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Abstract

When regression is carried out in a prediction purpose, drireomain assumptions is the
absence of evolution in the modeled phenomenon betweendimeng and the prediction
stages. Unfortunately, this assumption turns out to bendélkse in practical situations. The
present work investigates the estimation of regressiorures when population has changed
between the training and the prediction stages. The maaatihis work is to link the regres-
sion mixture of the prediction population with the known neggion mixture of the training
population. For this, two approaches are proposed. On tadand, a parametric approach
modelling the relationship between dependent variablé®tf populations is presented and
the EM algorithm is used for parameter estimation. On therdtiand, a Bayesian approach
is also proposed in which the priors on the prediction paputadepend on the mixture re-
gression parameters of the training population. In thietatase, a MCMC procedure is used
for inference. Both approaches need nevertheless to abaetgast some observations aris-
ing from the prediction population. The relevance of both plarametric and the Bayesian
approaches is illustrated on simulations and then compareldssical strategies on an envi-
ronmental dataset.

Keywords: Transfer learning, Mixture of regressions, Switching esgion, EM algorithm,
Bayesian inference, MCMC algorithm.

1. Introduction

The mixture of regressions, introduced by Goldfeld and @uéiD73) as the switching re-
gression model and also named clusterwise linear regressdel in Hennig (1999), is a pop-
ular regression model for modelling complex system. Inipaldr, the switching regression
model is often used in Economics for modelling phenomenla difterent phases. This model
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assumes that the dependent variable R can be linked to a covariate= (1,xy,...,Xp) €
RP*1 by one ofK possible regression models:

Y =XBc+oke, k=1,...K (1)

with prior probabilitiesrs, ..., 7 (with the classical constraingK ; 7§ = 1), whereg ~
A(0,1), Bc= (Bxoy---» Brp) € {B1,--.,Bx} is the regression parameter vector®if™ and
of € {0%,...,0¢} is the residual variance. The conditional density distituof Y givenx
is therefore:

K
pOYIX) = 5 R(yIX Be, 0), (2)
k=1

whereq(-|xX By, 02) is the univariate Gaussian density parametrized by its ggrand vari-
anceakz. For such a model, the predictionyfor a new observed covariates usually carried
out in two steps: first the component membership of the daatimated by the maximum a
posteriori (MAP) rule and theyis predicted using the selected regression model (seeo8ecti
2.2). Among the works which focused on this model, we can exsik the following ones
which have contributed to the popularity of this model: Hign(2000) investigates the model
identifiability, Hurn et al. (2003) proposes a Bayesiantiafee for the model estimation, Zhu
and Zhang (2004) studies the asymptotic theory of paranesténators in order to define
hypothesis tests, and Khaliliand Chen (2007) consideialiarselection for this specific re-
gression model. Let us also mention that Leisch (2004) dgge package for the R software
devoted to the mixture of regressions.

The present paper focuses on the problem of using a mixtgresgion model for predic-
tion when the modeled phenomenon has changed betweenithegrstage, which has led to
the parameter estimation, and the prediction stage. M@&ag®ly, we assume that model (1)
has been estimated with a sample from a given training ptpuoléof size large enough to
have an estimation of satisfaying quality), and we want @it predict the dependent vari-
ableY for a new population which could be different from the tramone. For instance, the
difference between both populations can be due to a swittieigovariate distribution or to
a variation of the link between the covariates and the depr@ndariable. The goal is then to
transfer the knowledge from the training (source) popatato the prediction (target) popula-
tion. This task is usually known a@sansfer learning(see Pan and Yang (2010) for a complete
survey), and can be summarized by Figure 1 in the case of gless@®n mixture model.

We now give some application examples of transfer learrimg.biological context, Bier-
nacki et al. (2002) and Jacques and Biernacki (2010) propoeelels for clustering male and
female birds: the source population consists of birds frooommon species whereas the
target population is composed of birds from a rarer spechasther application concerns
the problem of sentiment classification as considered bydliet al. (2007). As the review
data can be very different among several type of productsetts a need to collect a large
sample of labeled data for each product in order to train aiBpeeview-classification model
per product. The use of transfer learning techniques altonadapt a sentiment classifier
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Figure 1: Learning process of transfer learning

from one product to another one. In Bouveyron and Jacqud®§2the authors predict house
prices from house features for a city of the USA West Coast (l®se, California) by adapt-
ing a regression model learned with data issued from anaihestated on the East Coast
(Birmingham, Alabama). The use of a transfer learning madieivs to spare an expensive
recollect of training data for the target population (Sasedoousing in this application). Other
examples can be found in Pan and Yang (2010).

1.1. Related work

Transfer learning is a particularly active research fiehdsithe NIPS-95 workshop “Learn-
ing to Learn”, in which the need for machine learning methoissing previously learned
knowledge was exhibited. Countrary to previously cited kgan the classification context
(Biernacki et al. (2002); Jacques and Biernacki (2010))yhich the data of the target popu-
lation can be unlabelled, the regression purpose need enabat least some couplég, X;)
in the target population. In this case, we speakndfictivetransfer learning. Readers inter-
ested in a comprehensive review can refer to Pan and Yan@)201

Most of the methods allowing to treat such setting are egfigaesigned for estimating
simultaneously the parameters of both source and targetlgtogns (we speak ahulti-task
learning), but can easily be adapted for transfer learning. Theyidengither a Bayesian or
a regularization framework. Typically, in the Bayesian @@eh, each task is assume to share
the same prior (see Lawrence and Platt (2004) for instaht#)e regularization framework,
parameters between models for source and target popukatoassumed to be linked (see
Evgeniou and Pontil (2004) in a SVM context for instance).

