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1 Introduction

A group acting on a topological space is said to act minimally if every orbit is
dense. Let g1 : (x, y) 7→ (x+1, y) be the horizontal translation of the plane,
g2 : (x, y) 7→ (x, y + 1) the vertical translation, and g3 : (x, y) 7→ (x, y) + ~v
a translation by a vector ~v with irrational coordinates and irrational slope.
Then the Z

3 action generated by g1, g2, g3 on the plane is minimal. On
the other hand there is no minimal homeomorphism of the plane: this is
a consequence of Brouwer plane translation theorem. In other words the
group Z does not act minimally. Thus it is a natural question to determine
whether the group Z

2 admits a minimal plane action. In this paper, we
answer this question negatively.

Theorem. There is no minimal action of Z
2 by homeomorphisms of the

plane.

Here is another motivation. Assume Z
2 acts on the plane, let g1, g2

be generators of the action. If g1 is conjugate to a translation, then the
quotient R2/g1 is homeomorphic to the infinite annulus, and g2 induces an
annulus homeomorphism. If the Z

2 action was minimal, then so would be
the induced annulus homeomorphism. But this would contradict Le Calvez-
Yoccoz’s theorem.

Theorem (Le Calvez-Yoccoz, [LecYoc97]). There is no minimal homeo-

morphism of the infinite annulus.
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Thus the non-existence of minimal Z2 action may be seen as a (slight)
generalisation of Le Calvez-Yoccoz’s theorem.

In contrast, there exist Z actions on the plane with some dense orbits;
however, due again to Brouwer’s theorem, such an action cannot be free.
There also exist free transitive actions of Z2. Both examples maybe con-
structed using transitive skew products on the infinite annulus (see [Bes51]).
I do not know if there exists a transitive free action of Z2 for which no ele-
ment is conjugate to a translation.

2 Background material

Brouwer homeomorphisms

A Brouwer homeomorphism is a fixed point free, orientation preserving
homeomorphism of the plane. Let h be a Brouwer homeomorphism. A
disk is free for h if it does not meet its image. The free disk lemma

says that every free disk D is disjoint from all its iterates hn(D), n 6= 0.
In particular, a Brouwer homeomorphism has no periodic orbit, and no
dense orbit. Another immediate consequence is that there is no mini-
mal orientation preserving homeomorphism of the plane. See for exam-
ple [Bro12, HomTer53, Fra92, Gui94, BegLeR03] for more details about
Brouwer homeomorphisms.

A couple (x, y) of points in the plane is said to be singular for the
Brouwer homeomorphism h if there exist a sequence (zk) of points converging
to x, and a sequence (nk) of integers tending to +∞, such that the sequence
of points (hnk(zk)) converges to y. The singular set of h is the set of singular
couples. It has the following properties. The singular set of hn is equal to
the singular set of h for every n 6= 0. Furthermore, this set is empty if
and only if h is conjugate to a translation. From this we see that if some
power hn, n 6= 0 is conjugate to a translation, then so is h. In particular,
concerning our problem, Le Calvez-Yoccoz’s theorem may be reformulated
as follows.

Theorem (Le Calvez-Yoccoz). There is no minimal action of Z
2 on the

plane for which some element is conjugate to a translation.

The positive singular set of h is the first projection of the singular set,
that is, the set of points x such that (x, y) is a singular couple for some point
y.

A disk chain for h is a sequence (Di)i=1..k of pairwise disjoint free disks
such that for every i = 1, · · · , k−1, some positive iterate of the disk Bi meets
Bi+1. The disk chain is periodic if some positive iterate of Bk meets B1.
The disk chain lemma is a generalization of the free disk lemma, obtained
by J. Franks; it says that there exists no periodic disk chain.
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In all our statements about disks we will assume that the disks are open.
This does not really matter here (in particular, all the previous statements
also hold for closed disks). Note that the disk chain lemma is still true if
one replaces euclidean disks by topological disks, that is, simply connected
open subsets of the plane.

Orientation-reversing Brouwer homeomorphisms

In this paper we will consider actions by homeomorphisms of the plane, and
we will not assume that these homeomorphisms preserve the orientation.
Thus we also need to collect some results about orientation reversing home-
omorphisms. We begin by a lemma that was certainly known to Kérékjártó.

Lemma 2.1. Let g be a homeomorphism of the plane such that some power

gp is a translation. Then g is conjugate either to a translation or to the map

(x, y) 7→ (x+ 1,−y).

