried by these ob-
servations with the knowledge onP to build their estimation of the mixture regression model
of P∗. In order to not favor the adaptive approaches, the actual number of components and
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Figure 4: Results obtained for the introductory example with classical mixture of regressions (MR), parametric
adaptive mixture of regressions (AMRp) and Bayesian adaptive mixture of regressions (AMRb) methods. See
text for details.

dimension of the polynomial regression were also provided to the MR method. Nevertheless,
the MR method provides a poor estimate of the regression model and its mean square error
(MSE) value, computed on a independent validation set, is consequently high (3704.4). Con-
versely, the parametric (with the modelpM3c) and Bayesian approaches of AMR give good
estimations of theP∗ model (they should be compared to the red curves of Fig. 3). The asso-
ciated MSE values are naturally much lower than the one of theclassical MR method (26.4
for AMRp and 45.2 for AMRb). Nonetheless, the Bayesian approach performs less than the
parametric AMRp. This could be due to the fact that AMRb favors too much the prior (the
regression parameters ofP) in this situation with only few observations of the new population.
This introductory example has shown that adaptive regression models succeed in transferring
the knowledge of a reference population to a new population.

4.2. Influence of the size of S∗

The second experiment focuses on the influence of the number of observationsn∗ from the
new populationP∗ on the estimation quality of mixture regression models for the MR, AMRp
and AMRb methods. The experimental setup is the same as for the previous experiment except
that the number of observationsn∗ from the new populationP∗ varies from 6 to 200. For each
value ofn∗, the regression model ofP∗ has been estimated with the three studied methods
and the associated MSE values have been computed again on a independent validation set of
5 000 observations. Finally, the experiment has been replicated 50 times in order to average
the results. Figure 5 shows the evolution of the median logarithm of the MSE value according
to the the size ofS∗ for the classical mixture of regressions (MR), parametric adaptive mixture
of regressions (AMRp) and Bayesian adaptive mixture of regressions (AMRb) methods. For
the parametric approach of the AMR method, the model used ispM3c. Associated boxplots
are presented by Figure 6 on a logarithmic scale. On view of Figure 5, it can be first noticed
that the performance of the classical MR method is sensitiveto the the size ofS∗. Indeed,
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Figure 5: Average logarithm of the MSE value according to thethe size ofS∗ for the classical mixture of regres-
sions (MR), parametric adaptive mixture of regressions (AMRp) and Bayesian adaptive mixture of regressions
(AMRb) methods.

for small sample sizes, the MR method provides poor estimates of the mixture regression
model of populationP∗ and this consequently yields poor prediction performances(large
MSE values). As one can expect, the model estimation and the prediction improve when the
number of observationsn∗ from the new populationP∗ increases. More surprisingly, as it can
be observed on the left panel of Figure 6, the variance of the prediction performance of the MR
method remains large even for sample sizes bigger than 100. This remind us that the fitting of
a mixture regression model is always a difficult task. Conversely, the adaptive methods AMRp
and AMRb which exploit their knowledge on the reference population obtain on average good
prediction results (low MSE values) and this even for very small numbers of observationsn∗.
In particular, the parametric approach AMRp provides very stable prediction results and its
variance decreases quickly whenn∗ increases. The Bayesian approach AMRb, even though it
is much efficient and stable than the classical MR method, appears to be slightly less efficient
than the parametric approach AMRp. To summarize, this studyon simulations has shown that
adaptive regression models greatly improve the predictionand reduce the predictor variance
compared to the classical mixture regression approach whenthe number of observations of
the new population is small.
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Figure 6: Boxplots of MSE values (on logarithmic scale) according to the the size ofS∗ for the classical mix-
ture of regressions (left), parametric adaptive mixture ofregressions (center) and Bayesian adaptive mixture of
regressions (right) methods.

4.3. Illustration on real data: CO2 emissions vs gross national product

In this last experiment, the link between CO2 emission and gross national product (GNP)
of various countries is investigated. The sources of the data areThe official United Nations
site for the Millennium Development Goals Indicatorsand theWorld Development Indicators
of the World Bank. Figure 7 plots the CO2 emission per capitaversusthe logarithm of GNP
per capita for 111 countries, in 1980 (left) and 1999 (right). A mixture of second order poly-
nomial regressions seems to be particularly well adapted tofit these data and will be used
in the following. Let remark that regression model with heteroscedasticity could also be ap-
propriated for such data, but these kind of models are out of the topic of the present work.
For the 1980’s data, two groups of countries are easily distinguishable: a first minority group
(about 25% of the whole sample) is made of countries for whicha grow in the GNP is linked
to a high grow of the CO2 emission, whereas the second group (about 75%) seems to have
more environmental political orientations. As pointed outby Hurn et al. (2003), the study of
such data could be particularly useful for countries with low GNP in order to clarify in which
development path they are embarking. This country discrimination in two groups is more
difficult to obtain on the 1999’s data: it seems that countries which had high CO2 emission in
1980 have adopted a more environmental development than in the past, and a two-component
mixture regression model could be more difficult to exhibit.