In the regression contexfovariate Shifis a specific transfer learning problem consid-
ering that the probability density of the covariates in thegyét population is different from
the one of the source population. However, the relationbbipveen covariates and depen-
dent variable is assumed not to have changed (Shimodai@®)28torkey and Sugiyama
(2007); Sugiyama (2006); Sugiyama and Muller (2005, 2p0Mus, if the regression model
is exactly known, a change in the probability distributidritee explanatory variables is not



a problem. Unfortunately, this is never the case in praciicg the regression model esti-
mated with the training data could be very disappointingnmyeplied to data with a different
probability distribution.

The originality of our work consists in introducing paramemodels allowing to link the
source and target populations. A more conventional Bagesgigroach is also investigated,
and comparison of both approaches are carried out on siwukatd real data.

1.2. Problem formulation

Assuming that the target populati®, for which we want to predicY, is different from
the source populatioR, the mixture regression model fBf can be written as follows:

Y* = xX'Bi+ole (3)

K*
Py’ ) = 3 TR @y X Be, 0ic?)
=1

with e* ~ . 47(0,1), B € {B7..., Bt~} andoy € {07, ..., 0. }. Letus now precise the focus
of this paper by making the three following assumptions:

H; : the couples of variable@’,x) and(Y*,x*) are assumed to be the same but measured
on two different populations.

H, : the sizen® of the observation sampl = (y;",x")i—1n+ Of populationP* is assumed
to be small compared to the number of observations of theesquopulatiorP. Other-
wise, the mixture regression model could be estimatedtiireithout using the source
population.

Hs : as both populations have the same nature, each mixtursusnasl to have the same
number of component&( = K).

Under these assumptions, the goal is then to pr&diébr some new* by using both samples
S= (Vi,Xi)i=1,n andS". The challenge consists therefore in exhibiting a link leEsw both
populations.

1.3. Organization of the manuscript

The reminder of this work is organised as follows. Sectionr@pses a first solution
to improve the predictive inference on the target poputabyg defining parametric models
for the link between mixture regression models of both papoihs. This approach has the
advantage to lead to interpretable results, which shodfdthe practitioner in analyzing the
differences between the source and target populations. [t@mative Bayesian approach,
most frequent in transfer learning, is presented in Seciomhe link between regression
models is then formulated through prior densities on thgetgpopulation. The advantage of
this strategy is its flexibility which can fit into differentsgations, if the prior densities are well
chosen. In Section 4, the performance of both the parametdcthe Bayesian approaches
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is first illustrated on simulations. Then, the proposedtstji@s are compared to classical
methods on an environmental dataset. Section 5 finally megpsome concluding remarks
and directions for future works.

2. Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which comsistsdelling the link between
training and test populations by a parametric relationbkigveen the regression parameters.

2.1. Parametric models for linking the reference and tegiypations

Let us introduce a latent variabi& < {0, 1}X representing the belonging of observations
to the K mixture components,e. 7, = 1 indicates that théth observation(x",y;") comes
from thek-th component and; = 0 otherwise. Conditionally to an observatiriof the co-
variates, we would like to exhibit a distributional relatghip between the dependent variables
of the same mixture component such ﬂfﬁ%k:l and Yk (Y|x z—1) have the same probability

distribution, withyy a function fromR to R.

Let Bx andB; (1 < k <K) be respectively the parameters of the mixture regressaiets
in the source and the target populations (Equations (1) 2nd\We assume in this section that
the functionyy, exhibiting the link between the source and target poputatiis such that:

B¢ = B, whereA, = diag(Awo, Ak, - - - Akp) 4)
Oy is free,
wherediag(Ako, Axt; - - -, Akp) is the diagonal matrix containin@o, Ay, - - -, Akp) ON its diag-
onal. The interest of introducing such a link lies in the ret¢hn of the number of parameters
to estimate for the mixture regression model B3t In the following, we go further by in-

troducing some constraints @ andoy in order to define a family of parsimonious models,
which includes many of the situations that may be encoudterpractice:

* M; assumes both populations are the safe= |g is the identity matrix §; = o),

* M> models assume the link between both populations is coeaaiad mixture compo-
nent independent:

— My Ao=1, A=A andoy =Acgx V1< |<p,
— My A=A, Aj=1andogy =0k V1< j<np,
— My : Ay = Alg andoy = A gy,
— My @ Ao = Ao, Aj = A1 andoy = A0 V1< j<np,
* M3 models assume the link between both populations is coedndependent:

— Maza: Ao = 1, Aqj = Acandoy = Ao V1< j<p,



Model M; My My My Mg Mzg Mz, Mz Mzg Mgy Map Ms
Param. O 1 1 1 2 K K K 2K p+K p+K+1 K(p+2)

Table 1: Number of parameters to estimate for each modekgbithposed family.

— Map i A=A, Aqj=1andoy = ok V1< <p,
— Mgz 0 A = Adlg andoy = Agai,
— Mazq : Ako = Akos Akj = A anda; =Aa10k V1< j<p,

* M4 models assume the link between both populations is mixtomgponent indepen-
dent (o, free):

— My : Ak():landAkj =Aj Vi< j<p,
— Mgy : Ay = A\ with A a diagonal matrix,

* M5 assumeg\i is unconstrained, which leads to estimate the mixture ssgpsa model
for P* by using onlyS® (gy free).

