
HAL Id: hal-00477541
https://hal.science/hal-00477541v1

Preprint submitted on 29 Apr 2010 (v1), last revised 4 May 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation of Core Numerical Algorithms:
A Tool to Measure Instruction Level Parallelism

Bernard Goossens, Philippe Langlois, David Parello, Eric Petit

To cite this version:
Bernard Goossens, Philippe Langlois, David Parello, Eric Petit. Performance Evaluation of Core
Numerical Algorithms: A Tool to Measure Instruction Level Parallelism. 2010. �hal-00477541v1�

https://hal.science/hal-00477541v1
https://hal.archives-ouvertes.fr

Performance Evaluation of Core Numerical Algorithms:

A Tool to Measure Instruction Level Parallelism

Bernard Goossens, Philippe Langlois, David Parello, and Eric Petit∗

DALI Research Team, University of Perpignan Via Domitia, France †

Abstract We measure and analyze the instruction level paral-

lelism that condition the running-time performance of core nu-

merical subroutines. We propose PerPI, a programmer oriented

tool to fill the gap between high level algorithm analysis and ma-

chine dependent profiling tools and which provides reproducible

results.

Keywords Running-time performance, instruction level paral-

lelism, ideal processor, BLAS, polynomial evaluation, mixed pre-

cision

1 Introduction
We introduce PerPI, a programmer oriented tool to focus

the instruction level parallelism of numerical algorithms.

This tool is motivated by results like those presented in Ta-

ble 1 where two algorithms are compared with respect to

flop counts and running-time measures. The first two lines

are significant of the algorithm complexity while the last

one presents the range of running-times measured for sev-

eral desktop computers. Such measures are very classic

when publishing new core numerical algorithm, e.g., dot

product, polynomial evaluation — see entries in [6] for

instance. These two algorithms solve the same problem:

Measure Eval AccEval1 AccEval2

Flop count 2n 22n+5 28n+4

Flop count ratio 1 ≈ 11 ≈ 14

Measured #cycles ratio 1 2.8 – 3.2 8.7 – 9.7

Table 1: Flop counts and running-times are not propor-

tional

how to double the accuracy of a core numerical subrou-

tine? Such need appears for example in numerical lin-

ear algebra where the accurate implementation of itera-

tive refinement relies on a dot product performed with

twice the current computing precision [2]. In Table 1,

Eval is the classic Horner algorithm for polynomial eval-

uation and AccEval1 and AccEval2 are two challenging

twice more accurate evaluations (polynomial degree is n).

∗Email: first_name.name@univ-perp.fr
†This work is partly funded by the ANR Project EVA-Flo ANR-

BLAN 06-2-135670 2006.

AccEval1 appears to run about three times faster than Ac-

cEval2 whereas their flop counts are similar. Such speedup

is interesting for basic numerical subroutines that are used

at any parallelism level, and so has to be justified.

Of course only counting the number of flop within an

algorithm is not significant of the actual performance of

its implementation. This latter depends a lot on other fac-

tors as, e.g., parallelism and memory access. Moreover

measuring actual running-times is a task that is hard to re-

produce and that yield results with a very short life-time

since computing environments evolve fast. This process

is very sensitive to numerous implementation parameters

as architecture characteristics, OS versions, compilers and

options, programming language, . . . Even using the same

data test in the same execution environment, measured re-

sults suffer from numerous uncertainties: spoiling events

(e.g., OS process scheduling, interrupts), non determinis-

tic execution and accuracy of the timings.

Measuring the computing time of summation al-

gorithms in a high-level language on today’s ar-

chitectures is more of a hazard than scientific re-

search [6].

This recent quotation seems to us significant of (a call for)

a change of practice in the numerical algorithm commu-

nity. Indeed uncertainty increases as the computer system

complexity does, e.g., multicore or hybrid architectures.

Even in the community of program and compiling opti-

mization, it is not always easy to trust this experimental

process.

