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Abstract

When regression is carried out in a prediction purpose, one of the main assumptions is
the absence of evolution in the modeled phenomenon between the training and the prediction
stages. Unfortunately, this assumption turns out to be often false in practical situations. The
present work investigates the estimation of regression mixtures when population has changed
between the training and the prediction stages. The main idea of this work is to link the regres-
sion mixture of the prediction population with the known regression mixture of the training
population. For this, two approaches are suggested. On the one hand, a parametric approach
modeling the relationship between dependent variables of both populations is presented and
the EM algorithm is used for the parameters estimation. On the other hand, a Bayesian ap-
proach is also proposed in which the priors on the predictionpopulation depend on the mixture
regression parameters of the training population. In this latter case, a MCMC procedure is
used for inference. The relevance of both the parametric andthe Bayesian approaches is illus-
trated on simulations and then compared to classical strategies on an environmental dataset.
Keywords: Mixture of regressions, switching regression, adaptive learning, EM algorithm,
Bayesian inference, MCMC algorithm.

1 Introduction

The mixture of regressions, introduced by [10] as the switching regression model and also named
clusterwise linear regression model in [13], is a popular regression model for modeling complex
system. In particular, the switching regression model is often used in Economics for modeling
phenomena with different phases. This model assumes that the dependent variableY ∈ R can be
linked to a covariatex = (1,x1, ...,xp) ∈ R

p+1 by one ofK possible regression models:

Y = xtβk + σkε , k = 1, ...,K (1)

whereε ∼ N (0,1), βk = (βk0, ...,βkp) ∈ {β1, . . . ,βK} is the regression parameter vector inR
p+1

andσ2
k ∈ {σ2

1 , . . . ,σ2
K} is the residual variance. The conditional density distribution of Y givenx

is therefore:

p(y|x) =
K

∑
k=1

πkφ(y|xt βk,σ2
k ), (2)
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Figure 1: Housing value vs surface for Birmingham (AL, USA) and San Jose (CA, USA)

whereπ1, ...,πK are the mixing proportions (with the classical constraint∑K
i=1 πk = 1), andφ(·|xt βk,σ2

k )
is the Gaussian density parametrized by its meanxtβk and varianceσ2

k . Among the works which
focused on this model, we can emphasize the following ones which have contributed to the popu-
larity of this model: [14] investigates the model identifiability, [15] proposes a Bayesian inference
for the model estimation, [33] studies the asymptotic theory of parameter estimators in order to
define hypothesis tests, and [17] considers variable selection for this specific regression model.
Let us also mention that [18] presents a package for the R software devoted to the mixture of
regressions.

The present paper focuses on the problem of using a mixture regression model for prediction
when the modeled phenomenon has changed between the training stage, which has led to the pa-
rameter estimation, and the prediction stage. More precisely, we assume that model (1) has been
estimated with a sample from a given training population, and we want to use it for predicting the
dependent variableY for a new population which could be different from the training one. For
instance, the difference between both populations can be due to a switch in the covariate distri-
bution or to a variation of the link between the covariates and the dependent variable. Although
very frequent in practical applications, this issue has unfortunately received very few attention in
the literature. To our knowledge, only [5] has considered this situation in regression. In [5], the
authors illustrate their adaptive regression model on a real-world situation: the prediction of house
prices from house features for a city of the USA West Coast (San Jose, California) by adapting a
regression model learned with data issued from another citystated on the East Coast (Birmingham,
Alabama). The difference between these two cities is illustrated by Figure 1 which presents the
value of the houses according to their surfaces. In this example, the difference between the train-
ing and the prediction populations is geographical, but it could also be temporal (as in Section 4)
or due to species evolutions in a biological context (as in [4]).
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1.1 Related works

As mentioned before, only few papers have investigated the original problem considered in this
work in the context of mixture of regressions. In the machinelearning community, a related prob-
lem in a non-mixture regression background, namedCovariate Shift, considers that the probability
density of the covariates in the new population is differentfrom the one of the training population,
but that the relationship between covariates and dependentvariable has not changed. Thus, if the
regression model is exactly known, a change in the probability distribution of the explanatory vari-
ables is not a problem. Unfortunately, this is never the casein practice and the regression model
estimated with the training data could be very disappointing when applied to data with a different
probability distribution. Several recent works [25, 27, 28, 29, 30] have contributed to analyze this
context. Furthermore the fact that we consider mixtures of regression and Covariate Shift does
not, the focus of the present work is however more general anddoes not assume that the relation-
ship between explanatory and response variables is conserved from the learning data to the new
data. In addition, the situation under review in this paper considers that only few learning data are
available for the new situation, which is not enough to correctly estimate in practice their probabil-
ity distribution. In supervised classification, a similar problem was studied in [4] on quantitative
variables and in [16] on binary variables. For this, the authors introduce model-based discrimi-
nant rules for classifying individuals from a prediction population which differs from the training
one. The parsimony of these rules is obtained by consideringfamilies of linear links modeling the
transformation between the reference population and the new one. An extension of this work to
logistic regression was also proposed in [2]. In unsupervised classification, [20] recently proposes
Gaussian models for simultaneous clustering on two different populations. Finally, some other
applied works cover the problematic of knowledge transfer in specific industrial contexts. For
instance, [9] gives a good overview of solutions for model transfer in the field of Chemometrics.
Among the proposed transfer models, the most used models arethe piecewise direct standardiza-
tion [32] and the neural network based nonlinear transformation [11]. Several works [3, 31] have
also considered this problem in the field of semiconductor industry.