Let us remark that transformation other models could be ééfim particular by considering
that only the variance component is different between tliecgoand target populations. Even
though, only the previous models are investigated in thfgepahe practitioner can easily
introduced other models if needed, by following the strategesented here.
Moreover, the mixing proportions are allowed to be the sameach population or to be
different. In the latter case, they consequently have todtenated using the sampk.
Corresponding notations for the models are respectigblywhen the mixing proportion of
P* have to be estimated amdl when not. Table 1 gives the number of parameters to estimate
for each model. If the mixing proportions are different frétto P*, K — 1 parameters to
estimate must be added to these values. The estimation ofdtelsM, to M4 are derived in
the next subsection.

Let us also remark that by only assuming that the functjgn(defined at the begining
of this section) is¢, rather than assuming (4), Biernacki et al. (2002) proves i is
necessarily affine, and thé@@kzl have the same probability distributidy + AkzY|x 7, —1,

where (Ax1, Ak2) € R2. We therefore obtain the following relationship betweea thodel
parameters oP andP*:

Bi = (M +MaBros AaBits - - - AkaPip)' s (5)
0; = Ak20k. (6)

The modelMsq previously defined, which is the most general model amondvthandMs
classes of models, is equivalent to the model defined byiaka(5) and (6) M4-type models
allow to introduce more flexibility in the proposed model.



2.2. Parameter estimation

In the situation under review in this paper, the mixture @ressions is assumed to be
known (B« and gy will be estimated in practice from a sample of sufficient sipe the source
populationP, and the goal is to estimate the mixture of regressionBfoi his will be done in
two steps. In the first step, the link paramet&gsand the mixing proportions; are estimated
as well as the residual variance§2 when necessary (modeld,). In the second step, the
estimation of the mixture regression paramefrand the residual varianc$2 (for models
M, andMj3) are deduced by plug-in through equations (4) and (6). Iridhewing, only the
situation where mixing proportions are different from tba@$ populatiorP is considered.

The estimation of the link parameters is carried out by maxmtikelihood using a miss-
ing data approackiia the EM algorithm (Dempster et al., 1977). This techniqueeigainly
the most popular approach for inference in mixtures of regjoms (see Leisch (2004) for in-
stance). Conditionally to a sampi = (y*,x*) of observations, wherg* = (yj,...,y;;) and
X* = (X3,...,X%,), the log-likelihood of model (3) is given by:

K
L(6;y",x") Zl”‘ (kz R @(y; X AkB UE2)> ) (7)
=

with 8 = (1, ..., T, A\1,...,\k, 07, ..., 0g), and the complete log-likelihood is:

n“ K
Le(B;y*,x",2) = Z S ZiIn (T (Y, 1% ABi: 0c7)) (8)
i=1k=1
wherez* = (7, )i—1n- k=1k IS the unobserved latent variable, introduced in Sectioan,
assumed to be distributed as a one order multinomfdl, 11}, . . ., 7§ ).

The E step.From a current valu®(@ of the parametef, the E step of the EM algorithm
consists in computing the conditional expectation of thmplete log-likelihood:

Q(979(q)) = Eg[Le(6;y", X", Z7)|y", X7]
n" K
— 5,342 () ey B2 ©
ISk

where:

75 D ol g A B )
S Doy %A B, 072 )

is the conditional probability for the observatioto belong to the-th mixture component.

= E[Z]y", X" = P(z = 1ly",x") = (10)



The M step.The M step of the EM algorithm consists in choosing the vaife) which
maximizes the conditional expectatiQrcomputed in the E step:

0@V — argmaxQ(6; 6'9) (11)
6O

whereO is a parameter space depending on the model at hand.
For the mixing proportions, the maximum is as usual reacbed f

*

4 — —* t\9, (12)

For the residual variances (modélg), we have:

0:2(%1) Z\t'k (yF — x,*t/\ Bi)?. (13)
1t|k !

The reminder of this section details the maximisation ofiithle parameters:

« for modelpMsy: A (@11 is the positive solution of the quadratic equation

"R Py — Bko> ToBeo T K 9 (yr — )2
*/\2 p) i~0 ik i -0
" Zl Z ;k; GI<2

wherex’ o = (X3, ..., X)) is the vectorq without its first componenty,, and similarly

Bk~o = (Bx; - -+ Bkp),

 for modelpMz;: )\éq“) is the positive solution of the quadratic equation

l tlk (yl Bo)% B0 L t|k (Y. Bro)?

%) 2
AR + Ak.; 0k i; sz -0
wherex’ o = (X7,...,Xp) is the vectong without its first componenxj,, similarly
Bio = (B, -, Brp), andn = 51, 6y,
« for modelpMyp,: A (@D = S t'(k B L Lq (yi —
(Z\k— 2, 7P ) 2,2 o7 X-oPi-0)fio

(G+1) n* t(q) 5 n* t( a)
« for modelpMay: A = (Z\%Bko ) s (Yk %" 0B~0) Bro,
s Ok



« for modelpMy: A (@1 s the positive solution of the quadratic equation

*tB n* K ti(kq)yi*z

;k; 0

is the positive solution of the quadratic equation

=0

*A2+Ai\ |k yl

» for modelpMac: AT

*t n* t( )
nk)\k + Ak Z 'k y*x B 'kay'
i= k

For the modepM,q, as two interdependent scalar parameAgrandA; are considered, no an-
alytical formulae are available for the global maximum othbxy andA;. In such a situation,
an easy way to carry out the maximization in this case is t@iclem a descending algorithm
in which Ag andA; are alternatively maximized. Using such a strategy incatea in a EM
algorithm is very frequent and, in such a case, the algorithealled GEM (generalized EM,
(Dempster et al., 1977)). Update formulas for these tworpatars are consequently:

