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Abstract

When regression is carried out in a prediction purpose, drieeomain assumptions is
the absence of evolution in the modeled phenomenon betwedreining and the prediction
stages. Unfortunately, this assumption turns out to bendétkse in practical situations. The
present work investigates the estimation of regressiourgs when population has changed
between the training and the prediction stages. The maanatinis work is to link the regres-
sion mixture of the prediction population with the known negsion mixture of the training
population. For this, two approaches are suggested. Omidand, a parametric approach
modeling the relationship between dependent variablesthf populations is presented and
the EM algorithm is used for the parameters estimation. @rother hand, a Bayesian ap-
proach is also proposed in which the priors on the predigtapulation depend on the mixture
regression parameters of the training population. In thitet case, a MCMC procedure is
used for inference. The relevance of both the parametri¢ctenBayesian approaches is illus-
trated on simulations and then compared to classical gtest@n an environmental dataset.
Keywords: Mixture of regressions, switching regression, adaptging, EM algorithm,
Bayesian inference, MCMC algorithm.

1 Introduction

The mixture of regressions, introduced by [10] as the switgihegression model and also named
clusterwise linear regression model in [13], is a populgression model for modeling complex
system. In particular, the switching regression model isroised in Economics for modeling
phenomena with different phases. This model assumes thakeiendent variabM € R can be
linked to a covariat& = (1,x,...,Xp) € RP*1 by one ofK possible regression models:

Y =XB+oie, k=1,...,K (1)

whereg ~ 47(0,1), Bx = (Bxos---» Bxp) € {B1.--., Bk} is the regression parameter vectofRift1
ando? € {0?,...,02} is the residual variance. The conditional density distidsuof Y givenx
is therefore:

K

YY) = 5 TR(YIX Be, GF), (2

k=1
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Figure 1: Housing value vs surface for Birmingham (AL, USA)lé&San Jose (CA, USA)

whererr, ..., Tik are the mixing proportions (with the classical const@'iﬁ_ll & = 1), ande(-|X B, 62)
is the Gaussian density parametrized by its mégpand varianceykz. Among the works which
focused on this model, we can emphasize the following oneéshwiave contributed to the popu-
larity of this model: [14] investigates the model identifidlp, [15] proposes a Bayesian inference
for the model estimation, [33] studies the asymptotic tiiemrparameter estimators in order to
define hypothesis tests, and [17] considers variable sateftir this specific regression model.
Let us also mention that [18] presents a package for the Rvaddtdevoted to the mixture of
regressions.

The present paper focuses on the problem of using a mixtgreggion model for prediction
when the modeled phenomenon has changed between thedrsiage, which has led to the pa-
rameter estimation, and the prediction stage. More prigciae assume that model (1) has been
estimated with a sample from a given training populatiom, &e want to use it for predicting the
dependent variabl¥ for a new population which could be different from the tramione. For
instance, the difference between both populations can bdala switch in the covariate distri-
bution or to a variation of the link between the covariated #re dependent variable. Although
very frequent in practical applications, this issue ha®uohately received very few attention in
the literature. To our knowledge, only [5] has considerad $lituation in regression. In [5], the
authors illustrate their adaptive regression model onlawedd situation: the prediction of house
prices from house features for a city of the USA West Coast (lBse, California) by adapting a
regression model learned with data issued from anothestitgd on the East Coast (Birmingham,
Alabama). The difference between these two cities is itstl by Figure 1 which presents the
value of the houses according to their surfaces. In this pl@rthe difference between the train-
ing and the prediction populations is geographical, bubitld also be temporal (as in Section 4)
or due to species evolutions in a biological context (asjhp [4



1.1 Related works

As mentioned before, only few papers have investigated tiggnal problem considered in this
work in the context of mixture of regressions. In the maché&sening community, a related prob-
lem in a non-mixture regression background, nai@edariate Shiftconsiders that the probability
density of the covariates in the new population is diffeffemin the one of the training population,
but that the relationship between covariates and dependeiable has not changed. Thus, if the
regression model is exactly known, a change in the prolgblitribution of the explanatory vari-
ables is not a problem. Unfortunately, this is never the @ageactice and the regression model
estimated with the training data could be very disappaointimen applied to data with a different
probability distribution. Several recent works [25, 27, 28, 30] have contributed to analyze this
context. Furthermore the fact that we consider mixturesegfassion and Covariate Shift does
not, the focus of the present work is however more generatlaed not assume that the relation-
ship between explanatory and response variables is cats&éom the learning data to the new
data. In addition, the situation under review in this papersiders that only few learning data are
available for the new situation, which is not enough to adiyeestimate in practice their probabil-
ity distribution. In supervised classification, a similaoplem was studied in [4] on quantitative
variables and in [16] on binary variables. For this, the arghintroduce model-based discrimi-
nant rules for classifying individuals from a predictionpptation which differs from the training
one. The parsimony of these rules is obtained by considéaumgies of linear links modeling the
transformation between the reference population and theome. An extension of this work to
logistic regression was also proposed in [2]. In unsupedvidassification, [20] recently proposes
Gaussian models for simultaneous clustering on two diffepopulations. Finally, some other
applied works cover the problematic of knowledge transfiespecific industrial contexts. For
instance, [9] gives a good overview of solutions for modahsfer in the field of Chemometrics.
Among the proposed transfer models, the most used modelbeapgecewise direct standardiza-
tion [32] and the neural network based nonlinear transftiond11]. Several works [3, 31] have
also considered this problem in the field of semiconductdustry.