1.2 Problem formulation

Assuming that the new populationP∗, for which we want to predictY, is different from the training
populationP, the mixture regression model forP∗ can be written as follows:

Y∗ = x∗tβ ∗
k + σ ∗

k ε∗

p(y∗|x∗) =
K∗

∑
k=1

π∗
k φ(y∗|x∗tβ ∗

k ,σ ∗
k

2) (3)

with ε∗ ∼ N (0,1), β ∗
k ∈ {β ∗

1 , . . . ,β ∗
K∗} andσ ∗

k ∈ {σ ∗
1 , . . . ,σ ∗

K∗}. Let us now precise the focus of
this paper by making the three following assumptions. Firstly, the variables(Y,x) and(Y∗,x∗) are
assumed to be the same but measured on two different populations. Secondly, the sizen∗ of the
observation sampleS∗ = (y∗i ,x

∗
i )i=1,n∗ of populationP∗ is assumed to be small compared to the

number of observations of the reference populationP. Otherwise, the mixture regression model
could be estimated directly without using the training population. Thirdly, as both populations
have the same nature, each mixture is assumed to have the samenumber of components (K∗ = K).
Under these assumptions, the goal is then to predictY∗ for some newx∗ by using both samplesS=
(yi ,xi)i=1,n andS∗. The challenge consists therefore in exhibiting a link between both populations.
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1.3 Organisation of the manuscript

The reminder of this work is organised as follows. Section 2 proposes a first solution to improve
the predictive inference on the prediction population by defining parametric models for the link
between mixture regression models of both populations. An alternative Bayesian approach is
then presented in Section 3 in which the link between regression models is formulated through
prior densities on the new population. In Section 4, the performance of both the parametric and
the Bayesian approaches is first illustrated on simulationsand the proposed strategies are then
compared to classical methods on an environmental application.

2 Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which consistsin modeling the link between training
and test populations by a parametric relationship between the regression parameters.

2.1 Parametric models for linking the reference and test populations

Let us introduce a latent variableZ∗ ∈ {0,1}K representing the belonging of observations to the
K mixture components,i.e. z∗ik = 1 indicates that thei-th observation(x∗i ,y

∗
i ) comes from thek-th

component andz∗ik = 0 otherwise. Conditionally to an observationx of the covariates, we would
like to exhibit a distributional relationship between the dependent variables of the same mixture
component:

Y∗
|x,z∗ik=1 ∼ ψk(Y|x,zik=1) (4)

with ψk a function fromR to R. By only assuming that the functionψk is C 1, [4] proves thatψk

is necessarily affine:

Y∗
|x,z∗ik=1 ∼ λk1 + λk2Y|x,zik=1

where(λk1,λk2) ∈ R
2. We therefore obtain the following relationship between the model parame-

ters ofP andP∗:

β ∗
k = (λk1 + λk2βk0,λk2βk1, . . . ,λk2βkp)

t , (5)

σ ∗
k = λk2σk. (6)

The interest of introducing such a link lies in the reductionof the number of parameters to estimate
for the mixture regression model forP∗: using this link it decreases to 3K − 1 whereas for a
complete mixture of regressions onP∗ it is (3+ p)K −1. This assumption is however relatively
strong: if there is no real link betweenPandP∗, it will be no more possible to correctly estimate the
mixture regression model (3) since relations (5) and (6) lead to loose all freedom on the parameters
(3K −1 is strictly lower than(3+ p)K−1). In order to introduce more flexibility, it is possible to
introduce additional models for the link between populations by allowing the effects of different
covariables on the dependent variable to be differently transformed fromP to P∗. A second class
of link models, including the first one, is then taken into consideration:

β ∗
k = Λkβk, whereΛk = diag(λk0,λk1, . . . ,λkp) (7)

σ ∗
k is free,

wherediag(λk0,λk1, . . . ,λkp) is the diagonal matrix containing(λk0,λk1, . . . ,λkp) on its diagonal
completed by zeros. In the following, some constraints onΛk will be introduced in order to define
a family of parcimonious models:
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Model M1 M2a M2b M2c M2d M3a M3b M3c M3d M4a M4b M5

Param. 0 1 1 1 2 K K K 2K p+K p+K +1 K(p+2)

Table 1: Number of parameters to estimate for each model of the proposed family.

• M1 assumes that both populations are the same population:Λk = Id is the identity matrix,

• M2 assumes that the link between populations is covariate and mixture component indepen-
dent:

– M2a : λk0 = 1, λk j = λ andσ ∗
k = λσk ∀1≤ j ≤ p,

– M2b : λk0 = λ , λk j = 1 andσ ∗
k = σk ∀1≤ j ≤ p,

– M2c : Λk = λ Id andσ ∗
k = λσk,

– M2d : λk0 = λ0, λk j = λ1 andσ ∗
k = λ1σk ∀1≤ j ≤ p,

• M3 assumes that the link between populations is covariate independent:

– M3a : λk0 = 1, λk j = λk andσ ∗
k = λkσk ∀1≤ j ≤ p,

– M3b : λk0 = λk, λk j = 1 andσ ∗
k = σk ∀1≤ j ≤ p,

– M3c : Λk = λkId andσ ∗
k = λkσk,

– M3d : λk0 = λk0, λk j = λk1 andσ ∗
k = λk1σk ∀1≤ j ≤ p,

Note thatM3d, which is the most general model amongM2 andM3 classes of models, is
equivalent to the model defined by relations (5) and (6).