If we combine all the published speedups (accel-

erations) on the well known public benchmarks

since four decades, why don’t we observe exe-

cution times approaching to zero? [7]

A last difficulty comes from the gap between the al-

gorithm design step and the profiling one. The algorith-

mic step benefits from the abstraction of high level pro-

gramming languages and, more and more, from the inter-

activity of integrated developing frameworks like Matlab.

Running-time performance analysis is processed later and

in a technically more complex and changing-prone envi-

ronment. The programmer suffers from the lack of perfor-

mance indicators, and associated tools, being independent

first_name.name@univ-perp.fr

*

* *

*

*

+

+

−

−

−

− −

−

−

−

+

+

+

+

+

x_lo

x_hi

x

P[i]

P[i]

r

c

c

(i)

(i+1)

(i)

* *

x_lo

x_hi

x

(i+1)
r

splitter

1

2

3

4

5

6

7

8

9

10

c

c

r

(i+1)

(i)

(i)

(i+1)

r

(n−1)

(n−2)

(n−3)

(n−4)

(n−5)

(0)

(1)

(2)

(3)

(4)

(a) (b) (c)

Figure 1: Data-flow graph of AccEval1

of the targeted computing architecture that would help him

at the algorithmic level to chose more efficient and peren-

nial solutions.

2 Analysis principles

In this Section, we describe the principles of our analysis

and illustrate it with an introductory pen-and-paper analy-

sis.

2.1 Principles

We propose to analyze the instruction level parallelism

(ILP) of a program simulating its run with a Hennessy-

Patterson ideal machine [1]. ILP represents the potential

of the instructions of a program that can be executed si-

multaneously. Every current processor exploits program

ILP thanks to well known techniques such as pipeling,

superscalar execution, prediction, out-of-order execution,

dynamic branch prediction or address speculation,. . . The

ideal machine removes all artificial constraint on ILP. So

it runs the program such that every instruction is sched-

uled immediately after the execution of the predecessor on

which it depends.

The following example illustrates how to quantify this

ILP and what kind of information is useful to understand

and improve the potential performance of an algorithm.

2.2 A first pen-and-paper analysis

Algorithms presented in Table 1 consists of one loop of

length n. Figures 1 and 2 represent the data-flow graphs of

the two accurate algorithms: (a) represents one iteration,

(b) how one iteration depends on the previous one, and (c)

the shape of the whole loop (or part of it) [3]. Two consec-

utive horizontal layers represent two consecutive execution

cycles within the ideal machine.

To be manually performed, the data dependencies anal-

ysis has been here restricted to the floating-point opera-

tions, i.e., to the algorithmic level description. The whole

program instructions will be covered with the PerPI tool

+

−

−

−

+

−

−

+

+

+

−

+

+

x_lox_hi

x_hix_lo

x

P[i]

sh

sh

sl

(i+1)

(i)

(i)

x

(i+1)
sl

**

+

−

−

−

−* *

* *−

+

+

splitter

sh

sl

sh

sl

(i+1)

(i+1)

(i)

(i)

10

12

19

2

1

3

4

5

6

7

8

9

11

13

14

15

16

17

18

(n−1)

(n−2)

(n−3)

(n−4)

(a) (b) (c)

Figure 2: Data-flow graph of AccEval2

further introduced. From these graphs, we count the num-

ber of floating-point operations and the number of cycles

to perform it, i.e., the total number of nodes and the depth

of the (c) graph. The ratio of these values measures the

(floating-point) ILP, i.e., the average width of the data-flow

graph. These values are reported with Table 2. AccEval1

Measure Eval AccEval1 AccEval2

FP ILP 1 ≈ 11 ≈ 1.65

Table 2: Floating-point ILP as in Table 1

benefits from about 6.66 times more ILP than AccEval2.

This certainly justifies that AccEval1 runs faster than Ac-

cEval2 on modern processors that are designed for ex-

ploiting ILP. Of course no quantitative correlation with the

measured cycles ratios can be done as current processors

has limited resources compared to the ideal machine. Nev-

ertheless comparing the FP ILP and the FP count ratios,

we deduce that the accurate evaluation AccEval1 will run

as fast as the classic Eval on a processor that will exploit

the whole ILP of this algorithm. The analysis of the graphs

also exhibit the origin of such ILP differences. The two

algorithms use almost the same groups of operations but

AccEval2 suffers from two bottle-necks identified as verti-

cal rectangles on the (a) graph. In this scope, this property

will be useful to design other accurate algorithms more in-

spired by AccEval1 than by AccEval2.