1.2 Problem formulation

Assuming that the new populatiétt, for which we want to predict, is different from the training
populationP, the mixture regression model f& can be written as follows:

Y* = X'Bi+oie
K*
Py |Ix") = ZTKf(P(WX*tﬁE,UEZ) (3)
&

with £* ~ .47(0,1), B¢ € {B;,...,B-} andoy € {0],...,0k.}. Let us now precise the focus of
this paper by making the three following assumptions. Firttie variableqY,x) and(Y*,x*) are
assumed to be the same but measured on two different pamdatSecondly, the sia& of the
observation sampl&" = (y,X")i—1n- Of populationP* is assumed to be small compared to the
number of observations of the reference populaforOtherwise, the mixture regression model
could be estimated directly without using the training dapan. Thirdly, as both populations
have the same nature, each mixture is assumed to have thensarber of componentX( = K).
Under these assumptions, the goal is then to pr&difbr some newk* by using both sampleS=
(i, X )i=1,n andS*. The challenge consists therefore in exhibiting a link swboth populations.



1.3 Organisation of the manuscript

The reminder of this work is organised as follows. Sectiomdppses a first solution to improve
the predictive inference on the prediction population bfinileg parametric models for the link
between mixture regression models of both populations. lerreative Bayesian approach is
then presented in Section 3 in which the link between regmessodels is formulated through
prior densities on the new population. In Section 4, thegverénce of both the parametric and
the Bayesian approaches is first illustrated on simulatan the proposed strategies are then
compared to classical methods on an environmental apiplicat

2 Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which comsistedeling the link between training
and test populations by a parametric relationship betwieenegression parameters.

2.1 Parametric models for linking the reference and test poplations

Let us introduce a latent variab® € {0,1}¥ representing the belonging of observations to the
K mixture components,e. z, = 1 indicates that theth observation(x,y;") comes from thé-th
component and; = 0 otherwise. Conditionally to an observatigmf the covariates, we would
like to exhibit a distributional relationship between thepdndent variables of the same mixture
component:

Yicz-1~ U(Yz=) (@)

with  a function fromR to R. By only assuming that the functiay is €, [4] proves that
is necessarily affine:

Y&-ﬁk:l ~ )\kl + Ak2Y|x,zik:1

where(Ay1, Ak2) € R2. We therefore obtain the following relationship betweemniodel parame-
ters of P andP*:

Bi = (Aa+AeBo,AeBts - - AkeBip)'s (5)
O'|2< = Akzo'k. (6)

The interest of introducing such a link lies in the reductidthe number of parameters to estimate
for the mixture regression model f&: using this link it decreases tdK3- 1 whereas for a
complete mixture of regressions & it is (3+ p)K — 1. This assumption is however relatively
strong: if there is no real link betwe@&handP*, it will be no more possible to correctly estimate the
mixture regression model (3) since relations (5) and (G) tedoose all freedom on the parameters
(3K — 1 is strictly lower than3+ p)K —1). In order to introduce more flexibility, it is possible to
introduce additional models for the link between populadidy allowing the effects of different
covariables on the dependent variable to be differentlysfiamed fromP to P*. A second class
of link models, including the first one, is then taken into sideration:

B< = Bk whereA, = diag(Ako, Akt, - -, Akp) (7)
Ok is free,
wherediag(Ako, Akt - - -, Akp) is the diagonal matrix containin@\ko, Ax1, . . ., Akp) ON its diagonal

completed by zeros. In the following, some constraintg\pwill be introduced in order to define
a family of parcimonious models:



Model M; Mga Mz Mz Mpg Mza Mgy Mac Mgy Mgy Mgp Ms
Param. 0 1 1 1 2 K K K 2K p+K p+K+1 K(p+2)

Table 1: Number of parameters to estimate for each modekgbtbposed family.

e M; assumes that both populations are the same populatiosa: 14 is the identity matrix,

e M, assumes that the link between populations is covariate atdmm component indepen-
dent:
— Mg Ao =1, A=A andoy =Agx V1< |j<p,
- My A=A, Aj=1landgy =0x Vi< |<p,
— My : Ak = Alg andoy = A 0,
— Mag : Ao = Ao, Akj = A andoy = A0k V1< j<p,

e M3 assumes that the link between populations is covariateertent:

— Mza: Ao =1, Akj = Ak andoy = Akgk V1< j<p,

— Map i Ao = Ak, Akj = Ll andoy = ok V1< j<np,

— Mz : A = Alg and oy = Ay,

— Mag : Ako = Ao, Akj = Akt and oy = Aok V1< j<p,

Note thatMsq, which is the most general model amokfly and M3 classes of models, is
equivalent to the model defined by relations (5) and (6).

e M, assumes that the link between populations is mixture coemtdandependent:

- I\/I4a:)\ko:1and)\kj :Aj vVi<j<p,
— My : Ax = A with A a diagonal matrix,

e Ms assumes thaky is unconstrained, which leads to estimate the mixture ssgra model
for P* by using onlyS".