• M4 assumes that the link between populations is mixture component independent:

– M4a : λk0 = 1 andλk j = λ j ∀1≤ j ≤ p,

– M4b : Λk = Λ with Λ a diagonal matrix,

• M5 assumes thatΛk is unconstrained, which leads to estimate the mixture regression model
for P∗ by using onlyS∗.

Moreover, the mixing proportions are allowed to be the same in each population or to be different
between both populationsP andP∗. In the latter case, they consequently have to be estimated
using the sampleS∗. Corresponding notations for the models are respectivelyM· andpM·. Table 1
gives the number of parameters to estimate for each model. Ifthe mixing proportions are different
from P to P∗, K −1 parameters to estimate must be added to these values. The estimation of the
modelsM2 to M4 are derived in the next subsection.

2.2 Parameter estimation

In the situation under review in this paper, the mixture of regressions is assumed to be known (βk

andσk will be estimated in practice) for the reference populationP, and the goal is to estimate the
mixture of regressions forP∗. This will be done in two steps. In the first step, the link parameters
Λk and the mixing proportionsπ∗

k are estimated as well as the residual variancesσ ∗2
k when neces-

sary (modelsM4). In the second step, the estimation of the mixture regression parametersβ ∗
k and

the residual variancesσ ∗2
k (for modelsM2 andM3) are deduced by plug-in through equations (7)
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and (6). In the following, only the situation where mixing proportions are different from those of
populationP is considered.

The estimation of the link parameters is carried out by maximum likelihood using a missing
data approachvia the EM algorithm [7]. This technique is certainly the most popular approach for
inference in mixtures of regressions (see [18] for instance). Conditionally to a sampleS∗ = (y∗,x∗)
of observations, wherey∗ = (y∗1, . . . ,y

∗
n) andx∗ = (x∗1, . . . ,x

∗
n), the log-likelihood of model (3) is

given by:

L(θ ;y∗,x∗) =
n∗

∑
i=1

ln

(

K

∑
k=1

π∗
k φ(y∗i |x

t
i Λkβk,σ ∗2

k )

)

, (8)

with θ = (π∗
1 , . . . ,π∗

K ,Λ1, . . . ,ΛK ,σ ∗
1 , . . . ,σ ∗

K), and the completed log-likelihood is:

Lc(θ ;y∗,x∗,z∗) =
n∗

∑
i=1

K

∑
k=1

z∗ik ln
(

π∗
k φ(y∗i |x

t
i Λkβk,σ ∗2

k )
)

, (9)

wherez∗ = (z∗ik)i=1,n∗,k=1,K is the unobserved latent variable , introduced in Section 2,and assumed
to be distributed as a one order multinomialM (1,π∗

1 , . . . ,π∗
K).

The E step. From a current valueθ (q) of the parameterθ , the E step of the EM algorithm
consists in computing the conditional expectation of the completed log-likelihood:

Q(θ ,θ (q)) = Eθ (q) [Lc(θ ;y∗,x∗,z∗)|y∗,x∗]

=
n∗

∑
i=1

K

∑
k=1

t(q)
ik

(

ln(π∗
k )+ ln(φ(y∗i |x

t
i Λkβk,σ ∗2

k ))
)

, (10)

where:

t(q)
ik = P(z∗ik = 1|y∗,x∗) =

π∗
k
(q)φ(y∗i |x

∗t
i Λ(q)

k βk,σ ∗2
k

(q)
)

∑K
l=1 π∗

l
(q)φ(y∗i |x

∗t
i Λ(q)

l βl ,σ ∗2
l

(q)
)

is the posterior probability that the observationi comes from thek-th mixture component.

The M step. The M step of the EM algorithm consists of choosing the valueθ (q+1) which
maximizes the conditional expectationQ computed in the E step:

θ (q+1) = argmax
θ∈Θ

Q(θ ;θ (q)) (11)

whereΘ is a parameter space depending on the model at hand. This maximization is now described
for each component ofθ = (π∗

k ,Λk,σ ∗
k )k=1,K . For the mixing proportions, the maximum is as usual

reached for:

π(q+1)
k =

1
n∗

n∗

∑
i=1

t(q)
ik . (12)

For the residual variances (modelsM4), we have:

σ ∗2(q+1)
k =

1
n∗

n∗

∑
i=1

t(q)
ik (y∗i −x∗ti Λ(q)

k βk)
2. (13)
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The reminder of this section details only the maximization according to the link parameters for the
modelM3d and we refer to Appendix A for update formulae of modelsM2 andM4. As modelM3d

considers two interdependent scalar parametersλk0 andλk1, no analytical formulae are available
for the global maximum on bothλk0 andλk1. In such a situation, an easy way to carry out the
maximization in this case is to consider a descending algorithm in whichλk0 andλk1 are alterna-
tively maximized. Using such a strategy incorporated in a EMalgorithm is very frequent and, in
such a case, the algorithm is called GEM (generalized EM, [7]). Update formulas for these two
parameters are consequently:

λ (q+1)
k0 =

∑n∗
i=1 t(q)

ik (y∗i −λ (q+1)
k1 x∗ti∼0βk∼0)

∑n∗
i=1 t(q)

ik βk0

,

and

λ (q+1)
k1 =

∑n∗
i=1 t(q)

ik (y∗i −λ (q+1)
k0 βk0)

2

∑n∗
i=1 t(q)

ik (y∗i −λ (q+1)
k0 βk0)x∗ti∼0βk∼0

,

wherex∗i∼0 = (x∗i1, . . . ,x
∗
ip) is the vectorx∗i without its first componentx∗i0, and similarlyβk∼0 =

(βk1, . . . ,βkp).