3 The PerPI tool
We now present the PerPI tool that automatizes this ILP

analysis. PerPI currently includes the following facilities:

ILP computation, ILP histogram and data flow graph dis-

plays.

3.1 Computing ILP

The measuring part of PerPI is a Pin tool[5]. It computes

ILP = I/C, where I is the number of machine instructions

run and C is the number of steps needed to complete the

run. The higher ILP, the more parallel the piece of code.

A step is defined as the following sequence of opera-

tions: for every runnable instruction, its source registers

are read, its memory read references are loaded, its opera-

tions are computed, its destination registers are written and

eventually its memory write references are stored.

For example, addl %eax,4(%ebp) reads registers

EAX and EBP, computes a = EBP + 4, loads memory

referenced by a (assume value v is loaded), computes

r = EAX + v and stores r to memory referenced by a (the

addl instruction could be the translation of a C source

code instruction such as x=x+y where x is in the function

frame on the stack, address a and y is in register EAX).

A step is performed in many cycles in a real machine.

However in our tool, a step is considered as atomic to

match the ideal machine. As in the example, ILP is the

average number of machine instructions run per step. This

definition of the ILP removes any micro-architectural de-

tails such as latency and throughput. We assume the piece

of code is run on the best possible processor, with infi-

nite resources and single cycle latency operators (including

memory access and conditional and indirect branch reso-

lution).

An instruction is runnable when all the source registers

and all the memory read references are ready, i.e., have

been written by preceding instructions.

The Pin tool computes ILP as follows. For each instruc-

tion of the run, apply the following procedure.

1. For each source register, get the step at which it is

updated

2. For each memory read reference, get the step at

which it is updated

3. Let R be the latest of all the source register update

steps

4. Let M be the latest of all the memory read refer-

ence update steps

5. The instruction is run at step C = max(R,M)+1

6. For each destination register, mark it as being up-

dated at step C

7. For each memory write reference, mark it as being

updated at step C

While we compute the steps, we adjust the step C that is

computed last.

For any piece of code, the set of registers and memory

references are assumed to be updated at step 0 when the

run starts. For reproducibility, the system calls involved in

the measured piece of code are not considered.

3.2 Analyzing ILP

The observation part of the tool consists in a histogram

and a graph displaying functions. These functions allow

the user to zoom in and out of the trace. As in the ex-

ample, the graph represents the instructions dependencies

where an instruction j depends on an instruction i iff j has

a source provided by i (j reads a register or a memory word

x written by i and no k instruction between i and j writes to

x). The histogram represents the variation of the ILP along

the steps.

The histogram tool is useful to locate the good (high

ILP) and bad (low ILP) portions of the code run. The graph

tool is useful to analyze why a code has a high or low ILP

as the example illustrates it.

3.3 Examples of results

We present PerPI results for some accurate summation al-

gorithms introduced in [4] and previous polynomial evalu-

ation algorithms. Sum2 and SumXBLAS are respectively

similar to AccEval1 and AccEval2. These algorithms are

implemented as C functions and are called in a main part.

From a practical point of view, binary files are submitted

to PerPI through a graphical interface and then some menu

items generate the following outputs.

We first illustrate the ILP measure with Figure 3. Every

called subroutine is analyzed, i.e., PerPI returns the num-

ber of machine instructions I, the number of step C and

corresponding ILP. One run is enough since these values

are reproducible.

s t a r t : s t a r t

. . .

s t a r t : main

s t a r t : i n i t

s t o p : i n i t : : I [5 3 4] : : C [1 0 5] : : ILP [5 . 0 8]

s t a r t : Sum

s t o p : Sum : : I [5 1 1] : : C [1 0 5] : : ILP [4 . 8 6]

s t a r t : Sum2

s t o p : Sum2 : : I [1 6 1 7] : : C [2 1 4] : : ILP [7 . 5 5]

s t a r t : SumXBLAS

s t o p : SumXBLAS : : I [2 0 9 7] : : C [8 9 8] : : ILP [2 . 3 3]

s t o p : main : : I [4 8 1 2] : : C [1 2 2 6] : : ILP [3 . 9 2]

. . .