Moreover, the mixing proportions are allowed to be the sameach population or to be different
between both population8 and P*. In the latter case, they consequently have to be estimated
using the sampl&*. Corresponding notations for the models are respectMegnd pM.. Table 1
gives the number of parameters to estimate for each modék Hixing proportions are different
from P to P*, K — 1 parameters to estimate must be added to these values. firhat&s of the
modelsM- to M4 are derived in the next subsection.

2.2 Parameter estimation

In the situation under review in this paper, the mixture gfressions is assumed to be knov@ (
and oy will be estimated in practice) for the reference populafpand the goal is to estimate the
mixture of regressions fd?*. This will be done in two steps. In the first step, the link paeters
A« and the mixing proportions; are estimated as well as the residual variamggsvhen neces-
sary (modelsvis). In the second step, the estimation of the mixture regragsarameterg, and
the residual variance:s;2 (for modelsM, andM3) are deduced by plug-in through equations (7)



and (6). In the following, only the situation where mixingoportions are different from those of
populationP is considered.

The estimation of the link parameters is carried out by maxmiikelihood using a missing
data approachkia the EM algorithm [7]. This technique is certainly the mospplar approach for
inference in mixtures of regressions (see [18] for instanCenditionally to a sampl&" = (y*,x*)
of observations, wherg* = (y;,...,Y;;) andx* = (Xj,...,x;), the log-likelihood of model (3) is
given by:

n*

L(6:y",x) Zl <z TR (Y} X ABr, O ) , ®)

with 8 = (17},..., &, A1, ...,\k, 07,..., 0g), and the completed log-likelihood is:

Le(B3y" X", 2") 21 S N (0037 XA, %) ©)
=1

wherez* = (Z, )i—1n- k=1k IS the unobserved latent variable , introduced in Secti@am@assumed
to be distributed as a one order multinomial(1, 7}, ..., 7% ).

The E step. From a current valu®@ of the parameted, the E step of the EM algorithm
consists in computing the conditional expectation of thegleted log-likelihood:

Q(6.69) = Egalle(B;y",x",2°)ly",X"]

K

3

— z ) +In(@(y; X ABe. 6v2))) (10)

i=1k=1

where:

Tl;:(q) q)(yl* |Xi*t/\|(<q) Bk> O—;Z(Q))
s Dl XAV B, 072 Y)

is the posterior probability that the observatiawomes from thé-th mixture component.

|k =P(z =1ly",x") =

The M step. The M step of the EM algorithm consists of choosing the va@if&D) which
maximizes the conditional expectatiGghcomputed in the E step:

€

whereQ is a parameter space depending on the model at hand. Thismation is now described
for each component & = (13, Ak, 0y )k=1,k . For the mixing proportions, the maximum is as usual
reached for:

¢

= —*n (@) (12)

For the residual variances (mod#ls), we have:

\ 13 )
G = = S H 07 - N B (13)
i=



The reminder of this section details only the maximizatioocading to the link parameters for the
modelMzq and we refer to Appendix A for update formulae of moddisandM,. As modelMgqy
considers two interdependent scalar parametgreind Ax;, no analytical formulae are available
for the global maximum on bothAy andAx;. In such a situation, an easy way to carry out the
maximization in this case is to consider a descending dlgarin whichAyg andAy; are alterna-
tively maximized. Using such a strategy incorporated in a&dbrithm is very frequent and, in
such a case, the algorithm is called GEM (generalized EN), [@pdate formulas for these two
parameters are consequently:

)\(CH‘l) _ Zinzltiiq) % _AIE;H_ )Xiioﬁk~o)
kO - " )
Zinzlti(kq) Bro

and

* 1
Ae _ Tl O~ A Bo)?
STt 0~ Mg o)Xt oBeeo
wherex; o = (X7,...,Xp) is the vectong without its first componenk,, and similarly fx.o =

(B, - - Brp)-

2.3 Model selection

In order to select among the 24 transformation models defm&ection 2 the most appropriate
model of transformation between the populatiéhandP* , we propose to use two well known
criteria. The reader interested in a comparison of the mseeperformances of models selection
criteria could refer to [12] for instance. The first cons@tkrcriterion is the PRESS criterion [1],
which represents the mean squared prediction error comhgue cross-validation scheme, for-
mally defined by:

5

PRESS= _izl(yr —yi )

where;?*i_' is the prediction ofy" obtained by the mixture regression model estimated without
using theith observation of the samp&. This criterion is one of the most often used for model
selection in regression analysis, and we encourage its lise ivis computationally feasible. The
second considered criterion is the Bayesian Informatiote@on (BIC, [24]), which is a penalized
likelihood criterion which has a less computation cost. BI€ criterion is defined by:

BIC = -2In/+vInn®,

where/ is the maximum log-likelihood value andis the number of estimated parameters (see
Table 1). It consists in selecting the models leading to ftigaést likelihood while penalizing
models with a large number of parameters. Let us remarkfivaboth criteria, the most adapted
model is the one with the smallest criterion value.