Proof. Under the assumptions it is easy to see that the map g acts properly
diskontinuously on the plane, and thus the quotient space R

2/g is a (Haus-
dorff) surface. Moreover, this surface has a p-fold covering by the annulus
R
2/gp. The classification of surfaces now tells us that R

2/g is homeomor-
phic either to the infinite annulus R2/(x, y) 7→ (x + 1, y), or to the Mobius
band R

2/(x, y) 7→ (x + 1,−y). This provides the two cases, since g is an
automorphism of the covering map R

2/gp → R
2/g.

Fortunately, Brouwer theory has been adapted to the orientation-
reversing case by M. Bonino. We will make use of the following orientation-

reversing free disk lemma (see [Bon04, Lemma 5.2]). Let g be an orientation
reversing homeomorphism of the plane with no periodic point of period 2,
and D be a disk which is disjoint from both g(D) and g2(D). Then D is dis-
joint from all its iterates gn(D), n 6= 0. In particular, there is no orientation
reversing minimal homeomorphism of the plane.

Next we notice that the argument given by Le Calvez and Yoccoz on the
annulus works equally well on the Mobius band.

Theorem (essentially due to Le Calvez-Yoccoz). There is no minimal

homeomorphism of the Mobius band.

Proof. Assume there is some minimal homeomorphism h of the Mobius band
M . The homeomorphism h extends to a homeomorphism of the one-point
compactification M ∪ {∞} that fixes the point ∞. If h is minimal then
this point is not a source nor a sink, and no neighborhood of it can con-
tain a whole orbit (see the precise hypotheses in [LecYoc97]). Then Le
Calvez-Yoccoz’s index theorem applies, and tells us that for some positive
even iterate of h, the fixed point index of ∞ is non-positive. On the other
hand, this iterate is isotopic to the identity and thus, according to Lefchetsz
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formula, the sum of its fixed points indices is equal to 1 (the Euler carac-
teristic of M ∪ {∞}, topologically a projective plane). This shows that h
has some periodic orbit on M , in contradiction with the hypothesis that it
is minimal.

Minimal actions are free

Let G be a group of homeomorphisms of the plane. Recall that G is free

if every non trivial element of G is fixed point free. The following lemma
explains why Brouwer theory is useful for minimal actions.

Lemma 2.2. Assume G is isomorphic to Z
2. If the action of G is minimal

then it is free.

An element g1 of G will be called primitive if there is no element g′ ∈ G
and integer p > 1 such that g1 = g′p. Equivalently, when G is isomorphic to
Z
2, g1 is primitive if there exists g2 ∈ G such that {g1, g2} generates G.

Proof. Assume, by contradiction, that some element of G has a fixed point
x0. This element is equal to gp1 for some primitive element g1. Since G
is abelian, every point of the G-orbit of x0 is fixed by gp1 . If the action is
minimal then the G-orbit of x1 is dense, and thus gp1 is the identity. By
a theorem of Kérékjártó (see [ConKol94]), g1 is conjugate to an isometry.
Using the classification of plane isometries we see that g1 itself must have
a fixed point. Again, since the group is abelian and acts minimally, we get
that g1 is the identity. Now the group G/g1 is isomorphic to Z and acts
minimally on the plane, which contradicts the (orientation preserving or
reversing) free disk lemma.

3 The orientation-preserving case

Proof of the theorem in the orientation-preserving case. Let G be a group
of orientation preserving homeomorphisms of the plane. We argue by con-
tradiction, assuming that G is isomorphic to Z

2 and acts minimally on the
plane. According to lemma 2.2, the non-trivial elements of G are Brouwer
homeomorphisms. According to Le Calvez-Yoccoz’s theorem, they are not
conjugate to a translation. Let g1, g2 be a set of generators of G. The
Brouwer homeomorphism g1g2 is not conjugate to a translation, thus it has
a non-empty positive singular set. Since the action is minimal, and the sin-
gular set is a conjugacy invariant, the positive singular set of g1g2 is dense
in the plane1. Choose any sufficiently small (open) disk D, so that D is
disjoint from its image under each of the four elements g1, g2, g1g2, g1g

−1
2

1Note that there is no contradiction here: examples of Brouwer homeomorphisms with
a dense positive singular set are described in [HomTer53] or [LeR04, page 18].
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(remember that the action is free). Let (x, y) be a singular couple, for g1g2,
with x in D. By minimality of the action there exists some g = gn1

1 gn2

2 such
that g(y) belongs to D, or equivalently y belongs to g−1(D). Since (x, y) is
singular for g1g2, there exists some arbitrarily large positive integer N such
that (g1g2)

N (D) meets g−1(D), that is, the topological disk

gN+n1

1 gN+n2

2 (D)

meets D. In particular we have found some positive integers N1, N2 such
that gN1

1 gN2

2 (D) meets D.
Arguing similarly with g1g

−1
2 , we find another couple of positive integers,

say N ′

1, N
′

2, such that g
N ′

1

1 g
−N ′

2

2 (D) meets D.
We will now get a contradiction by finding some g2-iterates of D that

constitute a disk chain for the Brouwer homeomorphism g1. More precisely
we get the conclusion out of the following lemma.