2.3 Model selection

In order to select among the 24 transformation models definedin Section 2 the most appropriate
model of transformation between the populationsP andP∗ , we propose to use two well known
criteria. The reader interested in a comparison of the respective performances of models selection
criteria could refer to [12] for instance. The first considered criterion is the PRESS criterion [1],
which represents the mean squared prediction error computed on a cross-validation scheme, for-
mally defined by:

PRESS=
n∗

∑
i=1

(y∗i − ŷ∗
−i
i )2

where ŷ∗
−i
i is the prediction ofy∗i obtained by the mixture regression model estimated without

using theith observation of the sampleS∗. This criterion is one of the most often used for model
selection in regression analysis, and we encourage its use when it is computationally feasible. The
second considered criterion is the Bayesian Information Criterion (BIC, [24]), which is a penalized
likelihood criterion which has a less computation cost. TheBIC criterion is defined by:

BIC = −2lnℓ+ ν lnn∗,

whereℓ is the maximum log-likelihood value andν is the number of estimated parameters (see
Table 1). It consists in selecting the models leading to the highest likelihood while penalizing
models with a large number of parameters. Let us remark that,for both criteria, the most adapted
model is the one with the smallest criterion value.

3 Bayesian approach for adaptive mixture of regressions

The previous section has considered the modeling and the estimation of parametric adaptive mod-
els for mixture of regressions with the classical frequentist point of view. This section adopts a
Bayesian approach for inferring adaptive mixture of regressions and Gibbs sampling is considered
for the estimation of the posterior distribution.
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3.1 A Bayesian view of the problem

The classical treatment of the mixture regression problem seeks a point estimate of the unknown
regression parameters. By contrast, the Bayesian approach[15, 23] characterizes the uncertainty
on parameters through a probability distribution, called aprior distribution. Bayesian analysis
combines the prior information on the parameters (carried out by the prior distribution) with in-
formation on the current sample (through the likelihood function) to provide estimates of the
parameters using the posterior distribution. In the context of adaptive mixture of regressions, the
Bayesian approach makes particularly sense since there is areal prior on the model parameters of
populationP∗. Indeed, even though training and prediction populations differ, they have a strong
link and it is natural to define the prior on parameters of population P∗ according to the ones of
populationP.

In the context of mixture of regressions, it is usual to assume the conditional independence
between the mixing parametersπ∗ and both component parametersβ ∗ = {β ∗

1 , ...β ∗
K} andσ ∗2 =

{σ ∗2
1 , ...,σ ∗2

K }. The independence between(β ∗
k ,σ ∗2

k ) and (β ∗
ℓ ,σ ∗2

ℓ ) is as well assumed for all
k 6= ℓ, k, ℓ = 1, ...,K. For simplicity, only conjugate priors are considered in this work and, since
model parameters of the reference populationP are assumed to be known, prior distributions of the
parameters of populationP∗ will depend on model parameters of the populationP. We therefore
propose to assume that, for allk = 1, ...,K, the prior distribution forβ ∗

k is a normal distribution
centered inβk:

β ∗
k ∼ N (βk,σ ∗2

k Ak),

whereAk is a(p+1)×(p+1) covariance matrix. The prior distribution ofσ ∗2
k , for all k = 1, ...,K,

is assumed to be an inverse-gamma distribution:

σ ∗2
k ∼ I G (γk,νk).

The prior distribution for parametersπ∗ = {π∗
1 , ...,π∗

K} is assumed to be a Dirichlet distribution
centered in the mixing proportions(π1, ...,πK) of populationP:

π∗ ∼ D(π1, ...,πK).

With such a modelling, the regression coefficientsβ ∗
k and the mixing proportionsπ∗ = {π∗

1 , ...,π∗
K}

of populationP∗ are naturally linked to the ones of populationP. The variance termsσ ∗2
k Ak

control how the regression coefficientsβ ∗
k differ from the ones of the reference populationP. In

the experiments presented in Section 4, the prior parameters νk, γk and Ak, k = 1, ...,K, were
respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regressions model and the priors, we
end up with the joint posterior distribution:

p(θ∗|Y∗) ∝
n∗

∏
i=1

[

K

∑
k=1

π∗
k φ(y∗i |x

∗t β ∗
k ,σ ∗2

k )

]

p(π∗)
K

∏
k=1

[

p(β ∗
k |σ

∗2
k )p(σ ∗2

k )
]

,

whereθ∗ = (π∗
k ,β ∗

k ,σ ∗
k )k=1,K . However, since the posterior distributionp(θ∗|Y∗) takes into ac-

count all possible partitions of the sample intoK groups, the maximization ofp(θ∗|Y∗) is in-
tractable even with moderately large sample size and MarkovChain Monte Carlo methods have to
be used.

3.2 Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a complicated distribution by using
samples drawn indirectly from this distribution. Among MCMC methods, the Gibbs sampler

8



is the most commonly used approach when dealing with mixturedistribution ([8]). In Gibbs
sampling, the vector parameterθ∗ is partitioned intos groups of parameters{θ∗

1 , ...,θ∗
s } and a

Markov chain is generated by iteratively sampling from the conditional posterior distributions.
Once a Markov chain of lengthQ has been generated, sample values can be averaged on the
last sampling iterations to provide consistent estimates of model parameters. In the context of
inference for mixture distribution, the Gibbs sampler requires to add a latent variableZ∗ ∈ {0,1}K

representing the allocation of observations to theK mixture components (introduced in Section 2).
Since the latent variableZ∗ is not observed,Z∗ can be viewed as unknown and should be estimated
along with the other model parameters. Consequently, givenestimatesβ̂ and π̂ of respectively
regression parameters and mixing proportions of population P and starting from initial values
π∗(0), β ∗(0) andσ ∗2(0), the Gibbs algorithm generates, at iterationq, parameter values from the
conditional posterior distributions:

Z∗(q) ∼ p(Z|Y∗, β̂ , π̂,π∗(q−1),β ∗(q−1),σ ∗2(q−1)),

π∗(q) ∼ p(π∗|Y∗, β̂ , π̂ ,Z∗(q),β ∗(q−1),σ ∗2(q−1)),

σ ∗2(q)
k ∼ p(σ ∗2

k |Y∗, β̂ , π̂,Z∗(q),π∗(q),β ∗(q−1)),

β ∗(q)
k ∼ p(β ∗

k |Y
∗, β̂ , π̂,Z∗(q),π∗(q),σ ∗2(q−1)).

According to the priors given in the previous paragraph, theconditional posterior distribution ofZ∗

is a multinomial distribution:

z∗i |Y
∗, β̂ , π̂,π∗,β ∗,σ ∗2 ∼ M (1, ti1, ..., tiK ),

wheretik = π∗
k φ(y∗i |x

∗t
i β ∗

k ,σ ∗2
k )/∑K

ℓ=1π∗
ℓ φ(y∗i |x

∗t
i β ∗

ℓ ,σ ∗2
ℓ ), and the conditional posterior distribu-

tion of π∗ is a Dirichlet distribution:

π∗|Y∗, β̂ , π̂ ,Z∗,β ∗,σ ∗2 ∼ D(π̂1 +n∗1, ..., π̂K +n∗K),

with n∗k = ∑n
i=1 z∗ik. Once the component belongings of each observation are known, the observa-

tions of the same componentk can be gathered into the matricesx∗k andY∗
k , for all k = 1, ...,K.

With these notations, the conditional posterior distribution of σ ∗2
k is an inverse gamma:

σ ∗2
k |Y∗, β̂ , π̂ ,Z∗,π∗,β ∗

k ∼ I G (γk +nk/2,νk +Sk/2),

whereSk = (Y∗
k −x∗tk β ∗

k )t(Y∗
k −x∗tk β ∗

k )+(β̂k−β ∗
k )t(Ak+(x∗tk x∗k)

−1)−1(β̂k−β ∗
k ), and the conditional

posterior distribution ofβ ∗
k is a normal distribution:

β ∗
k |Y

∗, β̂ , π̂ ,Z∗,π∗,σ ∗2
k ∼ N (mk,∆k) ,

with

mk = (A−1
k +x∗tk x∗k)

−1(x∗tk Y∗
k +A−1

k β̂k),

∆k = σ ∗2
k (x∗tk x∗k +A−1

k )−1.

Finally, consistent estimates of model parametersπ∗,β ∗ andσ ∗2 are obtained by averaging on the
lastQ−q0 sampling iterations, whereq0 defines the number of iterations of the so called “burning
phase” of the Gibbs sampler.
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Figure 2: PopulationsP andP∗ used for the introductory example. Curves black (left) and red
(right) indicates respectively the actual mixture regression of populationsP andP∗.

3.3 The label switching problem

When simulating a Markov chain to estimate parameters of a mixture model, the label switching
problem frequently arises and is due to the multimodality ofthe likelihood. Indeed, if the prior
distributions are symmetric, the posterior distribution inherits the multimodality of the likelihood.
In such a case, the Markov chain can move from one mode to another and it is difficult to deduce
consistent estimators of model parameters. The earliest solution, proposed by [22], consists in
adding indenfiability constraints on model parameters suchas an order relation in mixing propor-
tions. Unfortunately, this approach does not work very wellas showed by [6]. By contrast, some
authors like Celeuxet al. [6] and Stephens [26] propose to worka posteriori on the generated
Markov chain in order to reorganize it according to a specificcriterion. The Stephens’ procedure
reorganizes the Markov chain by searching the correct permutations of mixture component which
minimizes a divergence criterion. The solutions proposed by Celeuxet al. are in the same spirit
and, among the different proposed criteria, they propose inparticular to reorganize the Markov
chain using a sequentialk-means algorithm. Both the Stephens and Celeux’s approaches are ef-
ficient to deal with the label switching problem. However, the sequentialk-means algorithm has
the advantage to be less memory consuming and, in the experiments presented in Section 4, this
approach is used to overcome the label switching problem.

4 Experimental results

This section proposes experiments on simulated and real data in order to highlight the main fea-
tures of the adaptive models proposed in the previous sections. After an introductory example,
the behavior of adaptive mixtures of regressions (parametric and Bayesian) is compared to the one
of classical mixtures of regressions on simulated data. Thelast experiment will demonstrate the
interest of using adaptive mixtures of regressions in a realsituation.
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Figure 3: Results obtained for the introductory example with the Bayesian approach of adaptive
mixture of regressions (AMRb). From left to right: mixing proportions over the MCMC iterations,
Gibbs sampling in the parameter space and some of the generated regression curves. See text for
details.