3 Bayesian approach for adaptive mixture of regressions

The previous section has considered the modeling and timeatistn of parametric adaptive mod-

els for mixture of regressions with the classical frequarnbint of view. This section adopts a

Bayesian approach for inferring adaptive mixture of regjgss and Gibbs sampling is considered
for the estimation of the posterior distribution.

7



3.1 A Bayesian view of the problem

The classical treatment of the mixture regression probleeks a point estimate of the unknown
regression parameters. By contrast, the Bayesian appfbacB3] characterizes the uncertainty
on parameters through a probability distribution, callegriar distribution. Bayesian analysis
combines the prior information on the parameters (carrigdog the prior distribution) with in-
formation on the current sample (through the likelihoodction) to provide estimates of the
parameters using the posterior distribution. In the cdraéadaptive mixture of regressions, the
Bayesian approach makes particularly sense since there# prior on the model parameters of
populationP*. Indeed, even though training and prediction populatidfisrdthey have a strong
link and it is natural to define the prior on parameters of paimn P* according to the ones of
populationP.

In the context of mixture of regressions, it is usual to assuhe conditional independence
between the mixing parameters and both component paramet@s= {f;,...5¢ } and 0?2 =
{072,...,0%?}. The independence betwe¢fi;,0;?) and (B}, 0;2) is as well assumed for all
k#/, k¢=1,..,K. For simplicity, only conjugate priors are considered iis thork and, since
model parameters of the reference populaBare assumed to be known, prior distributions of the
parameters of populatioR” will depend on model parameters of the populatforiWe therefore
propose to assume that, for &li= 1,...,K, the prior distribution for3 is a normal distribution
centered irnB:

Bc ~ A (B O-Iszk)v

whereAy is a(p+ 1) x (p+ 1) covariance matrix. The prior distribution of?, for allk=1,...,K,
is assumed to be an inverse-gamma distribution:

Ok’ ~ TG (W, i)

The prior distribution for parameters’ = {7, ..., 7 } is assumed to be a Dirichlet distribution
centered in the mixing proportior{ss, ..., 7k ) of populationP:

m~2(m,..TK).

With such a modelling, the regression coefficigBsind the mixing proportions* = {7 ,..., 7§ }
of populationP* are naturally linked to the ones of populati® The variance termsr;ZAk
control how the regression coefficient$ differ from the ones of the reference populatienin
the experiments presented in Section 4, the prior parameteni and Ag, k= 1,....K, were
respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regggons model and the priors, we
end up with the joint posterior distribution:

k=1

N« K K
p(8"[Y") O u LZlTEUP(ﬁIX*tBEaUEZ) p(rt) [ [P(Bcloe®) p(o?)]

where8* = (T, B¢, 0y )k—1k. However, since the posterior distributigif*|Y*) takes into ac-
count all possible partitions of the sample infogroups, the maximization of(6*|Y*) is in-
tractable even with moderately large sample size and Matk@in Monte Carlo methods have to
be used.

3.2 Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a darafed distribution by using
samples drawn indirectly from this distribution. Among M@Mmnethods, the Gibbs sampler

8



is the most commonly used approach when dealing with mixtlis&ibution ([8]). In Gibbs
sampling, the vector parametéf is partitioned intos groups of parameter§f;,...,65} and a
Markov chain is generated by iteratively sampling from tloaditional posterior distributions.
Once a Markov chain of lengtQ has been generated, sample values can be averaged on the
last sampling iterations to provide consistent estimatemadel parameters. In the context of
inference for mixture distribution, the Gibbs sampler rieggito add a latent variab®&* € {0,1}K
representing the allocation of observations toKhmixture components (introduced in Section 2).
Since the latent variabl&* is not observedZ* can be viewed as unknovgn and should be estimated
along with the other model parameters. Consequently, gdgtimates3 and 7t of respectively
regression parameters and mixing proportions of popula®and starting from initial values
0, B9 and 0*29), the Gibbs algorithm generates, at iteratmprparameter values from the
conditional posterior distributions:

z70 ~ p(z|y*, B, fr ey pHatl) g2l
@~ (Y, B,z @ Y g ),
OEZ(q) ~ p(og?Y*, B, 7, z*@ @ pra-1)y,
BV~ p(BIIY,B, 7z @, @), g7Aa ),

According to the priors given in the previous paragraphgctireditional posterior distribution af*
is a multinomial distribution:

ZﬂY*uﬁ7 ﬁ) n*7B*7O-*2 ~ %(17ti17"'7tiK)u

wheretic = 5 Q(y X By, 0p2)/ S 1 T @(Y; %8, 0;2), and the conditional posterior distribu-
tion of r1* is a Dirichlet distribution:

T[*|Y*,B, ﬁ>Z*>B*7G*2 ~ 9(ﬁ1+niv"-a ﬁk + nik()»

with ny = S, Z,. Once the component belongings of each observation arerkribe observa-
tions of the same componektcan be gathered into the matricgsandy,’, for allk = 1,...,K.
With these notations, the conditional posterior distiutof aljz is an inverse gamma:

GY*, B, 7,25 T B ~ I G (Y + N/ 2, Vi + S/ 2),

whereSc = (Y¢ =X B (Y =X Be) + (Be— B (At (x¢x) 1) "L (Bc— B¢, and the conditional
posterior distribution o3 is a normal distribution:

B;|Y*>B>ﬁvz*7n*7o-|f2N‘/V(rnOAk)v
with

Me = (ACHX06) 04+ A ).

Be = oG+ A

Finally, consistent estimates of model parametgrg* ando*? are obtained by averaging on the
lastQ — gg sampling iterations, wherg defines the number of iterations of the so called “burning
phase” of the Gibbs sampler.
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Figure 2: Population® andP* used for the introductory example. Curves black (left) aed r
(right) indicates respectively the actual mixture reg@ssf populations? andP*.

3.3 The label switching problem

When simulating a Markov chain to estimate parameters ofdunad model, the label switching
problem frequently arises and is due to the multimodalityhef likelihood. Indeed, if the prior
distributions are symmetric, the posterior distributioherits the multimodality of the likelihood.
In such a case, the Markov chain can move from one mode toematid it is difficult to deduce
consistent estimators of model parameters. The earliésticgn proposed by [22], consists in
adding indenfiability constraints on model parameters siscan order relation in mixing propor-
tions. Unfortunately, this approach does not work very \aslshowed by [6]. By contrast, some
authors like Celewet al. [6] and Stephens [26] propose to waakposteriorion the generated
Markov chain in order to reorganize it according to a specifiterion. The Stephens’ procedure
reorganizes the Markov chain by searching the correct pations of mixture component which
minimizes a divergence criterion. The solutions proposgéleuxet al. are in the same spirit
and, among the different proposed criteria, they propogeaiticular to reorganize the Markov
chain using a sequentigtmeans algorithm. Both the Stephens and Celeux’s appreauiecef-
ficient to deal with the label switching problem. Howevegr #equentiak-means algorithm has
the advantage to be less memory consuming and, in the ex@d@sdrpresented in Section 4, this
approach is used to overcome the label switching problem.

4 Experimental results

This section proposes experiments on simulated and realimarder to highlight the main fea-
tures of the adaptive models proposed in the previous sectiéfter an introductory example,
the behavior of adaptive mixtures of regressions (paracnetid Bayesian) is compared to the one
of classical mixtures of regressions on simulated data. la$teexperiment will demonstrate the
interest of using adaptive mixtures of regressions in agiahtion.

10
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Figure 3: Results obtained for the introductory exampldnilie Bayesian approach of adaptive
mixture of regressions (AMRD). From left to right: mixinggmortions over the MCMC iterations,
Gibbs sampling in the parameter space and some of the gedeggjression curves. See text for
details.

4.1 Anintroductory example

This first experiment aims to compare the basic behaviorsdaptive mixtures of regressions
(parametric and Bayesian), hereafter referred to as AMBpéetively AMRp and AMRDb), and
classical mixtures of regressions, referred to as MR. Hergtudy, the reference populatiéh
is modeled by a 2 component mixture of quadratic polynonggtessions with parametes =
(3,0,—2) andB; = (—3,0,0.5). The left panel of Figure 2 shows the mixture regression plpo
lation P as well as some observations simulated from this model. Tkieira model of population
P* has then been obtained from the previous model by multiglylh regression parameters of
populationP by a factor 3. It follows thap; = (9,0,—6) andfB; = (—9,0,1.5). Finally, 20 ob-
servations of populatioR* have been simulated using the latter mode|®8].The right panel of
Figure 2 shows the actual mixture regression model of popul®* as well as the 20 simulated
observations (red triangles). These 20 observatiori®" efere used by the three studied regres-
sion methods to estimate the regression modét“cdnd to predict the value of 5000 validation
observations oP*. The mean square error (MSE), computed on the validatiorpkarhas been
chosen to evaluate the predicting ability of each regressimethod in this introductory example.
Figure 3 illustrates the estimation procedure of the Bayesipproach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterationsidiicy a burning phase of 100
iterations. The left panel of Figure 3 shows the sampled qitams over the MCMC iterations.
As one can see, after the burning phase, the proportionstbfroixture components stabilize
in the neighborhood of 0.5 which is the actual valuerpfand r». The central panel presents
the sampled values for regression parameferand 3, in the parameter space (restrictedBi@
and By for k = 1,2 because botiB;» and 3, are both equal to 0). The blue and green dashed
lines indicate at the intersections the actual values akessjpon parameters. It appears that the
Bayesian approach succeeds in estimating the conditiosizibditions of regression parameters.
Finally, the right panel exhibits some of the 1000 regressimdels generated during the MCMC
iterations which are then used to provide by averaging tta éistimated regression modelFf.
Figure 4 presents the results obtained for the considerachghe with the classical mixture
of regressions (MR), parametric adaptive mixture of regioes (AMRp) and Bayesian adaptive
mixture of regressions (AMRb). The MR method used only theoBServations sampled from
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Figure 4: Results obtained for the introductory exampleéhweiassical mixture of regressions
(MR), parametric adaptive mixture of regressions (AMRp) &ayesian adaptive mixture of re-
gressions (AMRDb) methods. See text for details.