=0

! 1)
PYCIE Sil1 ZII<<:1ti(kq)Bk0(W - Al(q+ .No/3k~o)
0 - ¥
Sty ZE:ltiiq)Bko Oy

and)\l(q“) is the positive solution of the quadratic system

n* K t(q

*Almzl —x.NoBkNow X" Bo) =3 3 a A0 Bl
k

k_

For the modepMsq, the same algorithm is considered with the following updateulas:

1
Ala+D) Sty |k (yi q+ Bk ~o)
K =

1t|k BkO
and/\lg‘”) is the positive solution of the quadratic system

n* t(Q)
MAZ+ Ay Zl—x,NOBkNOW A3 gg) — zl S (Y — ANFYB)2=0
i=

ModelsM4, andMy, have respectivelyp and p+ 1 scalar parameters plus the residual vari-
ance. A descending algorithm has to be used for alterngtimakimizing the variances (by
(13)) and each scalar link parameter. Update formulas ltitik parameters are the follow-

ing:



* modelMya, V1< J < p:

n T n K p
Ao+ _ ( ik ) ( B Al q+1 ) ’
J i;k; o2 (%3Bk3) Z\; *zxu 1Ba | Vi — B J 127]#

* modelMyy,, VO < J < p:

AL (

withxg=1forall 1<i<n.

D q+1
X|J B (YF Z /\ ) .

j=0,]#J

The EM algorithm stops when the difference of the likeliha@due of two consecutive
steps is lower than a given threshaldtypically ¢ = 107°).

Prediction rule. Once the model parameters have been estimated, the poedjttof the
response variable corresponding to an observatiohX is obtained by a two step procedure.
First, the component memberstgpof x; is estimated by the maximum a posteriori rule.
It consists in assigning; to thekth componentZ, = 1) which maximizes the conditional
probability (10) obtained at the last step of the EM algarnitilhen,y’ is predicted using the
kth regression model of the mixture:

g =xB«  where k= argmax\Je (14)
1<k<K

with a5t the number of EM steps until convergence.

2.3. Model selection

In order to select among the 24 transformation models defm&ection 2 the most ap-
propriate model of transformation between the populat®asdP* , we propose to use two
well known criteria. The reader interested in a comparidah® respective performances of
models selection criteria could refer to Hastie et al. (9G04 instance. The first considered
criterion is the PRESS criterion (Allen, 1974), which reggsts the mean squared prediction
error computed on a cross-validation scheme, formally ddflvy:

n*
PRESS- _Z(yr —Yi)?
1=
Whereya) is the prediction of/" obtained by the mixture regression model estimated without
using theith observation of the sampt&. This criterion is one of the most often used for

model selection in regression analysis, and we encouragesé when it is computationally
feasible. The second considered criterion is the Bayesfanmation Criterion (BIC, Schwarz
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(1978)), which is a penalized likelihood criterion with assecomputation cost. The BIC
criterion is defined by:

BIC = —2In{+vInn®,

where/ is the maximum log-likelihood value andis the number of estimated parameters (see
Table 1). It consists in selecting the models leading to thkdst likelihood while penalizing
models with a large number of parameters. Let us precise fiblaboth criteria, the most
adapted model is the one with the smallest criterion value.

3. Bayesian approach for adaptive mixture of regressions

The previous section has considered the modelling and timeag®n of parametric adap-
tive models for mixture of regressions with the classicadjtrentist point of view. This section
adopts a Bayesian approach for inferring adaptive mixtéiregressions and Gibbs sampling
is considered for the estimation of the posterior distrdout

3.1. A Bayesian view of the problem

The classical treatment of the mixture regression problssksa point estimate of the un-
known regression parameters. By contrast, the Bayesiaioagp (Hurn et al., 2003; Robert,
2007) characterizes the uncertainty on parameters thraygiobability distribution, called
a prior distribution. Bayesian analysis combines the pmdormation on the parameters
(carried out by the prior distribution) with information dahe current sample (through the
likelihood function) to provide estimates of the parametesing the posterior distribution.
In the context of adaptive mixture of regressions, the Bayeapproach makes particularly
sense since there is an actual prior on the model paramétpopolationP*. Indeed, even
though source and target populations differ, they are hesaraed to have a strong link and
it is therefore natural to define the prior on parameters pipstionP* according to the ones
of populationP.

In the context of mixture of regressions, it is usual to assuhe conditional indepen-
dence between the mixing parametarsand both component paramet@s= {f;,...5<}
ando*? = {0;?,...,0¢%}. The independence betweéf, 0;%) and (B;,0;?) is as well as-
sumed for alk # ¢, k, ¢ = 1, ..., K. For simplicity, only conjugate priors are considered iis th
work and, since model parameters of the reference popuolBt@re assumed to be known,
prior distributions of the parameters of populatlnwill depend on model parameters of the
populationP. We therefore propose to assume that, fokaH 1,...,K, the prior distribution
for B is a normal distribution centered pBy:

B ~ A (B O,

where A is a (p+ 1) x (p+ 1) covariance matrix. The prior distribution @2, for all
k=1, ...,K, is assumed to be an inverse-gamma distribution:

Gljz ~ jg(wﬁ Vk)'