In order to help this distinction, parametric adaptive mixture models are used to estimate
the mixture regression model on the 1999’s data. The ten AMRpmodels, with free component
proportionsπ∗

k , pM2a to pM4b, AMRb model, classical mixture of second order polynomial
regressions with two components (MR) and usual second orderpolynomial regression (UR)
are considered. Different sample size of the 1999’s data aretested: 30%, 50%, 70% and 100%
of theS∗ size (n∗ = 111). The experiments have been repeated 20 times in order toaverage
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Figure 7: Emission of CO2 per capitaversusGNP per capita in 1980 (left) and 1999 (right).

the results. Table 2 summarizes these results: MSE corresponds to the mean square error,
whereas PRESS and BIC are the model selection criteria introduced in Section 2.3. In this
application, the total number of available data in the 1999 population is not sufficiently large
to separate them into two training and test samples. For thisreason, MSE is computed on the
whole S∗ sample, even though a part of it has been used for the training(from 30% for the
first experiment to 100% for the last one). Consequently, MSEis a significant indicator of
predictive ability of the model when 30% and 50% of the whole dataset are used as training
set since 70% and 50% of the samples used to compute the MSE remain independent from
the training stage. However, MSE is a less significant indicator of predictive ability for the
two last experiments and the PRESS should be preferred in these situations as indicator of
predictive ability.

Table 2 first allows to remark that the 1999’s data are actually made of two components as
in the 1980’s data since both PRESS and MSE are better for MR (2components) than UR (1
component) for all sizesn∗ of S∗. This first result validates the assumption that both the refer-
ence populationP and the new populationP∗ have the same numberK = 2 components, and
consequently the use of adaptive mixture of regression makes sense for this data. Secondly,
AMRp turns out to provide very satisfying predictions for all values ofn∗ and particularly
outperforms the other approaches whenn∗ is relatively small (less than 77 here). Indeed, both
BIC, PRESS and MSE testify that the models of AMRp provide better predictions than the
other studied methods whenn∗ is equal to 30%, 50% and 70% of the whole sample. Further-
more, it should be noticed that ARMp provide stable results according to variations onn∗. In
particular, the modelspM2 are those which appear the most efficient on this dataset and this
means that the link between both populationsP andP∗ is mixture component independent. On
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30% of the 1999’s data (n∗ = 33)
model BIC PRESS MSE

AMRp (pM2a) 13.09 3.38 3.40
AMRp (pM2b) 12.73 3.89 3.32
AMRp (pM2c) 12.79 5.48 3.68
AMRp (pM2d) 11.54 4.99 3.73
AMRp (pM3a) 12.14 4.20 3.76
AMRp (pM3b) 11.72 4.87 4.00
AMRp (pM3c) 11.50 5.09 3.86
AMRp (pM3d) 22.83 5.52 3.64
AMRp (pM4a) 18.72 5.15 4.01
AMRp (pM4b) 22.01 6.21 5.04

AMRb - (†) 5.99
UR 27.08 7.46 7.66
MR 32.89 5.54 5.11

50% of the 1999’s data (n∗ = 55)
model BIC PRESS MSE

AMRp (pM2a) 10.18 4.11 3.44
AMRp (pM2b) 13.54 3.73 3.37
AMRp (pM2c) 13.89 4.25 3.45
AMRp (pM2d) 22.35 4.38 4.80
AMRp (pM3a) 12.00 3.84 4.49
AMRp (pM3b) 12.00 4.47 3.86
AMRp (pM3c) 17.53 3.97 3.28
AMRp (pM3d) 25.39 4.77 3.67
AMRp (pM4a) 20.65 3.68 3.44
AMRp (pM4b) 24.92 5.57 4.19

AMRb - (†) 5.66
UR 20.87 7.95 7.21
MR 39.69 4.82 4.77

70% of the 1999’s data (n∗ = 77)
model BIC PRESS MSE

AMRp (pM2a) 14.76 3.65 3.35
AMRp (pM2b) 14.73 3.91 3.39
AMRp (pM2c) 14.53 4.49 3.53
AMRp (pM2d) 18.90 4.30 3.72
AMRp (pM3a) 18.84 4.33 3.85
AMRp (pM3b) 18.80 4.40 3.85
AMRp (pM3c) 18.81 4.41 3.26
AMRp (pM3d) 27.05 3.91 3.17
AMRp (pM4a) 22.29 5.25 4.00
AMRp (pM4b) 26.55 4.92 4.03