P* whereas AMR and AMRb combines the informations carried legéhobservations with the
knowledge orP to build their estimation of the mixture regression modePof In order to not
favor the adaptive approaches, the actual number of compoaad dimension of the polynomial
regression were also provided to the MR method. Nevertbethe MR method provides a poor
estimate of the regression model and its mean square er®E)Malue, computed on a indepen-
dent validation set, is consequently high (3:4)4 Conversely, the parametric (with the most gen-
eral modelpMs.) and Bayesian approaches of AMR give good estimations oPtheodel (they
should be compared to the red curves of Fig. 3). The assddA&E values are naturally much
lower than the one of the classical MR method.&®r AMRp and 452 for AMRDb). Nonethe-
less, the Bayesian approach performs less than the par@a#tRp. This could be due to the
fact that AMRDb favors the prior (the regression parametérB)an this situation with only few
observations of the new population. This introductory eglentnas shown that adaptive regression
models succeed in transferring the knowledge of a referpopealation to a new population.

4.2 Influence of the size o&*

The second experiment focuses on the influence of the nunilmrservationa® from the new
populationP* on the estimation quality of mixture regression models fr MR, AMRp and
AMRDb methods. The experimental setup is the same as for theogois experiment except that
the number of observatiomg from the new populatio®* varies from 6 to 200. For each value of
n*, the regression model & has been estimated with the three studied methods and the-ass
ated MSE values have been computed again on a independigiaiticad set of 5 000 observations.
Finally, the experiment has been replicated 50 times inrotal@verage the results. Figure 5
shows the evolution of the median logarithm of the MSE valeeoeding to the the size & for

the classical mixture of regressions (MR), parametric tdamixture of regressions (AMRp) and
Bayesian adaptive mixture of regressions (AMRb) methods. tike parametric approach of the
AMR method, the model used [EM3.. Associated boxplots are presented by Figure 6 on a loga-
rithmic scale. On view of Figure 5, it can be first noticed ttiet performance of the classical MR
method is sensitive to the the sizeSit Indeed, for small sample sizes, the MR method provides
poor estimates of the mixture regression model of popuid&ioand this consequently yields poor
prediction performances (large MSE values). As one canaxpiee model estimation and the
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Figure 5: Average logarithm of the MSE value according tottiee size ofS* for the classical
mixture of regressions (MR), parametric adaptive mixtureegressions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb) methods.

prediction improve when the number of observatiorigrom the new populatiorP* increases.
More surprisingly, as it can be observed on the left paneligdife 6, the variance of the predic-
tion performance of the MR method remains large even for gasipes bigger than 100. This
remind us that the fitting of a mixture regression model isagtsva difficult task. Conversely, the
adaptive methods AMRp and AMRb which exploit their knowledmn the reference population
obtain on average good prediction results (low MSE valued)this even for very small numbers
of observations1*. In particular, the parametric approach AMRp provides \&aple prediction
results and its variance decreases quickly wifeincreases. The Bayesian approach AMRD, even
though it is much performance and stable than the classiBaiidthod, appears to be slightly less
efficient than the parametric approach AMR. To summarize,dtudy on simulations has shown
that adaptive regression models greatly improve the ptiediand reduce the predictor variance
compared to the classical mixture regression approach wWienumber of observations of the
new population is small.

4.3 Real data study: CQ emissionsvs gross national product

In this last experiment, the link between €@mission and gross national product (GNP) of var-
ious countries is investigated. The sources of the datd laeeofficial United Nations site for the
Millennium Development Goals Indicatoesd theWorld Development Indicators of the World
Bank Figure 7 plots the C@emission per capitaersusthe logarithm of GNP per capita for 111
countries, in 1980 (left) and 1999 (right). A mixture of sedarder polynomial regressions seems
to be particularly well adapted to fit these data and will beduis the following. For the 1980's
data, two groups of countries are easily distinguishablésaminority group (about 25% of the
whole sample) is made of countries for which a grow in the Gdlihked to a high grow of the
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Figure 6: Boxplots of MSE values (on logarithmic scale) adow to the the size 08" for the
classical mixture of regressions (left), parametric agapiixture of regressions (center) and
Bayesian adaptive mixture of regressions (right) methods.