11



The prior distribution for parameters' = {7, ..., 7§ } is assumed to be a Dirichlet distribu-
tion centered in the mixing proportiofisg, ..., 7 ) of populationP:

T~ @(ﬂl,..., Tﬁ()

With such a modelling, the regression coefficigBsind the mixing proportions* = {r, ..., 7§ }
of populationP* are naturally linked to the ones of populatiBn The variance terme;zAk
control how the regression coefficierfis differ from the ones of the reference populatin
In the experiments presented in Section 4, the prior paemet, y andA, k=1,....K,
were respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regsgons model and the priors,
we end up with the joint posterior distribution:

K

Nk K
p(6*[Y*) O |1 LZJW(W\XHBEUUEZ) p(t) [ [P(Blok®) p(a®)]

k=1

where8* = (157, B¢, 0y )k=1.k. However, since the posterior distributipno*|Y*) takes into
account all possible partitions of the sample iKtgroups, the maximization gi(6*|Y*) is
intractable even with moderately large sample size and Ma@hain Monte Carlo methods
have to be used.

3.2. Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a dosafed distribution by
using samples drawn indirectly from this distribution. AngoMCMC methods, the Gibbs
sampler is the most commonly used approach when dealingmiiure distribution (Diebolt
and Robert (1994)). In Gibbs sampling, the vector parant#tes partitioned intos groups
of parameterq 67, ..., 65} and a Markov chain is generated by iteratively sampling ftben
conditional posterior distributions. Once a Markov chaflemgth Q has been generated,
sample values can be averaged on the last sampling ites@at@rovide consistent estimates
of model parameters. In the context of inference for mixtlistribution, the Gibbs sampler
requires to add a latent variakfé < {0,1}X representing the allocation of observations to
the K mixture components (introduced in Section 2). Since thenkavariableZ* is not ob-
served,Z* can be viewed as unknown and should be estimated along vétbttier model
parameters. Consequently, given estlmﬁtesmdnof respectively regressmn parameters and
mixing proportions of populatio® and starting from initial valuesr*(®, B*(© and g*20,
the Gibbs algorithm generates, at iteratgpparameter values from the conditional posterior
distributions:

Z*(CI) ~ p(Z‘Y* [377'[ n*q 1) aB (9-1) *2(q—1))’
@~ p(m|Y*, B,z pra 1)70 2a-D)y,
O'k ~ p( 2‘Y* B n.z* q) n*(Q) B*(q_l))7

(

B p(BIv.B, @ (@ gAa-D)y,
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According to the priors given in the previous paragraph cthreditional posterior distribution
of Z* is a multinomial distribution:

Zi*|Y*7ﬁ7 ﬁ? n*aﬁ*7 0*2 ~ %(Ltil? "'7tiK>7

wherety = 15 (Y [X B, 072) ) s K oy X B}, 0;?), and the conditional posterior distri-
bution of rt* is a Dirichlet distribution:

Y, B, 712", B, 072 ~ P (T 41, .., i+ ),

with n = SI' ;Z,. Once the component belongings of each observation are rknthe
observations of the same compon&ntan be gathered into the matriogsandY,’, for all
k=1,...,K. With these notations, the conditional posterior disttidu of alfz IS an inverse
gamma: )

G2 B ZE T, By ~ TG (Wt N/ 2, i+ S/2),

whereS = (% = B0 (Y =% By) + (Be— BE) (Ak+ 04ix) ™) ~2(Be— B¢, and the con-
ditional posterior distribution of; is a normal distribution:

BiIY* B, 1,2, 11, 032 ~ A (M, D),
with

me = (A5 106 + A B,
N = o206 +AN

Finally, consistent estimates of model parametér$* ando*? are obtained by averaging on
the lastQ — gp sampling iterations, whermg, defines the number of iterations of the so called
“burning phase” of the Gibbs sampler.

3.3. The label switching problem

When simulating a Markov chain to estimate parameters ofxdum@ model, the label
switching problem frequently arises and is due to the mutadity of the likelihood. Indeed,
if the prior distributions are symmetric, the posteriottdisition inherits the multimodality of
the likelihood. In such a case, the Markov chain can move mommode to another and it is
difficult to deduce consistent estimators of model pararsefehe earliest solution, proposed
by Richardson and Green (1997), consists in adding indelifyatonstraints on model pa-
rameters such as an order relation in mixing proportionsfottumately, this approach does
not work very well as showed 8 By contrast, some authors liRkeand Stephens (2000) pro-
pose to worka posteriorion the generated Markov chain in order to reorganize it aiogr
to a specific criterion. The Stephens’ procedure reorgartize Markov chain by searching
the correct permutations of mixture component which mimgsia divergence criterion. The
solutions proposed by Celea al. are in the same spirit and, among the different proposed
criteria, they propose in particular to reorganize the Mar&hain using a sequentigimeans
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Figure 2: PopulationB andP* used for the introductory example. Curves black (left) agdl (right) indicates
respectively the actual mixture regression of populatPasdP*.

algorithm. Both the Stephens and Celeux’s approaches facesef to deal with the label
switching problem. However, the sequenttaheans algorithm has the advantage to be less
memory consuming and, in the experiments presented indpestithis approach is used to
overcome the label switching problem.

4. Experimental results

This section proposes experiments on simulated and realidairder to highlight the
main features of the adaptive models proposed in the pre@ections. After an introductory
example, the behavior of adaptive mixtures of regressipasa(netric and Bayesian) is com-
pared to the one of classical mixtures of regressions onlateuidata. The last experiment
will demonstrate the interest of using adaptive mixturesegressions on an illustrative real
dataset, and where the size of the target population samplbenartificially moved from
small to larger sizes.