4.1 An introductory example

This first experiment aims to compare the basic behaviors of adaptive mixtures of regressions
(parametric and Bayesian), hereafter referred to as AMR (respectively AMRp and AMRb), and
classical mixtures of regressions, referred to as MR. For this study, the reference populationP
is modeled by a 2 component mixture of quadratic polynomial regressions with parametersβ1 =
(3,0,−2) andβ2 = (−3,0,0.5). The left panel of Figure 2 shows the mixture regression of popu-
lationP as well as some observations simulated from this model. The mixture model of population
P∗ has then been obtained from the previous model by multiplying all regression parameters of
populationP by a factor 3. It follows thatβ ∗

1 = (9,0,−6) andβ ∗
2 = (−9,0,1.5). Finally, 20 ob-

servations of populationP∗ have been simulated using the latter model on[0,3].The right panel of
Figure 2 shows the actual mixture regression model of population P∗ as well as the 20 simulated
observations (red triangles). These 20 observations ofP∗ were used by the three studied regres-
sion methods to estimate the regression model ofP∗ and to predict the value of 5000 validation
observations ofP∗. The mean square error (MSE), computed on the validation sample, has been
chosen to evaluate the predicting ability of each regressions method in this introductory example.

Figure 3 illustrates the estimation procedure of the Bayesian approach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterations including a burning phase of 100
iterations. The left panel of Figure 3 shows the sampled proportions over the MCMC iterations.
As one can see, after the burning phase, the proportions of both mixture components stabilize
in the neighborhood of 0.5 which is the actual value ofπ1 and π2. The central panel presents
the sampled values for regression parametersβ1 andβ2 in the parameter space (restricted toβk1

andβk3 for k = 1,2 because bothβ12 andβ22 are both equal to 0). The blue and green dashed
lines indicate at the intersections the actual values of regression parameters. It appears that the
Bayesian approach succeeds in estimating the conditional distributions of regression parameters.
Finally, the right panel exhibits some of the 1000 regression models generated during the MCMC
iterations which are then used to provide by averaging the final estimated regression model ofP∗.

Figure 4 presents the results obtained for the considered example with the classical mixture
of regressions (MR), parametric adaptive mixture of regressions (AMRp) and Bayesian adaptive
mixture of regressions (AMRb). The MR method used only the 20observations sampled from
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Figure 4: Results obtained for the introductory example with classical mixture of regressions
(MR), parametric adaptive mixture of regressions (AMRp) and Bayesian adaptive mixture of re-
gressions (AMRb) methods. See text for details.

P∗ whereas AMR and AMRb combines the informations carried by these observations with the
knowledge onP to build their estimation of the mixture regression model ofP∗. In order to not
favor the adaptive approaches, the actual number of components and dimension of the polynomial
regression were also provided to the MR method. Nevertheless, the MR method provides a poor
estimate of the regression model and its mean square error (MSE) value, computed on a indepen-
dent validation set, is consequently high (3704.4). Conversely, the parametric (with the most gen-
eral modelpM3c) and Bayesian approaches of AMR give good estimations of theP∗ model (they
should be compared to the red curves of Fig. 3). The associated MSE values are naturally much
lower than the one of the classical MR method (26.4 for AMRp and 45.2 for AMRb). Nonethe-
less, the Bayesian approach performs less than the parametric AMRp. This could be due to the
fact that AMRb favors the prior (the regression parameters of P) in this situation with only few
observations of the new population. This introductory example has shown that adaptive regression
models succeed in transferring the knowledge of a referencepopulation to a new population.

4.2 Influence of the size ofS∗

The second experiment focuses on the influence of the number of observationsn∗ from the new
populationP∗ on the estimation quality of mixture regression models for the MR, AMRp and
AMRb methods. The experimental setup is the same as for the previous experiment except that
the number of observationsn∗ from the new populationP∗ varies from 6 to 200. For each value of
n∗, the regression model ofP∗ has been estimated with the three studied methods and the associ-
ated MSE values have been computed again on a independent validation set of 5 000 observations.
Finally, the experiment has been replicated 50 times in order to average the results. Figure 5
shows the evolution of the median logarithm of the MSE value according to the the size ofS∗ for
the classical mixture of regressions (MR), parametric adaptive mixture of regressions (AMRp) and
Bayesian adaptive mixture of regressions (AMRb) methods. For the parametric approach of the
AMR method, the model used ispM3c. Associated boxplots are presented by Figure 6 on a loga-
rithmic scale. On view of Figure 5, it can be first noticed thatthe performance of the classical MR
method is sensitive to the the size ofS∗. Indeed, for small sample sizes, the MR method provides
poor estimates of the mixture regression model of population P∗ and this consequently yields poor
prediction performances (large MSE values). As one can expect, the model estimation and the
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Figure 5: Average logarithm of the MSE value according to thethe size ofS∗ for the classical
mixture of regressions (MR), parametric adaptive mixture of regressions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb) methods.

prediction improve when the number of observationsn∗ from the new populationP∗ increases.
More surprisingly, as it can be observed on the left panel of Figure 6, the variance of the predic-
tion performance of the MR method remains large even for sample sizes bigger than 100. This
remind us that the fitting of a mixture regression model is always a difficult task. Conversely, the
adaptive methods AMRp and AMRb which exploit their knowledge on the reference population
obtain on average good prediction results (low MSE values) and this even for very small numbers
of observationsn∗. In particular, the parametric approach AMRp provides verystable prediction
results and its variance decreases quickly whenn∗ increases. The Bayesian approach AMRb, even
though it is much performance and stable than the classical MR method, appears to be slightly less
efficient than the parametric approach AMR. To summarize, this study on simulations has shown
that adaptive regression models greatly improve the prediction and reduce the predictor variance
compared to the classical mixture regression approach whenthe number of observations of the
new population is small.