CO, emission, whereas the second group (about 75%) seems tortareeenvironmental polit-
ical orientations. As pointed out by [15], the study of suetadcould be particularly useful for
countries with low GNP in order to clarify in which developmeath they are embarking. This
country discrimination in two groups is more difficult to abyt on the 1999's data: it seems that
countries which had high CCemission in 1980 have adopted a more environmental developm
than in the past, and a two-component mixture regressiorehvodld be more difficult to exhibit.

In order to help this distinction, parametric adaptive migtmodels are used to estimate the
mixture regression model on the 1999’s data. The eight AMRQd&lspM,, to pM3g (Since pMa,
and pMy, are equivalent t@M,, and pMy for p = 1), AMRb model, classical mixture of sec-
ond order polynomial regressions with two components (M) @sual second order polynomial
regression (UR) are considered. Different sample size®fl®09's data are tested: 30%, 50%,
70% and 100% of th&" size (" = 111). The experiments have been repeated 20 times in order
to average the results. Table 2 summarizes these result& dd$esponds to the mean square
error, whereas PRESS and BIC are the model selection aritéroduced in Section 2.3. In this
application, the total number of available data in the 198Putation is not sufficiently large to
separate them into two training and test samples. For tasore MSE is computed on the whole
S sample, although a part of it has been used for the traininogn(80% for the first experiment
to 100% for the last one). Consequently, MSE is a significaaicator of predictive ability of the
model when 30% and 50% of the whole dataset are used as ga@irsince 70% and 50% of the
samples used to compute the MSE remain independent fromeiheg stage. However, MSE is
a less significant indicator of predictive ability for thedwast experiments and the PRESS should
be preferred in these situations as indicator of predicthiéty.

Table 2 first allows to remark that the 1999’s data are agtuatde of two components as
in the 1980’s data since both PRESS and MSE are better for Mé1fonents) than UR (1
component) for all sizes* of S*. This first result validates the assumption that both theresfce
populationP and the new populatioR* have the same numb& = 2 components, and conse-
quently the use of adaptive mixture of regression makeseststhis data. Secondly, AMRp
turns out to provide very satisfying predictions for allwes ofn* and particularly outperforms
the other approaches whahis small. Indeed, both BIC, PRESS and MSE testify that theetsod
of AMRp provide better predictions than the other studiedhods whem* is equal to 30%, 50%
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30% of the 1999’s datan{ = 33) 50% of the 1999's datan{ = 55)

model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pMp) | 13.21  4.01 | 4.77 AMRp (pMz) | 14.10 4.76 | 3.88
AMRp (pMy,) | 12.89  4.57 | 3.66 AMRp (pMy,) | 13.99  4.10 | 3.77
AMRp (pMy) | 12.57 4.16 | 4.55 AMRp (pMy) | 14.07 529 | 4.22
AMRp (pMyg) | 17.13  4.38 | 4.77 AMRp (pMyg) | 17.82  4.45 | 4.66
AMRp (pMza) | 15.92  4.49 | 4.66 AMRp (pMza) | 18.07  4.27 | 4.66
AMRp (pM3,) | 16.01  5.59 | 4.11 AMRp (pMzy) | 18.00 5.62 | 4.44
AMRp (pMs) | 15.75  6.17 | 4.23 AMRp (pMzs) | 17.60 5.62 | 4.33
AMRp (pMsq) | 22.72  4.49 | 4.66 AMRp (pMsq) | 26.61  6.12 | 4.55
AMRDb - (1) 5.99 AMRDb - (1) 5.66
UR 27.08 7.46 | 7.66 UR 20.87 7.95 | 7.21
MR 32.89 5.54 | 511 MR 39.69 4.82 | 4.77
70% of the 1999's datan{ = 77) (n*=111)
model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pMa) | 15.15 5.51 | 8.21 AMRp (pM2a) | 15.51  3.83 | 3.77
AMRp (pMa,) | 14.82 3.89 | 3.77 AMRp (pMa,) | 15.54  3.87 | 4.77
AMRp (pMyc) | 14.71 453 | 4.44 AMRp (pM) | 15.34 4.13 | 4.11
AMRp (pMyg) | 19.00 5.83 | 4.99 AMRp (pMyg) | 20.14  4.41 | 4.33
AMRp (pMsg) | 18.96  4.79 | 4.44 AMRp (pMsg) | 20.19  4.48 | 4.77
AMRp (pMzy) | 19.06  4.34 | 4.22 AMRp (pMzp) | 20.03  4.41 | 4.33
AMRp (pMg) | 18.98  5.26 | 3.77 AMRp (pMg) | 20.06  4.35 | 3.44
AMRp (pMzg) | 27.57 555 | 4.88 AMRp (pMzg) | 29.55 4.76 | 5.44
AMRb - 6 5.99 AMRb - (1) 5.66
UR 22.08 8.00 | 7.10 UR 23.62 7.53 | 6.99
MR 4391 5.06 | 3.33 MR 47.19 3.66 | 2.89