4.1. Anintroductory example

This first experiment aims to compare the basic behaviorsdaptwe mixtures of re-
gressions (parametric and Bayesian), hereafter refeorad AMR (respectively AMRp and
AMRD), and classical mixtures of regressions, referredstR. For this study, the reference
populationP is modeled by a 2 component mixture of quadratic polynonagiessions with
parameterg$; = (3,0, —2) andB; = (—3,0,0.5). The left panel of Figure 2 shows the mixture
regression of populatioR as well as some observations simulated from this model. Tike m
ture model of populatioP* has then been obtained from the previous model by multiglyin
all regression parameters of populati®rby a factor 3. It follows thap; = (9,0,—6) and
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Figure 3: Results obtained for the introductory examplénwilite Bayesian approach of adaptive mixture of
regressions (AMRb). From left to right: mixing proportiomger the MCMC iterations, Gibbs sampling in the
parameter space and some of the generated regression.cbeegext for details.

B; = (—9,0,1.5). Finally, 20 observations of populatid? have been simulated using the
latter model or{0, 3]. The right panel of Figure 2 shows the actual mixture regoessodel
of populationP* as well as the 20 simulated observations (red trianglesg¢s@ 20 observa-
tions of P* were used by the three studied regression methods to estingategression model
of P* and to predict the value of 5000 validation observationB"ofThe mean square error
(MSE), computed on the validation sample, has been chosaratoate the predicting ability
of each regressions method in this introductory example.

Figure 3 illustrates the estimation procedure of the Bayeapproach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterationsighioy a burning phase of
100 iterations. The left panel of Figure 3 shows the sampteggrtions over the MCMC
iterations. As one can see, after the burning phase, thegrops of both mixture compo-
nents stabilize in the neighborhood of 0.5 which is the datalae of ; and. The central
panel presents the sampled values for regression paraetend 3, in the parameter space
(restricted tgB«; and B3 for k = 1,2 because botfi1» and3,; are both equal to 0). The blue
and green dashed lines indicate at the intersections thelaetiues of regression parameters.
It appears that the Bayesian approach succeeds in estinhérconditional distributions of
regression parameters. Finally, the right panel exhiloitsesof the 1 000 regression models
generated during the MCMC iterations which are then useddwige by averaging the final
estimated regression modelef.

Figure 4 presents the results obtained for the considerachgbe with the classical mix-
ture of regressions (MR), parametric adaptive mixture gfessions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb). The MR method uselg the 20 observations
sampled fromP* whereas AMR and AMRb combines the informations carried @géhob-
servations with the knowledge d¢hto build their estimation of the mixture regression model
of P*. In order to not favor the adaptive approaches, the actuabeu of components and
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Figure 4: Results obtained for the introductory exampldéwlassical mixture of regressions (MR), parametric
adaptive mixture of regressions (AMRp) and Bayesian adaptiixture of regressions (AMRb) methods. See
text for details.

dimension of the polynomial regression were also provideti¢ MR method. Nevertheless,
the MR method provides a poor estimate of the regression haodkits mean square error
(MSE) value, computed on a independent validation set,nseguently high (3704). Con-
versely, the parametric (with the modaMs;) and Bayesian approaches of AMR give good
estimations of th&* model (they should be compared to the red curves of Fig. 3.a8so-
ciated MSE values are naturally much lower than the one otldsical MR method (28
for AMRp and 452 for AMRD). Nonetheless, the Bayesian approach perforsstlean the
parametric AMRp. This could be due to the fact that AMRDb favimo much the prior (the
regression parameters®yin this situation with only few observations of the new plaion.
This introductory example has shown that adaptive regvassiodels succeed in transferring
the knowledge of a reference population to a new population.

4.2. Influence of the size of S

The second experiment focuses on the influence of the nunhbbservations* from the
new populatiorP* on the estimation quality of mixture regression modelstierMR, AMRp
and AMRb methods. The experimental setup is the same assfprévious experiment except
that the number of observationsfrom the new populatioR* varies from 6 to 200. For each
value ofn*, the regression model ¢t has been estimated with the three studied methods
and the associated MSE values have been computed again depenmdent validation set of
5 000 observations. Finally, the experiment has been @gplic50 times in order to average
the results. Figure 5 shows the evolution of the median ltgarof the MSE value according
to the the size 08" for the classical mixture of regressions (MR), parametligive mixture
of regressions (AMRp) and Bayesian adaptive mixture ofeggjons (AMRb) methods. For
the parametric approach of the AMR method, the model usgdliz. Associated boxplots
are presented by Figure 6 on a logarithmic scale. On viewair€i5, it can be first noticed
that the performance of the classical MR method is senditivee the size of". Indeed,
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Figure 5: Average logarithm of the MSE value according tottteesize ofS* for the classical mixture of regres-
sions (MR), parametric adaptive mixture of regressions Bd)yland Bayesian adaptive mixture of regressions
(AMRb) methods.

for small sample sizes, the MR method provides poor estsnatéhe mixture regression
model of populationP* and this consequently yields poor prediction performar{tzage
MSE values). As one can expect, the model estimation andrétigtion improve when the
number of observations' from the new populatioP* increases. More surprisingly, as it can
be observed on the left panel of Figure 6, the variance ofri@igtion performance of the MR
method remains large even for sample sizes bigger than 108 rdmind us that the fitting of
a mixture regression model is always a difficult task. Coselst the adaptive methods AMRp
and AMRb which exploit their knowledge on the reference papon obtain on average good
prediction results (low MSE values) and this even for verabmumbers of observations.