4.3 Real data study: CO2 emissionsvs gross national product

In this last experiment, the link between CO2 emission and gross national product (GNP) of var-
ious countries is investigated. The sources of the data areThe official United Nations site for the
Millennium Development Goals Indicatorsand theWorld Development Indicators of the World
Bank. Figure 7 plots the CO2 emission per capitaversusthe logarithm of GNP per capita for 111
countries, in 1980 (left) and 1999 (right). A mixture of second order polynomial regressions seems
to be particularly well adapted to fit these data and will be used in the following. For the 1980’s
data, two groups of countries are easily distinguishable: afirst minority group (about 25% of the
whole sample) is made of countries for which a grow in the GNP is linked to a high grow of the
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Figure 6: Boxplots of MSE values (on logarithmic scale) according to the the size ofS∗ for the
classical mixture of regressions (left), parametric adaptive mixture of regressions (center) and
Bayesian adaptive mixture of regressions (right) methods.

CO2 emission, whereas the second group (about 75%) seems to havemore environmental polit-
ical orientations. As pointed out by [15], the study of such data could be particularly useful for
countries with low GNP in order to clarify in which development path they are embarking. This
country discrimination in two groups is more difficult to obtain on the 1999’s data: it seems that
countries which had high CO2 emission in 1980 have adopted a more environmental development
than in the past, and a two-component mixture regression model could be more difficult to exhibit.

In order to help this distinction, parametric adaptive mixture models are used to estimate the
mixture regression model on the 1999’s data. The eight AMRp modelspM2a to pM3d (sincepM4a

and pM4b are equivalent topM2a and pM2c for p = 1), AMRb model, classical mixture of sec-
ond order polynomial regressions with two components (MR) and usual second order polynomial
regression (UR) are considered. Different sample size of the 1999’s data are tested: 30%, 50%,
70% and 100% of theS∗ size (n∗ = 111). The experiments have been repeated 20 times in order
to average the results. Table 2 summarizes these results: MSE corresponds to the mean square
error, whereas PRESS and BIC are the model selection criteria introduced in Section 2.3. In this
application, the total number of available data in the 1999 population is not sufficiently large to
separate them into two training and test samples. For this reason, MSE is computed on the whole
S∗ sample, although a part of it has been used for the training (from 30% for the first experiment
to 100% for the last one). Consequently, MSE is a significant indicator of predictive ability of the
model when 30% and 50% of the whole dataset are used as training set since 70% and 50% of the
samples used to compute the MSE remain independent from the training stage. However, MSE is
a less significant indicator of predictive ability for the two last experiments and the PRESS should
be preferred in these situations as indicator of predictiveability.

Table 2 first allows to remark that the 1999’s data are actually made of two components as
in the 1980’s data since both PRESS and MSE are better for MR (2components) than UR (1
component) for all sizesn∗ of S∗. This first result validates the assumption that both the reference
populationP and the new populationP∗ have the same numberK = 2 components, and conse-
quently the use of adaptive mixture of regression makes sense for this data. Secondly, AMRp
turns out to provide very satisfying predictions for all values ofn∗ and particularly outperforms
the other approaches whenn∗ is small. Indeed, both BIC, PRESS and MSE testify that the models
of AMRp provide better predictions than the other studied methods whenn∗ is equal to 30%, 50%
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30% of the 1999’s data (n∗ = 33)
model BIC PRESS MSE

AMRp (pM2a) 13.21 4.01 4.77
AMRp (pM2b) 12.89 4.57 3.66
AMRp (pM2c) 12.57 4.16 4.55
AMRp (pM2d) 17.13 4.38 4.77
AMRp (pM3a) 15.92 4.49 4.66
AMRp (pM3b) 16.01 5.59 4.11
AMRp (pM3c) 15.75 6.17 4.23
AMRp (pM3d) 22.72 4.49 4.66

AMRb - (†) 5.99
UR 27.08 7.46 7.66
MR 32.89 5.54 5.11

50% of the 1999’s data (n∗ = 55)
model BIC PRESS MSE

AMRp (pM2a) 14.10 4.76 3.88
AMRp (pM2b) 13.99 4.10 3.77
AMRp (pM2c) 14.07 5.29 4.22
AMRp (pM2d) 17.82 4.45 4.66
AMRp (pM3a) 18.07 4.27 4.66
AMRp (pM3b) 18.00 5.62 4.44
AMRp (pM3c) 17.60 5.62 4.33
AMRp (pM3d) 26.61 6.12 4.55

AMRb - (†) 5.66
UR 20.87 7.95 7.21
MR 39.69 4.82 4.77

70% of the 1999’s data (n∗ = 77)
model BIC PRESS MSE

AMRp (pM2a) 15.15 5.51 8.21
AMRp (pM2b) 14.82 3.89 3.77
AMRp (pM2c) 14.71 4.53 4.44
AMRp (pM2d) 19.00 5.83 4.99
AMRp (pM3a) 18.96 4.79 4.44
AMRp (pM3b) 19.06 4.34 4.22
AMRp (pM3c) 18.98 5.26 3.77
AMRp (pM3d) 27.57 5.55 4.88

AMRb - (†) 5.99
UR 22.08 8.00 7.10
MR 43.91 5.06 3.33

(n∗ = 111)
model BIC PRESS MSE

AMRp (pM2a) 15.51 3.83 3.77
AMRp (pM2b) 15.54 3.87 4.77
AMRp (pM2c) 15.34 4.13 4.11
AMRp (pM2d) 20.14 4.41 4.33
AMRp (pM3a) 20.19 4.48 4.77
AMRp (pM3b) 20.03 4.41 4.33
AMRp (pM3c) 20.06 4.35 3.44
AMRp (pM3d) 29.55 4.76 5.44