G l o b a l ILP : : I [4 9 1 9] : : C [1 2 7 9] : : ILP [3 . 8 4]

Figure 3: Call graph with ILP information for three summa-

tion algorithms for 100 summands

Corresponding histograms are presented in Figures 4

and 5 – legends are not displayed here. Zooms are avail-

able, e.g., Figure 6. In this case the red bars correspond to

floating point operations while purple ones are data trans-

fers. These histograms exhibit the regularity of the ILP of

the two algorithms and the better efficiency of Sum2.

The last outputs are the data-flow graphs presented in

Figures 7 and 8. As for the introductory ones, cycles are

on the Y-axis. Zooming to some interesting part, corre-

sponding program instructions are displayed such that the

programmer can analyze his code.

 0

 2

 4

 6

 8

 10

 12

-50 0 50 100 150 200 250

I
L
P

cycles

BINARY

COND_BR

DATAXFER

LOGICAL

MISC

PUSH

SSE

X87_ALU

Figure 4: Sum2 histogram for 100 summands

 0

 2

 4

 6

 8

 10

-100 0 100 200 300 400 500 600 700 800 900

I
L
P

cycles

BINARY

COND_BR

DATAXFER

POP

PUSH

SSE

X87_ALU

Figure 5: SumXBLAS histogram for 100 summands

 0

 1

 2

 3

 4

 5

 500 505 510 515 520

I
L
P

cycles

BINARY

COND_BR

DATAXFER

POP

PUSH

SSE

X87_ALU

Figure 6: Zoom of Figure 4

4 Conclusions and current work
The presented performance analysis and its PerPI tool aim

to fill the gap between the high level algorithm analysis and

machine dependent profiling tools. We illustrate on some

core numerical algorithms that the first results are interest-

ing and validate the proposed approach. These results are

reproducible and help the programmer to both justify the

measured performances and to improve his algorithm. The

presented version of PerPI will be publicly available soon.

Work is in progress to extend the analysis facilities imple-

mented in PerPI, as for example identifying longest depen-

dency instruction chains or introducing constraints within

Figure 7: Sum2 data flow graph for 100 summands

Figure 8: SumXBLAS data flow graph for 100 summands

the ideal machine. As PerPI is based on Pin it concerns x86

machine code only. We are investigating in what extent the

machine language impacts the ILP measure. This is out of

the scope of this paper — it is easy to find examples in

which a CISC x86 piece of code has a higher ILP than its

RISC MIPS or PowerPC equivalent and conversely.

References
[1] J. L. Hennessy and D. A. Patterson. Computer Architecture

– A Quantitative Approach. Morgan Kaufmann, 2nd edition,

2003.

[2] N. J. Higham. Accuracy and Stability of Numerical Algo-

rithms. SIAM, 2nd edition, 2002.

[3] P. Langlois and N. Louvet. More instruction level

parallelism explains the actual efficiency of compen-

sated algorithms. Technical report, DALI, UPVD, 2007.

http://hal.archives-ouvertes.fr/hal-00165020.

[4] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot

product. SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[5] Pin. URL = http:www.pintool.org.

[6] S. M. Rump. Ultimately fast accurate summation. SIAM J.

Sci. Comput., 31(5):3466–3502, 2009.

[7] S. Touati. Towards a Statistical Methodology to Evalu-

ate Program Speedups and their Optimisation Techniques.

Technical report, PRISM, UVSQ, 2009. http://hal.archives-

ouvertes.fr/hal-00356529/en/.

	Introduction
	Analysis principles
	Principles
	A first pen-and-paper analysis

	The PerPI tool
	Computing ILP
	Analyzing ILP
	Examples of results

	Conclusions and current work