Table 2: MSE on the whole 1999's sample, PRESS and BIC aitdor the 8 parametric adap-
tive mixture models (AMRppM,; to pMsg), AMRb model, usual regression model (UR) and
classical regressions mixture model (MR), for 4 sizes ofi889’s sample: 33, 55, 77 and 111
(whole sample). Lower BIC, PRESS and MSE values for each leasige are in bold character.
(1): Cross-validation on MCMC procedures is too computatignaéavy to be computed in a
reasonable time.
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Figure 7: Emission of C@per capitaversusGNP per capita in 1980 (left) and 1999 (right).

and 70% of the whole sample. Furthermore, it should be ribtitet ARMp provide stable results
according to variations on*. In particular, the modelpM, are those which appear the most ef-
ficient on this dataset and this means that the link betweémn gampulations® and P* is mixture
component independent. On the other hand, the BayesianagppAMRb appears to provide
results as stable as the ones of AMRp but slightly less gatgsfind this confirms the conclusions
of the previous experiment on simulations.

This application illustrates well the interest of combipinformations on both past (1980) and
present (1999) situations in order to analyse the link betw@€Q emissions and gross national
product for several countries in 1999, especially when tialrer of data for the present situation
is not sufficiently large. Moreover, the competition betwelee parametric AMR models is also
informative. Effectively, it seems that three models amipalarly well adapted to model the link
between the 1980’s data and those of 1999's datds,, pMo, and pMy.. The particularity of
these models is that they consider the same transformatioboth classes of countries, which
means, contrary to what one migttima faciehave thought, that all the countries have made an
effort to reduce their C@emissions and not only those which had the higher ones.

5 Conclusion

We propose in this paper adaptive models for mixture of s=sjo@s in order to improve the predic-
tive inference when the studied population has changeddagtwraining and prediction phases.
The first class of models considers a parsimonious and péiartiek between the mixture of

regressions of both populations, whereas the second ajtpeatopt a Bayesian point a view in
which the populations are linked by the prior informatiorpwsed on the mixture regression pa-
rameters. On both simulated data and real data, modelsdenimgj parametric link turn out to

be the most powerful: all the interest of such adaptive nuthemnsists in their sparsity, which
leads to significantly decrease the number of observatibtieeaew population required for the
estimation. As this indispensable stage of data colledfirgigten expensive and time consuming,
there is a real interest to consider adaptive mixture ofe®gjons in practical applications. More-
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over, as it has been showed in the real application, the ctitiopebetween the parametric link
models provides informations on the link between poputetiavhich can be meaningful for the
practician.

Regarding the further works, a first perspective concerasBidyesian approach. In this paper,
the prior hyperparameters foﬁk2 were simply fixed to values seeming experimentally readenab
The results of the Bayesian approach may be significantlydwgal by working on the choice
of these hyperparameters. One generic way to do this is te reiakilar assumptions as in the
frequentist approach. For instance, the variaq{:?eﬂ\k of the regression parametgBs could be
assumed to be common between mixture components or to betequgfly. The selection be-
tween the considered assumptions could then be done byingdbese maximizing the integrated
likelihood [21]. A second working perspective is relatedtie joint estimation of the models of
both populationg® andP*. Indeed, the reference regression model being only esdriatprac-
tice, the quality of this estimation, depending on the sizef the available sample, is directly
responsible of the estimation quality of the mixture regi@s model forP*. In some situations
(typically whenn is small compared to the model complexity), it could be iesting to consider
a full likelihood estimation which consists in estimatingaltaneously both mixture regression
models. Such an approach has been recently considered]iim . 8upervised classification con-
text. It must be emphasized that such a full likelihood eatiom of both mixtures of regression
must consider the same estimation method (parametric cedtay) for both populations.
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Appendix

A Link parameters maximization for the M step of the EM algo-
rithm

The maximums in the M step of the EM algorithm are

N K (@ 1ok £(d@
o for modelpMpa: A1) = Zl > IOLKZ (% — Bro)XLoBr~o Zl > Lkz (¥ = Bo)?,
n* K t(q

1
e for model pMy,: A (@) = (le - Beo ) le % (Vi = %2 0Bi~0) Bro:
i=1k=1

k

e for modelpMyc: A (@) = (ZL 'kZW ) Zl 'kZWZ

For the modelspMs,, pMsp and pMs; the formulas are the same by omitting the sum urider
For the modelpMyq, the maximization is done on the same scheme as in SectipnBtPthe
following update formulas:
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and

n* K (
)\SH) = (Zlkz o2 5 (Vi — Ay q+l Bro)X: Bk~o> Zl q“ Bro)?.

ModelsMg, andMyp, have respectively andp+ 1 scalar parameters plus the residual variance. A
descending algorithm has to be used for alternatively miakng the variances (by (13)) and the
link parameters. For these latter, another descendingitlgpmaximizing at each step a scalar
parameter according to the current value of the others Has tsed as well. Update formulas are
the following:

e modelMg,, V1< J < p:

q
k

Al <Zl Z li 2X|~o[3k~oX|JBkJ> Zl Z X Bt (Yf —Bo— 5 A (1) ) |

Ok j=LJA

e modelMy,, VO < I < p:
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