In particular, the parametric approach AMRp provides veéapke prediction results and its
variance decreases quickly whehincreases. The Bayesian approach AMRb, even though it
is much efficient and stable than the classical MR methodeagto be slightly less efficient
than the parametric approach AMRp. To summarize, this stmdsimulations has shown that
adaptive regression models greatly improve the predi@mhreduce the predictor variance
compared to the classical mixture regression approach wWieenumber of observations of
the new population is small.
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Figure 6: Boxplots of MSE values (on logarithmic scale) adawg to the the size o8 for the classical mix-
ture of regressions (left), parametric adaptive mixtureegfressions (center) and Bayesian adaptive mixture of
regressions (right) methods.

4.3. lllustration on real data: C@Qemissions vs gross national product

In this last experiment, the link between gémission and gross national product (GNP)
of various countries is investigated. The sources of tha de¢The official United Nations
site for the Millennium Development Goals Indicatarsl theéWorld Development Indicators
of the World Bank Figure 7 plots the C®emission per capitaersusthe logarithm of GNP
per capita for 111 countries, in 1980 (left) and 1999 (rightmixture of second order poly-
nomial regressions seems to be particularly well adaptdd tbese data and will be used
in the following. Let remark that regression model with meseedasticity could also be ap-
propriated for such data, but these kind of models are outetdpic of the present work.
For the 1980’s data, two groups of countries are easilyrdjsishable: a first minority group
(about 25% of the whole sample) is made of countries for whighow in the GNP is linked
to a high grow of the C@emission, whereas the second group (about 75%) seems to have
more environmental political orientations. As pointed bytHurn et al. (2003), the study of
such data could be particularly useful for countries with 8NP in order to clarify in which
development path they are embarking. This country diso@tnon in two groups is more
difficult to obtain on the 1999’s data: it seems that coustwich had high C@emission in
1980 have adopted a more environmental development thae eist, and a two-component
mixture regression model could be more difficult to exhibit.

In order to help this distinction, parametric adaptive migtmodels are used to estimate
the mixture regression model on the 1999’s data. The ten AMBgels, with free component
proportionsrg;, pMz, to pMg,, AMRb model, classical mixture of second order polynomial
regressions with two components (MR) and usual second galgnomial regression (UR)
are considered. Different sample size of the 1999's datteated: 30%, 50%, 70% and 100%
of the S size fi* = 111). The experiments have been repeated 20 times in or@eetage
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Figure 7: Emission of C@per capitaversusGNP per capita in 1980 (left) and 1999 (right).

the results. Table 2 summarizes these results: MSE comdspo the mean square error,
whereas PRESS and BIC are the model selection criteriadinted in Section 2.3. In this
application, the total number of available data in the 1998uytation is not sufficiently large
to separate them into two training and test samples. Forghson, MSE is computed on the
whole S sample, even though a part of it has been used for the tra({fioign 30% for the
first experiment to 100% for the last one). Consequently, NkS& significant indicator of
predictive ability of the model when 30% and 50% of the whad¢adet are used as training
set since 70% and 50% of the samples used to compute the MSinremdependent from
the training stage. However, MSE is a less significant irtdicaf predictive ability for the
two last experiments and the PRESS should be preferred s thieuations as indicator of
predictive ability.

Table 2 first allows to remark that the 1999's data are agtuadlde of two components as
in the 1980’s data since both PRESS and MSE are better for Mier{thonents) than UR (1
component) for all sizes® of S*. This first result validates the assumption that both therref
ence populatiof® and the new populatioR* have the same numbEr= 2 components, and
consequently the use of adaptive mixture of regression smia#rse for this data. Secondly,
AMRp turns out to provide very satisfying predictions fol @hlues ofn* and particularly
outperforms the other approaches winéis relatively small (less than 77 here). Indeed, both
BIC, PRESS and MSE testify that the models of AMRp providedygiredictions than the
other studied methods wheri is equal to 30%, 50% and 70% of the whole sample. Further-
more, it should be noticed that ARMp provide stable resudtoeding to variations on*. In
particular, the modelpM, are those which appear the most efficient on this datasetresd t
means that the link between both populatiBreadP* is mixture component independent. On
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30% of the 1999's datan{ = 33) 50% of the 1999's datan{ = 55)