Lemma 3.1. Let g1, g2 be two commuting Brouwer homeomorphisms. For

any disk D, consider the return-time set

R(D, g1, g2) = {(n1, n2) ∈ Z
2, gn1

1 gn2

2 (D) ∩D 6= ∅}.

Assume this set does not contain (1, 0) nor (0, 1): in other words the disk

D does not meet its image under g1 and g2. Then R(D, g1, g2) is either

contained in the set

E+ = {(n1, n2), n1n2 > 0}

or in the set

E− = {(n1, n2), n1n2 < 0}.

See [BarFra93] for some nice results about the set R(D, g) in the case of
a free Z-action.

Proof of the lemma. Under the assumptions of the lemma, first note that
the set R(D, g1, g2) does not contain any couple of the form (0, n) nor (n, 0)
with n 6= 0: indeed this is the content of the free disk lemma when applied
to g1 and g2.

We argue by contradiction, assuming that the set R(D, g1, g2) contains
(N1, N2) and (N ′

1,−N ′

2) where N1, N2, N
′

1, N
′

2 are positive integers (as was
the case in the course of the proof of the theorem). We write

N2 = n2p, N ′

2 = n′

2p

where p be the greatest commun divisor of N2, N
′

2. Consider the (cyclic)
sequence of topological disks (Di)i∈Z/(n2+n′

2
+1)Z consisting in the following

g2-iterates of D:

(D, g
N ′

2

2 (D), g
2N ′

2

2 (D), . . . , g
n2N ′

2

2 (D) = g
n′

2
N2

2 (D), g
(n′

2
−1)N2

2 (D), . . . , gN2

2 (D)).
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Since pn2n
′

2 = n′

2N2 = n2N
′

2 is the least commun multiple of N2 and
N ′

2, all the powers of g2 involved in the sequence are distinct. Thus the
disks in the sequence are pairwise disjoint, otherwise the set R(D, g1, g2)
would contain some couple of the form (0, n). By assumption R(D, g1, g2)
contains (N1, N2) and (N ′

1,−N ′

2). This means that for each disk Di in this

cyclic sequence, the image of Di under either g
N ′

1

1 or gN1

1 meets the next disk
Di+1. Thus this sequence constitutes a periodic disk chain for the Brouwer
homeomorphism g1, in contradiction with Franks’s lemma.

This completes the proof of the theorem in the orientation-preserving
case.

4 The orientation-reversing case

We will explain how to modify the arguments of the previous section.

Proof of the theorem in the orientation-reversing case. Assume as before
that G is a group of homeomorphisms of the plane, that is isomorphic to Z

2,
and acts minimally. Also assume that it contains some orientation reversing
elements. Lemma 2.2 applies, so again the elements of G are fixed point
free. No element of G is conjugate to a translation: otherwise G would
contain some primitive element conjugate either to a translation or to the
map (x, y) 7→ (x+ 1,−y) (see Lemma 2.1), we would get a minimal homeo-
morphism of the annulus or the Mobius band, both situations contradicting
Le Calvez-Yoccoz’s results.

The set G+ of orientation-preserving elements of G is a subgroup of index
2 which is again isomorphic to Z

2. We now consider a basis {g1, g2} of G
such that G+ contains g1 (and not g2). Let D be a disk which is disjoint from
its images under the five maps g1, g2, g

2
2 , g1g

2
2 , g1g

−2
2 . The last two maps are

(orientation preserving) Brouwer homeomorphisms whose positive singular
set is dense: as above we find some positive integers N1, N2, N

′

1, N
′

2 such that
the return-time set R(D, g1, g2) (defined as in Lemma 3.1) contains (N1, N2)
and (N ′

1,−N ′

2).
Since D, g2(D), g22(D) are mutually disjoint, we may apply Bonino’s ori-

entation reversing free disk lemma: we get that D is disjoint from all its
g2-iterates. Now, as in Lemma 3.1, we can make a periodic disk chain for
g1 out of the g2-iterates of D. Since g1 is a Brouwer homeomorphism, this
contradicts Franks’s Lemma.
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