AMRb - (†) 5.99
UR 22.08 8.00 7.10
MR 43.91 5.06 3.33

(n∗ = 111)
model BIC PRESS MSE

AMRp (pM2a) 15.51 4.78 3.32
AMRp (pM2b) 15.44 3.81 3.37
AMRp (pM2c) 15.39 4.84 3.47
AMRp (pM2d) 20.05 4.45 3.59
AMRp (pM3a) 20.18 4.29 3.79
AMRp (pM3b) 20.03 4.38 3.77
AMRp (pM3c) 20.05 3.94 3.10
AMRp (pM3d) 29.37 4.08 3.34
AMRp (pM4a) 23.98 4.21 4.13
AMRp (pM4b) 28.58 5.21 4.52

AMRb - (†) 5.66
UR 23.62 7.53 6.99
MR 47.19 3.66 2.89

Table 2: MSE on the whole 1999’s sample, PRESS and BIC criterion for the 10 parametric adaptive mixture
models (AMRppM2a to pM4b), AMRb model, usual regression model (UR) and classical regressions mixture
model (MR), for 4 sizes of the 1999’s sample: 33, 55, 77 and 111(whole sample). Lower BIC, PRESS and
MSE values for each sample size are in bold character.(†): Cross-validation on MCMC procedures is too
computationally heavy to be computed in a reasonable time.

20



the other hand, the Bayesian approach AMRb appears to provide results as stable as the ones
of AMRp but slightly less satisfying. The results of the Bayesian approach would probably
be better with a more specific choice of the priors.

This application illustrates well the interest of combining informations on both past (1980)
and present (1999) situations in order to analyse the link between CO2 emissions and gross
national product for several countries in 1999, especiallywhen the number of data for the
present situation is not sufficiently large. Moreover, the competition between the parametric
AMR models is also informative. Effectively, it seems that three models are particularly well
adapted to model the link between the 1980’s data and those of1999’s data:pM2a, pM2b and
pM2c. The particularity of these models is that they consider thesame transformation for both
classes of countries, which means, conversely to what one might prima faciehave thought,
that all the countries have made an effort to reduce their CO2 emissions and not only those
which had the higher ones.

5. Conclusion

We proposed in this paper adaptive models for mixture of regressions in order to im-
prove the predictive inference when the studied populationhas changed between training and
prediction phases. The first class of models considers a parsimonious and parametric link
between the mixture of regressions of both populations, whereas the second approach adopts
a Bayesian point a view in which the populations are linked bythe prior information imposed
on the mixture regression parameters. On both simulated data and real data, models consider-
ing parametric link turn out to be the most powerful: all the interest of such adaptive methods
consists in their sparsity, which leads to significantly decrease the number of observations of
the target population required for the estimation. As the indispensable stage of data collecting
is often expensive and time consuming, there is a real interest to consider adaptive mixture
of regressions in practical applications. Moreover, as it has been showed in the ilustration on
real data, the competition between the parametric link models provides informations on the
link between populations, which can be meaningful for the practitioner.

Regarding the further works, a first perspective concerns the Bayesian approach. In this
paper, the prior hyperparameters forσ∗2

k were simply fixed to values seeming experimentally
reasonable. The results of the Bayesian approach may be improved by working on the choice
of these hyperparameters. One generic way to do this is to make similar assumptions as in the
frequentist approach. For instance, the varianceσ∗2

k Ak of the regression parametersβ ∗
k could

be assumed to be common between mixture components or to be equal toσ∗2
k Id. The selection

between the considered assumptions could then be done by choosing those maximizing the
integrated likelihood (Raftery et al., 2007). A second working perspective is related to the
joint estimation of the models of both populationsP andP∗. Indeed, the reference regression
model being only estimated in practice, the quality of this estimation, depending on the size
n of the available sample, is directly responsible of the estimation quality of the mixture
regression model forP∗. In some situations (typically whenn is small compared to the model
complexity), it could be interesting to consider a full likelihood estimation which consists

21



in estimating simultaneously both mixture regression models. Such an approach has been
recently considered in Lourme and Biernacki (2008) in a supervised classification context. It
must be emphasized that such a full likelihood estimation ofboth mixtures of regression must
consider the same estimation method (parametric or Bayesian) for both populations.
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