AMRb - (†) 5.66
UR 23.62 7.53 6.99
MR 47.19 3.66 2.89

Table 2: MSE on the whole 1999’s sample, PRESS and BIC criterion for the 8 parametric adap-
tive mixture models (AMRppM2a to pM3d), AMRb model, usual regression model (UR) and
classical regressions mixture model (MR), for 4 sizes of the1999’s sample: 33, 55, 77 and 111
(whole sample). Lower BIC, PRESS and MSE values for each sample size are in bold character.
(†): Cross-validation on MCMC procedures is too computationally heavy to be computed in a
reasonable time.
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Figure 7: Emission of CO2 per capitaversusGNP per capita in 1980 (left) and 1999 (right).

and 70% of the whole sample. Furthermore, it should be noticed that ARMp provide stable results
according to variations onn∗. In particular, the modelspM2 are those which appear the most ef-
ficient on this dataset and this means that the link between both populationsP andP∗ is mixture
component independent. On the other hand, the Bayesian approach AMRb appears to provide
results as stable as the ones of AMRp but slightly less satisfying and this confirms the conclusions
of the previous experiment on simulations.

This application illustrates well the interest of combining informations on both past (1980) and
present (1999) situations in order to analyse the link between CO2 emissions and gross national
product for several countries in 1999, especially when the number of data for the present situation
is not sufficiently large. Moreover, the competition between the parametric AMR models is also
informative. Effectively, it seems that three models are particularly well adapted to model the link
between the 1980’s data and those of 1999’s data:pM2a, pM2b and pM2c. The particularity of
these models is that they consider the same transformation for both classes of countries, which
means, contrary to what one mightprima faciehave thought, that all the countries have made an
effort to reduce their CO2 emissions and not only those which had the higher ones.

5 Conclusion

We propose in this paper adaptive models for mixture of regressions in order to improve the predic-
tive inference when the studied population has changed between training and prediction phases.
The first class of models considers a parsimonious and parametric link between the mixture of
regressions of both populations, whereas the second approach adopt a Bayesian point a view in
which the populations are linked by the prior information imposed on the mixture regression pa-
rameters. On both simulated data and real data, models considering parametric link turn out to
be the most powerful: all the interest of such adaptive methods consists in their sparsity, which
leads to significantly decrease the number of observations of the new population required for the
estimation. As this indispensable stage of data collectingis often expensive and time consuming,
there is a real interest to consider adaptive mixture of regressions in practical applications. More-
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over, as it has been showed in the real application, the competition between the parametric link
models provides informations on the link between populations, which can be meaningful for the
practician.
Regarding the further works, a first perspective concerns the Bayesian approach. In this paper,
the prior hyperparameters forσ ∗2

k were simply fixed to values seeming experimentally reasonable.
The results of the Bayesian approach may be significantly improved by working on the choice
of these hyperparameters. One generic way to do this is to make similar assumptions as in the
frequentist approach. For instance, the varianceσ ∗2

k Ak of the regression parametersβ ∗
k could be

assumed to be common between mixture components or to be equal to σ ∗2
k Id. The selection be-

tween the considered assumptions could then be done by choosing those maximizing the integrated
likelihood [21]. A second working perspective is related tothe joint estimation of the models of
both populationsP andP∗. Indeed, the reference regression model being only estimated in prac-
tice, the quality of this estimation, depending on the sizen of the available sample, is directly
responsible of the estimation quality of the mixture regression model forP∗. In some situations
(typically whenn is small compared to the model complexity), it could be interesting to consider
a full likelihood estimation which consists in estimating simultaneously both mixture regression
models. Such an approach has been recently considered in [19] in a supervised classification con-
text. It must be emphasized that such a full likelihood estimation of both mixtures of regression
must consider the same estimation method (parametric or Bayesian) for both populations.
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Appendix

A Link parameters maximization for the M step of the EM algo-
rithm

The maximums in the M step of the EM algorithm are

• for modelpM2a: λ (q+1) =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −βk0)x
∗t
i∼0βk∼0

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −βk0)
2,

• for modelpM2b: λ (q+1) =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

βk0
2

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −x∗ti∼0βk∼0)βk0,

• for modelpM2c: λ (q+1) =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

y∗i x∗ti βk

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

y∗2
i .

For the modelspM3a, pM3b and pM3c the formulas are the same by omitting the sum underk.
For the modelpM2d, the maximization is done on the same scheme as in Section 2.2, with the
following update formulas:

λ (q+1)
k0 =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

β 2
k0

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
k1 x∗ti∼0βk∼0)βk0,
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and

λ (q+1)
k1 =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
k0 βk0)x

∗t
i∼0βk∼0

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
k0 βk0)

2.

ModelsM4a andM4b have respectivelyp andp+1 scalar parameters plus the residual variance. A
descending algorithm has to be used for alternatively maximizing the variances (by (13)) and the
link parameters. For these latter, another descending algorithm maximizing at each step a scalar
parameter according to the current value of the others has tobe used as well. Update formulas are
the following:

• modelM4a, ∀1≤ J ≤ p:

λ (q+1)
J =

(

n

∑
i=1

K

∑
k=1

t(q)
ik

σ ∗
k

2x∗ti∼0βk∼0x∗iJβkJ

)−1
n

∑
i=1

K

∑
k=1

t(q)
ik

σ ∗
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2 x∗ti∼1βk∼1

(

y∗i −βk0−
p

∑
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λ (q+1)
j x∗i j βk j

)

,

• modelM4b, ∀0≤ J ≤ p:

λ (q+1)
J =

(

n
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i=1

K

∑
k=1

t(q)
ik
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2 x∗ti βkx
∗
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.
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