model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pMg2a) | 13.09 3.38 | 3.40 AMRp (pMg,) | 10.18 4.11 | 3.44
AMRp (pMga,) | 12.73  3.89 | 3.32 AMRp (pMy2,) | 13.54  3.73 | 3.37
AMRp (pMg) | 12.79  5.48 | 3.68 AMRp (pMy) | 13.89  4.25 | 3.45
AMRp (pMgg) | 11.54  4.99 | 3.73 AMRp (pMyg) | 22.35  4.38 | 4.80
AMRp (pMs,) | 12.14  4.20 | 3.76 AMRp (pMsg) | 12.00 3.84 | 4.49
AMRp (pMsy) | 11.72  4.87 | 4.00 AMRp (pMsy) | 12.00  4.47 | 3.86
AMRp (pMs) | 11.50 5.09 | 3.86 AMRp (pMs) | 17.53  3.97 | 3.28
AMRp (pMsg) | 22.83  5.52 | 3.64 AMRp (pMzaq) | 25.39  4.77 | 3.67
AMRp (pMg,) | 18.72  5.15 | 4.01 AMRp (pMg,) | 20.65 3.68 | 3.44
AMRp (pMgy) | 22.01  6.21 | 5.04 AMRp (pMg) | 24.92 557 | 4.19
AMRb - (t) | 5.99 AMRb - (t) | 5.66
UR 27.08 7.46 | 7.66 UR 20.87 7.95 | 7.21
MR 32.89 554 | 5.11 MR 39.69 4.82 | 4.77
70% of the 1999’s datan{ = 77) (n* =111)
model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pMg2a) | 14.76  3.65 | 3.35 AMRp (pMg,) | 15.51  4.78 | 3.32
AMRp (pMg,) | 1473  3.91 | 3.39 AMRp (pMy2,) | 15.44  3.81 | 3.37
AMRp (pMy) | 14.53 4.49 | 3.53 AMRp (pMy) | 15.39 4.84 | 3.47
AMRp (pMgg) | 18.90  4.30 | 3.72 AMRp (pMzg) | 20.05  4.45 | 3.59
AMRp (pMs,) | 18.84  4.33 | 3.85 AMRp (pMsg) | 20.18  4.29 | 3.79
AMRp (pMsy) | 18.80  4.40 | 3.85 AMRp (pMsy) | 20.03  4.38 | 3.77
AMRp (pMs) | 18.81  4.41 | 3.26 AMRp (pMs) | 20.05  3.94 | 3.10
AMRp (pMsg) | 27.05  3.91 | 3.17 AMRp (pMsg) | 29.37  4.08 | 3.34
AMRp (pMga) | 22.29  5.25 | 4.00 AMRp (pMg,) | 23.98  4.21 | 4.13
AMRp (pMgy) | 26.55  4.92 | 4.03 AMRp (pMg) | 28.58  5.21 | 4.52
AMRb - (t) | 5.99 AMRb - (t) | 5.66
UR 22.08 8.00 | 7.10 UR 23.62 7.53 | 6.99
MR 4391 5.06 | 3.33 MR 47.19 3.66 | 2.89

Table 2: MSE on the whole 1999’s sample, PRESS and BIC aitdior the 10 parametric adaptive mixture
models (AMRppMz, to pMgp), AMRDb model, usual regression model (UR) and classicaleggions mixture
model (MR), for 4 sizes of the 1999's sample: 33, 55, 77 and (Wdible sample). Lower BIC, PRESS and
MSE values for each sample size are in bold charadtéy: Cross-validation on MCMC procedures is too
computationally heavy to be computed in a reasonable time.
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the other hand, the Bayesian approach AMRb appears to groegiilts as stable as the ones
of AMRp but slightly less satisfying. The results of the Bsigm approach would probably
be better with a more specific choice of the priors.

This application illustrates well the interest of combipinformations on both past (1980)
and present (1999) situations in order to analyse the litkd®n CQ emissions and gross
national product for several countries in 1999, especialiyen the number of data for the
present situation is not sufficiently large. Moreover, tbenpetition between the parametric
AMR models is also informative. Effectively, it seems thatge models are particularly well
adapted to model the link between the 1980’s data and thak@38's data;pMza, pMyp and
pMyc. The particularity of these models is that they considestme transformation for both
classes of countries, which means, conversely to what ogéatipiima faciehave thought,
that all the countries have made an effort to reduce theis @0issions and not only those
which had the higher ones.

5. Conclusion

We proposed in this paper adaptive models for mixture ofeggions in order to im-
prove the predictive inference when the studied populdtasichanged between training and
prediction phases. The first class of models considers anpamgus and parametric link
between the mixture of regressions of both populationsyedsethe second approach adopts
a Bayesian point a view in which the populations are linketh®yprior information imposed
on the mixture regression parameters. On both simulatedsotat real data, models consider-
ing parametric link turn out to be the most powerful: all theerest of such adaptive methods
consists in their sparsity, which leads to significantlyrédase the number of observations of
the target population required for the estimation. As tlikspensable stage of data collecting
is often expensive and time consuming, there is a real isitéoeconsider adaptive mixture
of regressions in practical applications. Moreover, asig been showed in the ilustration on
real data, the competition between the parametric link nsople@vides informations on the
link between populations, which can be meaningful for thecptioner.

Regarding the further works, a first perspective concera$Btyesian approach. In this
paper, the prior hyperparameters ﬁziz were simply fixed to values seeming experimentally
reasonable. The results of the Bayesian approach may bewegpby working on the choice
of these hyperparameters. One generic way to do this is te siaklar assumptions as in the
frequentist approach. For instance, the variamﬁ?eAk of the regression parametgs$ could
be assumed to be common between mixture components or tcmbbteqlled. The selection
between the considered assumptions could then be done bgingahose maximizing the
integrated likelihood (Raftery et al., 2007). A second wogkperspective is related to the
joint estimation of the models of both populatiddsndP*. Indeed, the reference regression
model being only estimated in practice, the quality of tle8reation, depending on the size
n of the available sample, is directly responsible of thenegtion quality of the mixture
regression model fd?P*. In some situations (typically whamis small compared to the model
complexity), it could be interesting to consider a full lik@od estimation which consists
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in estimating simultaneously both mixture regression ned&uch an approach has been
recently considered in Lourme and Biernacki (2008) in a stiped classification context. It
must be emphasized that such a full likelihood estimatidmodii mixtures of regression must
consider the same estimation method (parametric or Bayesiaboth populations.
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